Year 2025,
Volume: 31 Issue: 3, 709 - 713, 29.07.2025
Ercan Soydan
,
Koray Kırıkçı
References
-
Acı R, Duman E, Kul S & Yiğit S (2024). Effect of Bone Morphogenetic Protein Receptor-1B (BMPR-1B) Gene Variant on Litter Size in Akkaraman Sheep Breed. Jurnal Medik Veteriner 7(2): 235-243 https://doi.org/10.20473/jmv.vol7.iss2.2024.235-243
-
Akçapınar H (2000). Sheep breeding. Ismet printing Ankara (In Turkish)
Aksoy Y, Şekeroğlu A, Duman M & Çoban Ö B (2023). A study on the determination of some reproductive traits of ewes and the growth performance of lambs Akkaraman raised under farm conditions in the province of Niğde. Turkish Journal of Agriculture-Food Science and
Technology 11(6): 1168-1175 https://doi.org/10.24925/turjaf.v11i6.1168-1175.5991
-
Barnett K R, Tomic D, Gupta R K, Babus J K, Roby K F, Terranova P F & Flaws J A (2007). The aryl hydrocarbon receptor is required for normal gonadotropin responsiveness in the mouse ovary. Toxicology and applied pharmacology 223(1): 66-72
https://doi.org/10.1016/j.taap.2007.05.014
-
Barouki R, Coumoul X & Fernandez-Salguero P M (2007). The aryl hydrocarbon receptor, more than a xenobiotic-interacting protein. FEBS letters 581(19): 3608-3615 https://doi.org/10.1016/j.febslet.2007.03.046
-
Basham K J, Leonard C J, Kieffer C, Shelton D N, McDowell M E, Bhonde V R & Welm B E (2015). Dioxin exposure blocks lactation through a direct effect on mammary epithelial cells mediated by the aryl hydrocarbon receptor repressor. Toxicological Sciences 143(1):
36-45 https://doi.org/10.1093/toxsci/kfu203
-
Benedict J C, Lin T M, Loeffler I K, Peterson R E & Flaws J A (2000). Physiological role of the aryl hydrocarbon receptor in mouse ovary development. Toxicological Sciences 56(2): 382-388 https://doi.org/10.1093/toxsci/56.2.382
-
Benedict J C, Miller K P, Lin T M, Greenfeld C, Babus J K, Peterson R E & Flaws J A (2003). Aryl hydrocarbon receptor regulates growth, but not atresia, in of mouse preantral and antral follicles. Biology
of reproduction 68(5): 1511-1517
https://doi.org/10.1095/biolreprod.102.007492
-
Bosse M, Megens H J, Frantz L A, Madsen O, Larson G, Paudel Y & Groenen M A (2014). Genomic analysis reveals selection for Asian genes European cells: pigs following human-mediated introgression. Nature
communications 5(1): 4392
https://doi.org/10.1038/ncomms5392
Bussmann U A, Bussmann L E & Barañao J L (2006). An aryl hydrocarbon receptor agonist amplifies the mitogenic actions of estradiol in granulosa evidence of involvement of the cognate receptors. Biology
of reproduction 74(2): 417-426
https://doi.org/10.1095/biolreprod.105.043901
-
Cam M A, Olfaz M, Kırıkçı K, Garipoğlu A V & Soydan E (2017). Market productivity of single and twin bearing Karayaka Ewes. Hayvansal Üretim 58(1): 20-27 https://doi.org/10.29185/hayuretim.333775
-
Chaffin C L, Trewin A L & Hutz R J (2000). Estrous cycle-dependent changes in the expression of aromatic hydrocarbon receptor (AHR) and AHR-nuclear translocator (ARNT) mRNAs in the rat ovary and liver. Chemico-biological interactions 124(3): 205-216
https://doi.org/10.1016/s0009-2797(99)00157-x
-
Cui Y, Yan H, Wang K, Xu H, Zhang X, Zhu H & Pan C (2018). Insertion/deletion within the KDM6A gene is significantly associated with litter size in goat. Frontiers in Genetics 9: 91 https://doi.org/10.3389/fgene.2018.00091
-
Davis G H (2005). Major genes affecting ovulation rate in sheep. Genetics Selection Evolution, 37(Suppl. 1): 11-23
https://doi.org/10.1051/gse:2004026
-
Esen F & Bozkurt T (2001). Effect of flushing and oestrus synchronization application on fertility in Akkaraman sheep. Turkish Journal of Veterinary & Animal Sciences 25(3): 365-368
-
Girolami F, Spalenza,V, Carletti M, Sacchi P, Rasero R & Nebbia C (2013). Modulation of aryl hydrocarbon receptor target genes in circulating lymphocytes from dairy cows bred in a dioxin-like PCB contaminated area. Science of the total environment 450: 7-12
https://doi.org/10.1016/j.scitotenv.2013.01.095
-
Gutiérrez-Vázquez C & Quintana F J (2018). Regulation of the immune response by the aryl hydrocarbon receptor. Immunity 48(1): 19-33
https://doi.org/10.1016/j.immuni.2017.12.012
-
Huang Y, Su P, Akhatayeva Z, Pan C, Zhang Q & Lan X (2022). Novel InDel variations of the Cry2 gene are associated with litter size in Australian White sheep. Theriogenology 179: 155-161 https://doi.org/10.1016/j.theriogenology.2021.11.023
-
Hui Y, Zhang Y, Wang K, Pan C, Chen H, Qu L & Lan X (2020). Goat DNMT3B: An indel mutation detection, association analysis with litter size and mRNA expression in gonads. Theriogenology 147: 108-115 https://doi.org/10.1016/j.theriogenology.2020.02.025
-
Kirikci K, Cam M A & Mercan L (2021). Investigation of G1 (c. 260G> A) polymorphism in exon 1 of GDF9 gene in Turkish sheep breed Karayaka. Turkish Journal of Veterinary & Animal Sciences 45(1): 191-197 https://doi.org/10.3906/vet-2009-40
-
Kırıkçı K (2023). Investigation of BMP15 and GDF9 gene polymorphisms and their effects on litter size in Anatolian sheep breed Akkaraman. Turkish Journal of Veterinary & Animal Sciences 47(3): 248-254 https://doi.org/10.55730/1300-0128.4292
-
Kolluri S K, Jin U H & Safe S (2017). Role of the aryl hydrocarbon receptor in carcinogenesis and potential as an anti-cancer drug target. Archives of toxicology 91: 2497-2513 https://doi.org/10.1007/s00204-017-1981-2
-
Kumar S, Stecher G, Li M, Knyaz C & Tamura K (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution 35(6): 1547-1549 https://doi.org/10.1093/molbev/msy096
-
Larigot L, Juricek L, Dairou J & Coumoul X (2018). AhR signaling pathways and regulatory functions. Biochimie open 7: 1-9
https://doi.org/10.1016/j.biopen.2018.05.001
-
Ren H, Tang Q, Xue T, Wang Q, Xu H, Zhang Q & Pan C (2022). A 24-bp indel within the sheep AHR gene is associated with litter size. Animal Biotechnology 33(7): 1533-1538 https://doi.org/10.1080/10495398.2021.1914071
-
Roman Á C, Carvajal-Gonzalez J M, Merino J M, Mulero-Navarro S & Fernández-Salguero P M (2018). The aryl hydrocarbon receptor in the crossroad of signalling networks with therapeutic value. Pharmacology
& therapeutics 185: 50-63
https://doi.org/10.1016/j.pharmthera.2017.12.003
-
Schmidová J, Milerski M, Svitaková A, Vostrý L & Novotná A (2014). Estimation of genetic parameters for litter size in Charollais, Romney, Merinolandschaf, Romanov, Suffolk, Šumava and Texel breeds of sheep. Small Ruminant Research 119(1-3): 33-38
https://doi.org/10.1016/j.smallrumres.2014.02.004
-
Sen U, Sirin E, Filik G & Soydan E (2020). The effect of breed on instrumental meat quality traits of weaning kids from Turkish indigenous goat breeds. Large Animal Review 26(1): 19-24
-
Shaul O (2017). How introns enhance gene expression. The international journal of biochemistry & cell biology 91: 145-155
https://doi.org/10.1016/j.biocel.2017.06.016
Soydan E, Ocak N & Onder H (2009). Conception of Jersey cattle in Turkey. Tropical Animal Health and Production 41(4): 623-628
https://doi.org/10.1007/s11250-008-9233-3
-
Wang K, Hui Y, Zhang S, Wang M, Yan H, Zhu H & Pan C (2020). A deletion mutation within the ATBF1 gene is strongly associated with goat litter size. Animal Biotechnology 31(2): 174-180 https://doi.org/10.1080/10495398.2018.1561459
-
Wang K, Kang Z, Jiang E, Yan H, Zhu H, Liu J & Pan C (2020). Genetic effects of DSCAML1 identified in genome-wide association study revealing strong associations with litter size and semen quality in goat (Capra hircus). Theriogenology 146: 20-25
https://doi.org/10.1016/j.theriogenology.2020.01.079
-
Yang Y, Hu H, Mao C, Jiang F, Lu X, Han X & Pan C (2022). Detection of the 23-bp nucleotide sequence mutation in retinoid acid receptor related orphan receptor alpha (RORA) gene and its effect on sheep litter size. Animal Biotechnology 33(1): 70-78
https://doi.org/10.1080/10495398.2020.1770273
-
size in Akkaraman Yiğit S, Kul S, Aci R, Keskin A, Tuygun T & Duman E (2023). The effect of RORA (RAR-Related Orphan Receptor Alpha) receptors on litter sheep breed. Molecular Biology Research Communications
12(3): 109-115
https://doi.org/10.22099/mbrc.2023.47336.1827
-
Zheng X, Zhao P, Yang K, Ning C, Wang H, Zhou L & Liu J (2020). CNV analysis of Meishan pig by next-generation sequencing and effects of AHR gene CNV on pig reproductive traits. Journal of animal science and biotechnology 11(42): 1-11 https://doi.org/10.1186/s40104
020-00442-5
Effects of 24-bp Indel Mutation Within the AHR Gene on Litter Size in the Akkaraman Sheep Breed
Year 2025,
Volume: 31 Issue: 3, 709 - 713, 29.07.2025
Ercan Soydan
,
Koray Kırıkçı
Abstract
The aryl hydrocarbon receptor (Ahr) is a transcription factor that is involved in a variety of biological processes, such as cell proliferation, growth and the immune system. Previous investigations have asserted the importance of Ahr gene in female reproduction. However, there are limited studies on the exact mechanisms of the Ahr gene on sheep litter size. Therefore, this study aimed to investigate the 24-bp indel mutation in region 3 of the Ahr gene in Akkaraman sheep, and its impact on litter size. A total of 100 blood samples were used for the study. Genomic DNA was obtained from whole blood. Following the polymerase chain reaction (PCR) analysis, all animals were genotyped based on the result of the agarose gel image. In the study, a 24-bp indel mutation was found, and tree genotypes (II, ID and DD) were detected in Akkaraman sheep. The ID (Insertion/deletion) genotype (59%) was the most common, followed by DD (deletion/deletion) (36%) and II (Insertion/insertion) (5%). In addition, the association analyses showed that the indel mutation within the Ahr gene had a significant influence on litter size.
References
-
Acı R, Duman E, Kul S & Yiğit S (2024). Effect of Bone Morphogenetic Protein Receptor-1B (BMPR-1B) Gene Variant on Litter Size in Akkaraman Sheep Breed. Jurnal Medik Veteriner 7(2): 235-243 https://doi.org/10.20473/jmv.vol7.iss2.2024.235-243
-
Akçapınar H (2000). Sheep breeding. Ismet printing Ankara (In Turkish)
Aksoy Y, Şekeroğlu A, Duman M & Çoban Ö B (2023). A study on the determination of some reproductive traits of ewes and the growth performance of lambs Akkaraman raised under farm conditions in the province of Niğde. Turkish Journal of Agriculture-Food Science and
Technology 11(6): 1168-1175 https://doi.org/10.24925/turjaf.v11i6.1168-1175.5991
-
Barnett K R, Tomic D, Gupta R K, Babus J K, Roby K F, Terranova P F & Flaws J A (2007). The aryl hydrocarbon receptor is required for normal gonadotropin responsiveness in the mouse ovary. Toxicology and applied pharmacology 223(1): 66-72
https://doi.org/10.1016/j.taap.2007.05.014
-
Barouki R, Coumoul X & Fernandez-Salguero P M (2007). The aryl hydrocarbon receptor, more than a xenobiotic-interacting protein. FEBS letters 581(19): 3608-3615 https://doi.org/10.1016/j.febslet.2007.03.046
-
Basham K J, Leonard C J, Kieffer C, Shelton D N, McDowell M E, Bhonde V R & Welm B E (2015). Dioxin exposure blocks lactation through a direct effect on mammary epithelial cells mediated by the aryl hydrocarbon receptor repressor. Toxicological Sciences 143(1):
36-45 https://doi.org/10.1093/toxsci/kfu203
-
Benedict J C, Lin T M, Loeffler I K, Peterson R E & Flaws J A (2000). Physiological role of the aryl hydrocarbon receptor in mouse ovary development. Toxicological Sciences 56(2): 382-388 https://doi.org/10.1093/toxsci/56.2.382
-
Benedict J C, Miller K P, Lin T M, Greenfeld C, Babus J K, Peterson R E & Flaws J A (2003). Aryl hydrocarbon receptor regulates growth, but not atresia, in of mouse preantral and antral follicles. Biology
of reproduction 68(5): 1511-1517
https://doi.org/10.1095/biolreprod.102.007492
-
Bosse M, Megens H J, Frantz L A, Madsen O, Larson G, Paudel Y & Groenen M A (2014). Genomic analysis reveals selection for Asian genes European cells: pigs following human-mediated introgression. Nature
communications 5(1): 4392
https://doi.org/10.1038/ncomms5392
Bussmann U A, Bussmann L E & Barañao J L (2006). An aryl hydrocarbon receptor agonist amplifies the mitogenic actions of estradiol in granulosa evidence of involvement of the cognate receptors. Biology
of reproduction 74(2): 417-426
https://doi.org/10.1095/biolreprod.105.043901
-
Cam M A, Olfaz M, Kırıkçı K, Garipoğlu A V & Soydan E (2017). Market productivity of single and twin bearing Karayaka Ewes. Hayvansal Üretim 58(1): 20-27 https://doi.org/10.29185/hayuretim.333775
-
Chaffin C L, Trewin A L & Hutz R J (2000). Estrous cycle-dependent changes in the expression of aromatic hydrocarbon receptor (AHR) and AHR-nuclear translocator (ARNT) mRNAs in the rat ovary and liver. Chemico-biological interactions 124(3): 205-216
https://doi.org/10.1016/s0009-2797(99)00157-x
-
Cui Y, Yan H, Wang K, Xu H, Zhang X, Zhu H & Pan C (2018). Insertion/deletion within the KDM6A gene is significantly associated with litter size in goat. Frontiers in Genetics 9: 91 https://doi.org/10.3389/fgene.2018.00091
-
Davis G H (2005). Major genes affecting ovulation rate in sheep. Genetics Selection Evolution, 37(Suppl. 1): 11-23
https://doi.org/10.1051/gse:2004026
-
Esen F & Bozkurt T (2001). Effect of flushing and oestrus synchronization application on fertility in Akkaraman sheep. Turkish Journal of Veterinary & Animal Sciences 25(3): 365-368
-
Girolami F, Spalenza,V, Carletti M, Sacchi P, Rasero R & Nebbia C (2013). Modulation of aryl hydrocarbon receptor target genes in circulating lymphocytes from dairy cows bred in a dioxin-like PCB contaminated area. Science of the total environment 450: 7-12
https://doi.org/10.1016/j.scitotenv.2013.01.095
-
Gutiérrez-Vázquez C & Quintana F J (2018). Regulation of the immune response by the aryl hydrocarbon receptor. Immunity 48(1): 19-33
https://doi.org/10.1016/j.immuni.2017.12.012
-
Huang Y, Su P, Akhatayeva Z, Pan C, Zhang Q & Lan X (2022). Novel InDel variations of the Cry2 gene are associated with litter size in Australian White sheep. Theriogenology 179: 155-161 https://doi.org/10.1016/j.theriogenology.2021.11.023
-
Hui Y, Zhang Y, Wang K, Pan C, Chen H, Qu L & Lan X (2020). Goat DNMT3B: An indel mutation detection, association analysis with litter size and mRNA expression in gonads. Theriogenology 147: 108-115 https://doi.org/10.1016/j.theriogenology.2020.02.025
-
Kirikci K, Cam M A & Mercan L (2021). Investigation of G1 (c. 260G> A) polymorphism in exon 1 of GDF9 gene in Turkish sheep breed Karayaka. Turkish Journal of Veterinary & Animal Sciences 45(1): 191-197 https://doi.org/10.3906/vet-2009-40
-
Kırıkçı K (2023). Investigation of BMP15 and GDF9 gene polymorphisms and their effects on litter size in Anatolian sheep breed Akkaraman. Turkish Journal of Veterinary & Animal Sciences 47(3): 248-254 https://doi.org/10.55730/1300-0128.4292
-
Kolluri S K, Jin U H & Safe S (2017). Role of the aryl hydrocarbon receptor in carcinogenesis and potential as an anti-cancer drug target. Archives of toxicology 91: 2497-2513 https://doi.org/10.1007/s00204-017-1981-2
-
Kumar S, Stecher G, Li M, Knyaz C & Tamura K (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution 35(6): 1547-1549 https://doi.org/10.1093/molbev/msy096
-
Larigot L, Juricek L, Dairou J & Coumoul X (2018). AhR signaling pathways and regulatory functions. Biochimie open 7: 1-9
https://doi.org/10.1016/j.biopen.2018.05.001
-
Ren H, Tang Q, Xue T, Wang Q, Xu H, Zhang Q & Pan C (2022). A 24-bp indel within the sheep AHR gene is associated with litter size. Animal Biotechnology 33(7): 1533-1538 https://doi.org/10.1080/10495398.2021.1914071
-
Roman Á C, Carvajal-Gonzalez J M, Merino J M, Mulero-Navarro S & Fernández-Salguero P M (2018). The aryl hydrocarbon receptor in the crossroad of signalling networks with therapeutic value. Pharmacology
& therapeutics 185: 50-63
https://doi.org/10.1016/j.pharmthera.2017.12.003
-
Schmidová J, Milerski M, Svitaková A, Vostrý L & Novotná A (2014). Estimation of genetic parameters for litter size in Charollais, Romney, Merinolandschaf, Romanov, Suffolk, Šumava and Texel breeds of sheep. Small Ruminant Research 119(1-3): 33-38
https://doi.org/10.1016/j.smallrumres.2014.02.004
-
Sen U, Sirin E, Filik G & Soydan E (2020). The effect of breed on instrumental meat quality traits of weaning kids from Turkish indigenous goat breeds. Large Animal Review 26(1): 19-24
-
Shaul O (2017). How introns enhance gene expression. The international journal of biochemistry & cell biology 91: 145-155
https://doi.org/10.1016/j.biocel.2017.06.016
Soydan E, Ocak N & Onder H (2009). Conception of Jersey cattle in Turkey. Tropical Animal Health and Production 41(4): 623-628
https://doi.org/10.1007/s11250-008-9233-3
-
Wang K, Hui Y, Zhang S, Wang M, Yan H, Zhu H & Pan C (2020). A deletion mutation within the ATBF1 gene is strongly associated with goat litter size. Animal Biotechnology 31(2): 174-180 https://doi.org/10.1080/10495398.2018.1561459
-
Wang K, Kang Z, Jiang E, Yan H, Zhu H, Liu J & Pan C (2020). Genetic effects of DSCAML1 identified in genome-wide association study revealing strong associations with litter size and semen quality in goat (Capra hircus). Theriogenology 146: 20-25
https://doi.org/10.1016/j.theriogenology.2020.01.079
-
Yang Y, Hu H, Mao C, Jiang F, Lu X, Han X & Pan C (2022). Detection of the 23-bp nucleotide sequence mutation in retinoid acid receptor related orphan receptor alpha (RORA) gene and its effect on sheep litter size. Animal Biotechnology 33(1): 70-78
https://doi.org/10.1080/10495398.2020.1770273
-
size in Akkaraman Yiğit S, Kul S, Aci R, Keskin A, Tuygun T & Duman E (2023). The effect of RORA (RAR-Related Orphan Receptor Alpha) receptors on litter sheep breed. Molecular Biology Research Communications
12(3): 109-115
https://doi.org/10.22099/mbrc.2023.47336.1827
-
Zheng X, Zhao P, Yang K, Ning C, Wang H, Zhou L & Liu J (2020). CNV analysis of Meishan pig by next-generation sequencing and effects of AHR gene CNV on pig reproductive traits. Journal of animal science and biotechnology 11(42): 1-11 https://doi.org/10.1186/s40104
020-00442-5