Research Article
BibTex RIS Cite

Year 2025, Volume: 31 Issue: 3, 714 - 724, 29.07.2025
https://doi.org/10.15832/ankutbd.1475175

Abstract

Project Number

112R005

References

  • Adekanye T, Dada O & Kolapo J (2022). Pyrolysis of maize cob at different temperatures for biochar production: Proximate, ultimate and spectroscopic characterization. Research in Agricultural Engineering 68(1): 27–34. https://doi.org/10.17221/106/2020-RAE
  • Afif R A, Anayah S S & Pfeifer C (2020). Batch pyrolysis of cotton stalks for evaluation of biochar energy potential. Renewable Energy 147: 2250-2258. https://doi.org/10.1016/j.renene.2019.09.146
  • Agrafioti E, Bouras G, Kalderis D & Diamadopoulos E (2013). Biochar production by sewage sludge pyrolysis. Journal of Analytical and Applied Pyrolysis 101: 72–78. https://doi.org/10.1016/j.jaap.2013.02.010
  • Agrafioti E, Kalderis D & Diamadopoulos E (2014). Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. Journal of Environment Management 133: 309–314. http://dx.doi.org/10.1016/j.jenvman.2013.12.007
  • Akca M O, Sozudoğru Ok S, Denız K, Mohammedelnour A & Kibar M (2021). Spectroscopic Characterisation and Elemental Composition of Biochars Obtained from Different Agricultural Wastes, Journal of Agricultural Sciences (Tarim Bilimleri Dergisi) 27(4): 426-435. https://doi.org/10.15832/ankutbd.623876
  • Akhtar S S, Li G T, Andersen M N & Liu F L (2014). Biochar enhances yield and quality of tomato under reduced irrigation. Agricultural Water Management 138: 37–44. https://doi.org/10.1016/j.agwat.2014.02.016
  • Akram M Z & Yaman Fırıncıoğlu S (2019). The Use of Agricultural Crop Residues as Alternatives to Conventional Feedstuffs for Ruminants. Eurasian Journal of Agricultural Research 3(2): 58-66
  • Ali L, Manzoor N, Li X, Naveed M, Nadeem S M, Waqas M R, Khalid M, Abbas A, Ahmed T & Li B (2021). Impact of Corn Cob-Derived Biochar in Altering Soil Quality, Biochemical Status and Improving Maize Growth under Drought Stress. Agronomy 11, 2300. https://doi.org/10.3390/agronomy11112300
  • Al-Wabel M I A, Al-Omran A H, El-Naggar A M, Nadeem M & Usman A R A (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology 131: 374–379. http://dx.doi.org/10.1016/j.biortech.2012.12.165
  • Angin D (2013). Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Biores. Tech. 128: 593–597. https://dx.doi.org/10.1016/j.biortech.2012.10.150
  • Apaydin-Varol E, Pütün E & Pütün A E (2007). Slow pyrolysis of pistachio shell, Science Direct, Fuel 86: 1892–1899. http://doi:10.1016/j.fuel.2006.11.041
  • Bahşi K, Ustaoğlu B, Aksoy S & Sertel E (2023). Estimation of emissions from crop residue burning in Türkiye using remotely sensed data and the Google Earth Engine platform, Geocarto Internatıonal 38(1): 2157052. https://doi.org/10.1080/10106049.2022.2157052
  • Bakshi S, Banik C & Laird D A (2020). Estimating the organic oxygen content of biochar. Scientific Reports 10: 13082. https://doi.org/10.1038/s41598-020-69798-y
  • Beesley L & Marmiroli M (2011). The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environmental Pollution, 159(2): 474–480. http://dx.doi.org/10.1016/j.envpol.2010.10.016
  • Bilgili A V, Yeşilnacar İ, Akihiko K, Nagano T, Aydemir A, Hızlı H S & Bilgili A (2018). Post-irrigation degradation of land and environmental resources in the Harran plain, southeastern Turkey, Environ Monit Assess 190: 660. https://doi.org/10.1007/s10661-018 7019-2
  • chemical properties Bouraoui Z, Jeguirim M, Guizani C, Limousy L, Dupont C & Gadiou R (2015). Thermogravimetric study on the influence of structural, textural and of biomass chars on CO2 gasification reactivity. Energy pp. 703-710. http://dx.doi.org/10.1016/j.energy.2015.05.100
  • Campos P, Miller A Z, Knicker H, Costa-Pereirac M F, Merino A & Rosaa J M D (2020). Chemical, physical and morphological properties of biochars produced from agricultural residues: Implications for their use as soil amendment, Waste Management 105: 256-267. https://doi.org/10.1016/j.wasman.2020.02.013
  • of pyrolysis Chandra S & Bhattacharya J (2019). Influence of temperature and duration of pyrolysis on the property heterogeneity of rice straw biochar and optimization conditions for its application in soils. J. Clean. Prod. 215: 1123–1139. https://doi.org/10.1016/j.jclepro.2019.01.079
  • Chen H, Lin G, Wang X, Chen Y, Liu Y, Yang H & Shao J (2016). Physicochemical properties and hygroscopicity of tobacco stem biochar pyrolyzed at different temperatures, Journal of Renewable and Sustaınable Energy 8, 013112. https://doi.org/10.1063/1.4942784
  • Chia C H, Gong B, Joseph S D, Marjo C E, Munroe P & Rich A M (2012). Imaging of mineral-enriched biochar by FTIR, Raman and SEM EDX. Vibrational Spectroscopy 62: 248–257. https://doi.org/10.1016/j.vibspec.2012.06.006
  • Demirbas A (2004). Effects of Temperature and Particle Size on Bio-Char Yield from Pyrolysis of Agricultural Residues, Journal of Analytical and Applied Pyrolysis 72: 243-248. https://doi:10.1016/j.jaap.2004.07.003
  • of Drané M, Zbair M, Hajjar-Garreau S, Josien L, Michelin L, Bennici S & Limousy L (2024). Unveiling the Potential of Corn Cob Biochar: Analysis Microstructure and Composition with Emphasis on Interaction with NO2. Materials 17, 159. https://doi.org/10.3390/ma17010159
  • Frišták V, Pipíška M, Lesný J, Soja G, Friesl-Hanl W & Packová A (2015). Utilization of biochar sorbents for Cd2+, Zn2+, and Cu2+ ions separation from aqueous solutions: comparative study. Environ. Monit. Assess 187, 4093. https://doi: 10.1007/s10661-014-4093-y
  • Fuertes A B, Arbestain M C, Sevilla M, Maciá-Agulló J A, Fiol S, López R, Smernik R J, Aitkenhead W P, Arce F & Macias F (2010). Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover, Australian Journal of Soil Research 48: 618-626. https://doi:10.1071/SR10010
  • Hao F, Zhao X, Ouyang W, Lin C, Chen S, Shan Y & Lai X (2013). Molecular Structure of Corncob-Derived Biochars and the Mechanism of Atrazine Sorption. Agronomy Journal 105: 773-782. https://doi.org/10.2134/agronj2012.0311
  • Howell J (2005). Organic Matter: Key to Soil Management. Available at http://www.hort.uconn.edu/ipm/veg/croptalk/croptalk1_4/ page8.html. [verified 1.19.11]
  • IBI (2012). Standardized product definition and product testing guidelines for biochar that is used in soil. Int. Biochar Initiat. 22. doi:http://www.biochar-international.org/ characterizationstandard
  • Inyang M, Gao B, Zimmerman A, Zhang M & Chen H (2014). Synthesis, characterization, and dye sorption ability of carbon nanotube- biochar nanocomposites. Chemical Engineering Journal 236: 39–46. https://doi.org/10.1016/j.cej.2013.09.074
  • Jindo K, Mizumoto H, Sawada Y, Sanchez-Monedero M & Sonoki T (2014). Physical and chemical characterization of biochars derived from different agricultural residues., Biogeosciences 11: 6613-6621. https://doi:10.5194/bg-11-6613-2014
  • Joseph S D, Camps-Arbestain M, Lin Y, Munroe P, Chia C H, Hook J, Van Zwieten L, Kimber S, Cowie A & Singh B P (2010). An investigation into the reactions of biochar in soil. Soil Research 48: 501–515
  • Khalid U & Inam M A (2024). The Influence of Pyrolysis Temperature on the Performance of Cotton Stalk Biochar for Hexavalent Chromium Removal from Wastewater, Water Air Soil Pollut 235: 114. https://doi.org/10.1007/s11270-024-06922-y
  • Kim K H, J, Kim Jae-Young, Cho Tae-Su & Choi J W (2012). Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresource Technology 118: 158–162. http://dx.doi.org/10.1016/j.biortech.2012.04.094
  • Komnitsas K, Zaharaki D, Pyliotis I, Vamvuka D & Bartzas G (2015). Assessment of pistachio shell biochar quality and its potential for adsorption of heavy metals, Waste Biomass Valor 6: 805–816 https://doi.10.1007/s12649-015-9364-5
  • Kostas E T, Durán-Jiménez G, Shepherd B J, Meredith W, Stevens L A, Williams O S A, Lye G J & Robinson J P (2020). Microwave pyrolysis of bio-oil and bio-char production. Chemical Engineering Journal https://doi.org/10.1016/j.cej.2019.123404
  • Leco (2005). Carbon, Hydrogen and Nitrogen in Flour and Plant Tissue LECO Corporation 3000 Lakeview Avenue. Lehmann J & Joseph S (2009). Biochar for environmental management: science and technology. Sterling, VA: Earthscan. 387: 123404.
  • Liu Z, Niu W, Chu H, Zhou T & Niu Z (2018). Effect of the Carbonization Temperature on the Properties of Biochar Produced from the Pyrolysis of Crop Residues. BioResources 13: 3429-3446
  • Lustosa Filho J F, da Silva A P F, Costa S T, Gomes H T, de Figueiredo T, Hernández Z (2024). Biochars Derived from Olive Mill Byproducts: Typology, Characterization, and Eco-Efficient Application in Agriculture—A Systematic Review. Sustainability, 16, 5004. https://doi.org/10.3390/su16125004
  • Marra R, Vinale F, Cesarano G, Lombardi N, d'Errico G & Crasto A (2018). Biochars from olive mill waste have contrasting effects on plants, fungi and phytoparasitic nematodes. PLoS ONE 13 (6): e0198728. https://doi.org/10.1371/journal.pone.0198728
  • Méndez A, Terradillos M & Gascó G (2013). Physicochemical and agronomic properties of biochar from sewage sludge pyrolysed at different temperatures. Journal of Analytical and Applied Pyrolysis 102: 124–130. https://doi.org/10.1016/j.jaap.2013.03.006
  • Mertens D (2005a). AOAC Official Method 922.02. Plants Preparation of Laboratuary Sample. Official Methods of Analysis, 18th edn. Horwitz, W., and G.W. Latimer, (Eds). Chapter 3, pp1-2, AOAC-International Suite 500, 481. North Frederick Avenue, Gaitherburg, Maryland 20877 2417, USA.
  • Mullen C A, Boateng A A, Goldberg N M, Lima I M, Laird D A & Hicks K B (2010). Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass and Bioenergy 34: 67–74. https://doi.org/10.1016/j.biombioe.2009.09.012.
  • Nguyen T T N, Xu Cheng-Yuan, Tahmasbian I, Che R, Xu Z, Zhou X, Wallace H M, Bai S H (2017). Effects of biochar on soil available inorganic nitrogen: a review and meta-analysis. Geoderma 288: 79–96. https://doi.org/10.1016/j.geoderma.2016.11.004
  • Nigam N, Shanker K, & Khare P (2018). Valorisation of Residue of Mentha arvensis by Pyrolysis: Evaluation of Agronomic and Environmental Benefits. Waste Biomass Valor 9: 1909–1919. https://doi.org/ 10.1007/s12649-017-9928-7
  • Parmila D & Saraho A K (2013). Effect of temperature on biochar properties during paper mill sludge pyrolysis. International Journal of Chemtech Research 5(2): 682–687
  • Qian K, Kumar A, Patil K, Bellmer D, Wang D, Yuan W & Huhnke R L (2013). Effects of biomass feedstocks and gasification conditions on the physiochemical properties of char, Energies 6: 3972-3986. https://doi.org/10.3390/en6083972.
  • Rajkovich S, Enders A, Hanley K, Hyland C, Zimmerman, A R & Lehmann J (2012). Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils 48: 271-284. https://doi.org/10.1007/s00374-011 0624-7
  • Rattanaphaiboon P, Homdoung N & Tippay N (2021). Production and Characterization of Corncob Biochar for Agricultural Use, 3rd International Conference on Energy and Power, ICEP2021 AIP Conf. Proc. 2681, 020034-1–020034-6; https://doi.org/10.1063/5.0117160
  • Rivka B, Laird D, Thompson M L & Lawrinenko M (2017). Characterization and quantification of biochar alkalinity. Chemosphere 167: 367 373. http://dx.doi.org/10.1016/j.chemosphere.2016.09.151
  • Ronsse F, Nachenius R W & Prins W (2015). Carbonization of Biomass, Recent Advances in Thermo-Chemical Conversion of Biomass 293 324. https://doi.org/10.1016/B978-0-444-63289-0.00011-9
  • Schimmelpfennig S & Glaser B (2012). One step forward toward characterization: some important material properties to distinguish biochars. Journal of Environment Quality, 41: 1001-1013. https://doi.org/10.2134/jeq2011.0146
  • Schmidt M P, Ashworth D J, Celis N & Ibekwe A M (2023). Optimizing date palm leaf and pistachio shell biochar properties for antibiotic adsorption by varying pyrolysis temperature, Bioresource Technology Reports 21, 101325. https://doi.org/10.1016/j.biteb.2022.101325
  • Seow Y X, Tan Y H, Mubarak N M, Kansedo J, Khalid M, Ibrahim M L & Ghasemi M (2022). A review on biochar production from different biomass wastes by recent carbonization technologies and its sustainable applications, Journal of Environmental Chemical Engineering, 10, 107017. https://doi.org/10.1016/j.jece.2021.107017
  • Tan C, Yaxin Z, Hongtao W, Wenjing L, Zeyu Z, Yuancheng Z & Lulu R (2014). Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage. Bioresource Technology 164: 47–54. http://dx.doi.org/10.1016/j.biortech.2014.04.048
  • The European Biochar Certificate (2014). www.biochar-international.org Thies J E & Rillig M C (2009). Characteristics of biochar: Biological properties. In Biochar for Environmental Management pp. 85–105 Ünlü A, Arslan Z F, Arslan R & Ceylan F (2023). Amount of herbal waste in Türkiye at national and regional scale. Journal of Agriculture Faculty of Duzce University 1(1):26-37.
  • Wang L, Olsen M N P, Moni C, Dieguez-Alonso A, Rosa J M, Stenrød M, Liu X & Mao L (2022). Comparison of properties of biochar produced from different types of lignocellulosic biomass by slow pyrolysis at 600 ◦C, Applications in Energy and Combustion Science 12: 100090. https://doi.org/10.1016/j.jaecs.2022.100090
  • Watson C A, Atkinson D, Gosling P, Jackson L R & Rayns F W (2002). Managing soil fertility in organic farming systems. Soil Use Management 18: 239-247. https://doi.org/10.1111/j.1475-2743.2002.tb00265.x
  • Williams O S, Kostas E T, Durán-Jiménez G, Shepherd B J, Meredith W, Stevens L A & Lye G J (2020). Microwave pyrolysis of olive pomace for bio-oil and bio-char production. Chemical Engineering Journal 387: 123404. https://doi.org/10.1016/j.cej.2019.123404
  • Xu G, Wei L L, Sun J N, Shao H B & Chang S X (2013). What is more important for enhancing nutrient bioavailability with biochar application into a sandy soil: Direct or indirect mechanism?, Ecological Engineering, 52: 119–24. https://doi.org/10.1016/j.ecoleng.2012.12.091
  • Yılmaz H, Ozyakar H D & Dağ M M (2024). Exploratory factor analysis of manure utilization for sustainable dairy farming: Evidence from crop-dairy farming systems in Turkey, Waste Management Bulletin 1: 164-171. https://doi.org/10.1016/j.wmb.2023.10.010

Determination of Some Characteristic Properties of Biochar Obtained from Different Agricultural Wastes

Year 2025, Volume: 31 Issue: 3, 714 - 724, 29.07.2025
https://doi.org/10.15832/ankutbd.1475175

Abstract

Recycling of post – harvest wastes, which do not have any input qualities, to biochar is of great importance. The use of biochar increases soil quality and crop yield. Biochars used in the study were produced from residues of the locally grown crops: corn cob (CC), cotton stalk (CS), tobacco stalk (TS), pistachio shells (PS), and olive pulp (pomace) (OP). The biochars were produced via the carbonization method at 300°C. Biochar materials were evaluated for their properties (pH, EC, total C, N, H/C ratio, C/N ratio) and mineral concentration (Ca, Na, Mg, K, Cu, Zn, Fe, Mn, B, Al, Ni, P, Pb) before and after biochar processes. Surface morphology properties were observed using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDX). The conversion of crop biomass into biochar resulted in weight losses of between 42% and 69%. The pH of all biochars was alkaline (pH> 7). PS biochar exhibited the highest electrical conductivity (EC: 4.54 dS m-1) compared to other biochar materials. Biochar total carbon levels ranged from 58.06% to 80.29%, with the highest carbon concentration found in biochar obtained from corn cobs. In terms of total nitrogen, biochar obtained from cotton straws had twice as much nitrogen compared to the other four biochars, resulting in the lowest C/N ratio. H/C ratio ranged between 0.04 and 0.09. The mineral concentration of the materials also increased following biochar conversion. SEM micrographs showed higher porosity in CSB, CCB, and TSB with well-structured pores, while in PSB and OMB, the pores were not well-developed. SEM-EDX analysis of mineral elements (e.g., K, Mg, Si, and P) showed significant results in the derived CCB. In conclusion, this study demonstrates the diverse properties and mineral concentration of biochars derived from various agricultural residues, highlighting their potential for sustainable soil improvement.

Supporting Institution

TÜBİTAK

Project Number

112R005

References

  • Adekanye T, Dada O & Kolapo J (2022). Pyrolysis of maize cob at different temperatures for biochar production: Proximate, ultimate and spectroscopic characterization. Research in Agricultural Engineering 68(1): 27–34. https://doi.org/10.17221/106/2020-RAE
  • Afif R A, Anayah S S & Pfeifer C (2020). Batch pyrolysis of cotton stalks for evaluation of biochar energy potential. Renewable Energy 147: 2250-2258. https://doi.org/10.1016/j.renene.2019.09.146
  • Agrafioti E, Bouras G, Kalderis D & Diamadopoulos E (2013). Biochar production by sewage sludge pyrolysis. Journal of Analytical and Applied Pyrolysis 101: 72–78. https://doi.org/10.1016/j.jaap.2013.02.010
  • Agrafioti E, Kalderis D & Diamadopoulos E (2014). Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. Journal of Environment Management 133: 309–314. http://dx.doi.org/10.1016/j.jenvman.2013.12.007
  • Akca M O, Sozudoğru Ok S, Denız K, Mohammedelnour A & Kibar M (2021). Spectroscopic Characterisation and Elemental Composition of Biochars Obtained from Different Agricultural Wastes, Journal of Agricultural Sciences (Tarim Bilimleri Dergisi) 27(4): 426-435. https://doi.org/10.15832/ankutbd.623876
  • Akhtar S S, Li G T, Andersen M N & Liu F L (2014). Biochar enhances yield and quality of tomato under reduced irrigation. Agricultural Water Management 138: 37–44. https://doi.org/10.1016/j.agwat.2014.02.016
  • Akram M Z & Yaman Fırıncıoğlu S (2019). The Use of Agricultural Crop Residues as Alternatives to Conventional Feedstuffs for Ruminants. Eurasian Journal of Agricultural Research 3(2): 58-66
  • Ali L, Manzoor N, Li X, Naveed M, Nadeem S M, Waqas M R, Khalid M, Abbas A, Ahmed T & Li B (2021). Impact of Corn Cob-Derived Biochar in Altering Soil Quality, Biochemical Status and Improving Maize Growth under Drought Stress. Agronomy 11, 2300. https://doi.org/10.3390/agronomy11112300
  • Al-Wabel M I A, Al-Omran A H, El-Naggar A M, Nadeem M & Usman A R A (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology 131: 374–379. http://dx.doi.org/10.1016/j.biortech.2012.12.165
  • Angin D (2013). Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Biores. Tech. 128: 593–597. https://dx.doi.org/10.1016/j.biortech.2012.10.150
  • Apaydin-Varol E, Pütün E & Pütün A E (2007). Slow pyrolysis of pistachio shell, Science Direct, Fuel 86: 1892–1899. http://doi:10.1016/j.fuel.2006.11.041
  • Bahşi K, Ustaoğlu B, Aksoy S & Sertel E (2023). Estimation of emissions from crop residue burning in Türkiye using remotely sensed data and the Google Earth Engine platform, Geocarto Internatıonal 38(1): 2157052. https://doi.org/10.1080/10106049.2022.2157052
  • Bakshi S, Banik C & Laird D A (2020). Estimating the organic oxygen content of biochar. Scientific Reports 10: 13082. https://doi.org/10.1038/s41598-020-69798-y
  • Beesley L & Marmiroli M (2011). The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environmental Pollution, 159(2): 474–480. http://dx.doi.org/10.1016/j.envpol.2010.10.016
  • Bilgili A V, Yeşilnacar İ, Akihiko K, Nagano T, Aydemir A, Hızlı H S & Bilgili A (2018). Post-irrigation degradation of land and environmental resources in the Harran plain, southeastern Turkey, Environ Monit Assess 190: 660. https://doi.org/10.1007/s10661-018 7019-2
  • chemical properties Bouraoui Z, Jeguirim M, Guizani C, Limousy L, Dupont C & Gadiou R (2015). Thermogravimetric study on the influence of structural, textural and of biomass chars on CO2 gasification reactivity. Energy pp. 703-710. http://dx.doi.org/10.1016/j.energy.2015.05.100
  • Campos P, Miller A Z, Knicker H, Costa-Pereirac M F, Merino A & Rosaa J M D (2020). Chemical, physical and morphological properties of biochars produced from agricultural residues: Implications for their use as soil amendment, Waste Management 105: 256-267. https://doi.org/10.1016/j.wasman.2020.02.013
  • of pyrolysis Chandra S & Bhattacharya J (2019). Influence of temperature and duration of pyrolysis on the property heterogeneity of rice straw biochar and optimization conditions for its application in soils. J. Clean. Prod. 215: 1123–1139. https://doi.org/10.1016/j.jclepro.2019.01.079
  • Chen H, Lin G, Wang X, Chen Y, Liu Y, Yang H & Shao J (2016). Physicochemical properties and hygroscopicity of tobacco stem biochar pyrolyzed at different temperatures, Journal of Renewable and Sustaınable Energy 8, 013112. https://doi.org/10.1063/1.4942784
  • Chia C H, Gong B, Joseph S D, Marjo C E, Munroe P & Rich A M (2012). Imaging of mineral-enriched biochar by FTIR, Raman and SEM EDX. Vibrational Spectroscopy 62: 248–257. https://doi.org/10.1016/j.vibspec.2012.06.006
  • Demirbas A (2004). Effects of Temperature and Particle Size on Bio-Char Yield from Pyrolysis of Agricultural Residues, Journal of Analytical and Applied Pyrolysis 72: 243-248. https://doi:10.1016/j.jaap.2004.07.003
  • of Drané M, Zbair M, Hajjar-Garreau S, Josien L, Michelin L, Bennici S & Limousy L (2024). Unveiling the Potential of Corn Cob Biochar: Analysis Microstructure and Composition with Emphasis on Interaction with NO2. Materials 17, 159. https://doi.org/10.3390/ma17010159
  • Frišták V, Pipíška M, Lesný J, Soja G, Friesl-Hanl W & Packová A (2015). Utilization of biochar sorbents for Cd2+, Zn2+, and Cu2+ ions separation from aqueous solutions: comparative study. Environ. Monit. Assess 187, 4093. https://doi: 10.1007/s10661-014-4093-y
  • Fuertes A B, Arbestain M C, Sevilla M, Maciá-Agulló J A, Fiol S, López R, Smernik R J, Aitkenhead W P, Arce F & Macias F (2010). Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover, Australian Journal of Soil Research 48: 618-626. https://doi:10.1071/SR10010
  • Hao F, Zhao X, Ouyang W, Lin C, Chen S, Shan Y & Lai X (2013). Molecular Structure of Corncob-Derived Biochars and the Mechanism of Atrazine Sorption. Agronomy Journal 105: 773-782. https://doi.org/10.2134/agronj2012.0311
  • Howell J (2005). Organic Matter: Key to Soil Management. Available at http://www.hort.uconn.edu/ipm/veg/croptalk/croptalk1_4/ page8.html. [verified 1.19.11]
  • IBI (2012). Standardized product definition and product testing guidelines for biochar that is used in soil. Int. Biochar Initiat. 22. doi:http://www.biochar-international.org/ characterizationstandard
  • Inyang M, Gao B, Zimmerman A, Zhang M & Chen H (2014). Synthesis, characterization, and dye sorption ability of carbon nanotube- biochar nanocomposites. Chemical Engineering Journal 236: 39–46. https://doi.org/10.1016/j.cej.2013.09.074
  • Jindo K, Mizumoto H, Sawada Y, Sanchez-Monedero M & Sonoki T (2014). Physical and chemical characterization of biochars derived from different agricultural residues., Biogeosciences 11: 6613-6621. https://doi:10.5194/bg-11-6613-2014
  • Joseph S D, Camps-Arbestain M, Lin Y, Munroe P, Chia C H, Hook J, Van Zwieten L, Kimber S, Cowie A & Singh B P (2010). An investigation into the reactions of biochar in soil. Soil Research 48: 501–515
  • Khalid U & Inam M A (2024). The Influence of Pyrolysis Temperature on the Performance of Cotton Stalk Biochar for Hexavalent Chromium Removal from Wastewater, Water Air Soil Pollut 235: 114. https://doi.org/10.1007/s11270-024-06922-y
  • Kim K H, J, Kim Jae-Young, Cho Tae-Su & Choi J W (2012). Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresource Technology 118: 158–162. http://dx.doi.org/10.1016/j.biortech.2012.04.094
  • Komnitsas K, Zaharaki D, Pyliotis I, Vamvuka D & Bartzas G (2015). Assessment of pistachio shell biochar quality and its potential for adsorption of heavy metals, Waste Biomass Valor 6: 805–816 https://doi.10.1007/s12649-015-9364-5
  • Kostas E T, Durán-Jiménez G, Shepherd B J, Meredith W, Stevens L A, Williams O S A, Lye G J & Robinson J P (2020). Microwave pyrolysis of bio-oil and bio-char production. Chemical Engineering Journal https://doi.org/10.1016/j.cej.2019.123404
  • Leco (2005). Carbon, Hydrogen and Nitrogen in Flour and Plant Tissue LECO Corporation 3000 Lakeview Avenue. Lehmann J & Joseph S (2009). Biochar for environmental management: science and technology. Sterling, VA: Earthscan. 387: 123404.
  • Liu Z, Niu W, Chu H, Zhou T & Niu Z (2018). Effect of the Carbonization Temperature on the Properties of Biochar Produced from the Pyrolysis of Crop Residues. BioResources 13: 3429-3446
  • Lustosa Filho J F, da Silva A P F, Costa S T, Gomes H T, de Figueiredo T, Hernández Z (2024). Biochars Derived from Olive Mill Byproducts: Typology, Characterization, and Eco-Efficient Application in Agriculture—A Systematic Review. Sustainability, 16, 5004. https://doi.org/10.3390/su16125004
  • Marra R, Vinale F, Cesarano G, Lombardi N, d'Errico G & Crasto A (2018). Biochars from olive mill waste have contrasting effects on plants, fungi and phytoparasitic nematodes. PLoS ONE 13 (6): e0198728. https://doi.org/10.1371/journal.pone.0198728
  • Méndez A, Terradillos M & Gascó G (2013). Physicochemical and agronomic properties of biochar from sewage sludge pyrolysed at different temperatures. Journal of Analytical and Applied Pyrolysis 102: 124–130. https://doi.org/10.1016/j.jaap.2013.03.006
  • Mertens D (2005a). AOAC Official Method 922.02. Plants Preparation of Laboratuary Sample. Official Methods of Analysis, 18th edn. Horwitz, W., and G.W. Latimer, (Eds). Chapter 3, pp1-2, AOAC-International Suite 500, 481. North Frederick Avenue, Gaitherburg, Maryland 20877 2417, USA.
  • Mullen C A, Boateng A A, Goldberg N M, Lima I M, Laird D A & Hicks K B (2010). Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass and Bioenergy 34: 67–74. https://doi.org/10.1016/j.biombioe.2009.09.012.
  • Nguyen T T N, Xu Cheng-Yuan, Tahmasbian I, Che R, Xu Z, Zhou X, Wallace H M, Bai S H (2017). Effects of biochar on soil available inorganic nitrogen: a review and meta-analysis. Geoderma 288: 79–96. https://doi.org/10.1016/j.geoderma.2016.11.004
  • Nigam N, Shanker K, & Khare P (2018). Valorisation of Residue of Mentha arvensis by Pyrolysis: Evaluation of Agronomic and Environmental Benefits. Waste Biomass Valor 9: 1909–1919. https://doi.org/ 10.1007/s12649-017-9928-7
  • Parmila D & Saraho A K (2013). Effect of temperature on biochar properties during paper mill sludge pyrolysis. International Journal of Chemtech Research 5(2): 682–687
  • Qian K, Kumar A, Patil K, Bellmer D, Wang D, Yuan W & Huhnke R L (2013). Effects of biomass feedstocks and gasification conditions on the physiochemical properties of char, Energies 6: 3972-3986. https://doi.org/10.3390/en6083972.
  • Rajkovich S, Enders A, Hanley K, Hyland C, Zimmerman, A R & Lehmann J (2012). Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils 48: 271-284. https://doi.org/10.1007/s00374-011 0624-7
  • Rattanaphaiboon P, Homdoung N & Tippay N (2021). Production and Characterization of Corncob Biochar for Agricultural Use, 3rd International Conference on Energy and Power, ICEP2021 AIP Conf. Proc. 2681, 020034-1–020034-6; https://doi.org/10.1063/5.0117160
  • Rivka B, Laird D, Thompson M L & Lawrinenko M (2017). Characterization and quantification of biochar alkalinity. Chemosphere 167: 367 373. http://dx.doi.org/10.1016/j.chemosphere.2016.09.151
  • Ronsse F, Nachenius R W & Prins W (2015). Carbonization of Biomass, Recent Advances in Thermo-Chemical Conversion of Biomass 293 324. https://doi.org/10.1016/B978-0-444-63289-0.00011-9
  • Schimmelpfennig S & Glaser B (2012). One step forward toward characterization: some important material properties to distinguish biochars. Journal of Environment Quality, 41: 1001-1013. https://doi.org/10.2134/jeq2011.0146
  • Schmidt M P, Ashworth D J, Celis N & Ibekwe A M (2023). Optimizing date palm leaf and pistachio shell biochar properties for antibiotic adsorption by varying pyrolysis temperature, Bioresource Technology Reports 21, 101325. https://doi.org/10.1016/j.biteb.2022.101325
  • Seow Y X, Tan Y H, Mubarak N M, Kansedo J, Khalid M, Ibrahim M L & Ghasemi M (2022). A review on biochar production from different biomass wastes by recent carbonization technologies and its sustainable applications, Journal of Environmental Chemical Engineering, 10, 107017. https://doi.org/10.1016/j.jece.2021.107017
  • Tan C, Yaxin Z, Hongtao W, Wenjing L, Zeyu Z, Yuancheng Z & Lulu R (2014). Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage. Bioresource Technology 164: 47–54. http://dx.doi.org/10.1016/j.biortech.2014.04.048
  • The European Biochar Certificate (2014). www.biochar-international.org Thies J E & Rillig M C (2009). Characteristics of biochar: Biological properties. In Biochar for Environmental Management pp. 85–105 Ünlü A, Arslan Z F, Arslan R & Ceylan F (2023). Amount of herbal waste in Türkiye at national and regional scale. Journal of Agriculture Faculty of Duzce University 1(1):26-37.
  • Wang L, Olsen M N P, Moni C, Dieguez-Alonso A, Rosa J M, Stenrød M, Liu X & Mao L (2022). Comparison of properties of biochar produced from different types of lignocellulosic biomass by slow pyrolysis at 600 ◦C, Applications in Energy and Combustion Science 12: 100090. https://doi.org/10.1016/j.jaecs.2022.100090
  • Watson C A, Atkinson D, Gosling P, Jackson L R & Rayns F W (2002). Managing soil fertility in organic farming systems. Soil Use Management 18: 239-247. https://doi.org/10.1111/j.1475-2743.2002.tb00265.x
  • Williams O S, Kostas E T, Durán-Jiménez G, Shepherd B J, Meredith W, Stevens L A & Lye G J (2020). Microwave pyrolysis of olive pomace for bio-oil and bio-char production. Chemical Engineering Journal 387: 123404. https://doi.org/10.1016/j.cej.2019.123404
  • Xu G, Wei L L, Sun J N, Shao H B & Chang S X (2013). What is more important for enhancing nutrient bioavailability with biochar application into a sandy soil: Direct or indirect mechanism?, Ecological Engineering, 52: 119–24. https://doi.org/10.1016/j.ecoleng.2012.12.091
  • Yılmaz H, Ozyakar H D & Dağ M M (2024). Exploratory factor analysis of manure utilization for sustainable dairy farming: Evidence from crop-dairy farming systems in Turkey, Waste Management Bulletin 1: 164-171. https://doi.org/10.1016/j.wmb.2023.10.010
There are 59 citations in total.

Details

Primary Language English
Subjects Environmental Assessment and Monitoring, Plant Nutrition and Soil Fertility
Journal Section Makaleler
Authors

Ebru Pinar Sayğan 0000-0001-8249-7759

Salih Aydemir 0000-0002-3236-8438

Ali Bilgili 0000-0002-4727-8283

Osman Sönmez 0000-0002-9134-6466

Project Number 112R005
Publication Date July 29, 2025
Submission Date April 29, 2024
Acceptance Date February 1, 2025
Published in Issue Year 2025 Volume: 31 Issue: 3

Cite

APA Sayğan, E. P., Aydemir, S., Bilgili, A., Sönmez, O. (2025). Determination of Some Characteristic Properties of Biochar Obtained from Different Agricultural Wastes. Journal of Agricultural Sciences, 31(3), 714-724. https://doi.org/10.15832/ankutbd.1475175
AMA Sayğan EP, Aydemir S, Bilgili A, Sönmez O. Determination of Some Characteristic Properties of Biochar Obtained from Different Agricultural Wastes. J Agr Sci-Tarim Bili. July 2025;31(3):714-724. doi:10.15832/ankutbd.1475175
Chicago Sayğan, Ebru Pinar, Salih Aydemir, Ali Bilgili, and Osman Sönmez. “Determination of Some Characteristic Properties of Biochar Obtained from Different Agricultural Wastes”. Journal of Agricultural Sciences 31, no. 3 (July 2025): 714-24. https://doi.org/10.15832/ankutbd.1475175.
EndNote Sayğan EP, Aydemir S, Bilgili A, Sönmez O (July 1, 2025) Determination of Some Characteristic Properties of Biochar Obtained from Different Agricultural Wastes. Journal of Agricultural Sciences 31 3 714–724.
IEEE E. P. Sayğan, S. Aydemir, A. Bilgili, and O. Sönmez, “Determination of Some Characteristic Properties of Biochar Obtained from Different Agricultural Wastes”, J Agr Sci-Tarim Bili, vol. 31, no. 3, pp. 714–724, 2025, doi: 10.15832/ankutbd.1475175.
ISNAD Sayğan, Ebru Pinar et al. “Determination of Some Characteristic Properties of Biochar Obtained from Different Agricultural Wastes”. Journal of Agricultural Sciences 31/3 (July2025), 714-724. https://doi.org/10.15832/ankutbd.1475175.
JAMA Sayğan EP, Aydemir S, Bilgili A, Sönmez O. Determination of Some Characteristic Properties of Biochar Obtained from Different Agricultural Wastes. J Agr Sci-Tarim Bili. 2025;31:714–724.
MLA Sayğan, Ebru Pinar et al. “Determination of Some Characteristic Properties of Biochar Obtained from Different Agricultural Wastes”. Journal of Agricultural Sciences, vol. 31, no. 3, 2025, pp. 714-2, doi:10.15832/ankutbd.1475175.
Vancouver Sayğan EP, Aydemir S, Bilgili A, Sönmez O. Determination of Some Characteristic Properties of Biochar Obtained from Different Agricultural Wastes. J Agr Sci-Tarim Bili. 2025;31(3):714-2.

Journal of Agricultural Sciences is published as open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).