Research Article
BibTex RIS Cite

Year 2025, Volume: 31 Issue: 4, 904 - 916, 30.09.2025
https://doi.org/10.15832/ankutbd.1545091

Abstract

Project Number

116O057

References

  • Asati B S & Singh A K (2008). Genetic components studies in French bean (Phaseolus vulgaris L.). New Agriculturist 19(1/2):117-123
  • Assefa T A, Mahama A, Brown A V, Cannon E K S, Rubyogo J C, Rao I M, Blair M W & Cannon S B (2019). A review of breeding objectives, genomic resources, and marker-assisted methods in common bean (Phaseolus vulgaris L.). Moleculer Breeding 39: 20. doi: 10.1007/s11032-018-0920-0
  • Ayonoadu U W U (1974). Nuclear DNA variation in Phaseolus. Chromosoma 48 (1): 41-49
  • Baetcke K, Sparrow A, Nauman C & Schwemmer S S (1967). The relationship of DNA content to nuclear and chromosome volumes and to radiosensitivity (LD50). Proceedings of the National Academy of Sciences 58:533-540. doi: 10.1073/pnas.58.2.533
  • Barow M & Meister A (2002). Lack of correlation between AT frequency and genome size in higher plants and the effect of nonrandomness of base sequences on dye binding. Cytometry 47 (1): 1–7. doi: 10.1002/cyto.10030
  • Basavaraja T, Manjunatha L, Chandora R, Gurumurthy S & Singh N P (2021). Assessment of genetic variability, diversity and trait correlation analysis in common bean (Phaseolus vulgaris L.) genotypes. Legume Research- An International Journal 44(3): 252-260. doi: 10.18805/LR-4208
  • Basavaraja T, Tripathi N, Chandora R, Pratap A, Manjuanatha L, Gurumurthy S, Singh M, Rana J C, Nitesh Kumar S D & Katiyar P K (2023). Evaluation of phenological development and agronomic traits in exotic common bean germplasm across multiple environments. Plant Genetic Resources 21(3):195-203. doi: 10.1017/S1479262123000618
  • Beaulieu J M, Leitch I J, Patel S, Pendharkar A & Knight C A (2008). Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytologist 179(4): 975–986. doi: 10.1111/j.1469-8137.2008.02528.x
  • Beaulieu J M, Moles A T, Leitch I J, Bennett M D, Dickie J B & Knight C A (2007). Correlated evolution of genome size and seed mass. New Phytologist 173: 422-437. doi: 10.1111/j.1469-8137.2006.01919.x PMID: 17204088
  • Beletti P, Marzachi C & Lanteri S (1997). Flow cytometric estimation of nuclear DNA content in different species of Phaseolus. DI.VA.P.R.A. - Plant Breeding and Seed Production. Torino, Italy: University of Turin.
  • Bennett M D, Heslop-Harrison J S, Smith J B & Ward J P (1983). DNA density in mitotic and meiotic metaphase chromosomes of plants and animals. Journal of Cell Science 63:173–179. doi: 10.1242/jcs.63.1.173
  • Bennett M D & Leitch I J (1995). Nuclear DNA amounts in angiosperm. Annals of Botany 76 (2): 113-176. doi: 10.1006/anbo.1995.1085
  • Bennett M D & Leitch I J (2005). Plant DNA C-values Database (release 4.0, October 2005). http://data.kew.org/cvalues/
  • Bilinski P, Albert P S, Berg J J, Birchler J A, Grote M N, Lorant A, Quezada J, Swarts K, Yang J & Ross-Ibarra J (2018). Parallel altitudinal clines reveal trends in adaptive evolution of genome size in Zea mays. Plos Genetics 14(5): e1007162. doi: 10.1371/journal.pgen.1007162
  • Boros L, Wawer A & Borucka K (2014). Morphological, phenological and agronomical characterisation of variability among common bean (Phaseolus vulgaris L.). Local population from the national centre for plant genetic resources: Polish Genebank. Journal of Horticultural Research 22(2): 123-130. doi: 10.2478/johr-2014-0029
  • Bottini M C J, Greizerstein E J, Aulicino M B & Poggio L (2000). Relationships among genome size, environmental conditions and geographical distribution in natural populations of NW Patagonian species of Berberis L. (Berberidaceae). Annals of Botany 86 (3): 565573. doi: 10.1006/anbo.2000.1218
  • Burucu D (2023). Product report legume – 2023, Agricultural Economics and Policy Development Institute (TEPGE), Publication no: 391 (In Turkish).
  • Caproni L, Raggi L, Ceccarelli S, Negri V & Carboni A (2019). In-depth characterisation of common bean diversity discloses ıts breeding potential for sustainable agriculture. Sustainability 11(19): 5443. doi: 10.3390/su11195443
  • Castagnaro A P, Poggio L & Naranjo C A (1990). Nuclear DNA content variation in Phaseolus (Fabaceae). Darwiniana 30 (1/4): 195-200.
  • Chen Z, Guan Y, Han M, Guo Y, Zhang J, Guo Z, Sun G & Yan X (2022). Altitudinal patterns in adaptive evolution of genome size and ıntergenome hybridization between three Elymus species from the Qinghai–Tibetan Plateau. Front. Ecology and Evolution 10:923967. doi: 10.3389/fevo.2022.923967
  • Choudhary N, Gupta M, Shafi S, Jan S, Mir A H, Singh B & Mir R R (2022). Molecular diversity and nutriment studies of common bean. Crop & Pasture Science 73: 249–262. doi: 10.1071/CP21347
  • Coelho R C, Faria M A, Rocha J, Reis A, Oliveira M B P P & Nunes E (2009). Assessing genetic variability in germplasm of Phaseolus vulgaris L., collected in Northern Portugal. Scientia Horticulturae 122 (2009): 333-338. doi: 10.1016/j.scienta.2009.05.035
  • Comertpay G (2019). Assessment of nuclear DNA contents variation and their relationship with flowering in corn genotypes. Turkish Journal of Field Crops 24(1):39-45. doi: 10.17557/tjfc.562640
  • Dolezel J & Bartos J (2005). Plant DNA flow cytometry and estimation of nuclear genome size. Annals of Botany 95 (1): 99-110. doi: 10.1093/aob/mci005
  • Edwards G A & Endrizzi J L (1975). Cell size nuclear size and DNA content relationships in Gossypium. Canadian Journal of Genetics and Cytology 17:181–186. doi: 10.1139/g75-024
  • Elkoca E, Kantar F, Haliloğlu K, Adak A, Eken C & Dönmez M F (2022). Assessing genetic diversity by morphological markers of bean (Phaseolus vulgaris L.) germplasm from Northeast Anatolia. Atatürk University Journal of Agricultural Faculty 53(3):155-165. doi: 10.5152/AUAF.2022.98975
  • Evans G M, Rees H, Snell C L & Sun S (1972). The relation between nuclear DNA amount and the duration of the mitotic cycle. Chromosomes Today 3: 24–31
  • Fridley J D & Craddock A (2015). Contrasting growth phenology of native and invasive forest shrubs mediated by genome size. New Phytologist (2015) 207: 659–668. doi: 10.1111/nph.13384
  • Gregory T R, Hebert P D & Kolasa J (2000) Evolutionary implications of the relationship between genome size and body size in flatworms and copepods. Heredity 84: 201-208. doi: 10.1046/j.1365
  • IBPGR (1982). International Board for Plant Genetic Resources. Descriptors List for Phaseolus vulgaris, Secretariat Rome, Italy
  • Ikani V O, Falusi O A, Daudu O A Y & Abubakar A (2024). Agro-morphological characterization of Common bean accessions in northern region of Nigeria. Journal of Applied Biological Sciences 18(2): 209-222. doi: 10.5281/zenodo.12209644
  • Jakob S S, Meister A & Blattner F R (2004). The considerable genome size variation of Hordeum species (Poaceae) is linked to phylogeny, life form, ecology, and speciation rates. Molecular Biology and Evolution 21 (5): 860-869. doi: 10.1093/molbev/msh092
  • Jenkins G & Hasterok R (2007). BAC landing on chromosomes of Brachypodium distachyon for comparative genome alignment. Nature Protocols 2: 88-98. doi: 10.1038/nprot.2006.490
  • Jung C & Muller A E (2009). Flowering time control and applications in plant breeding. Trends in Plant Science 14(10):563–573. doi: 10.1016/j.tplants.2009.07.005
  • Kamfwa K, Cichy K A & Kelly J D (2015). Genome-wide association study of agronomic traits in common bean. The Plant Genome 8(2): 1 12. doi: 10.3835/bitki genomu2014.09.0059
  • Ketema W & Geleta N (2022). Studies on genetic variability of common bean (Phaseolus vulgaris l.) varieties for yield and yield related traits in western Ethiopia. International Journal of Applied Agricultural Sciences 8(1):41-49. doi: 10.11648/j.ijaas.20220801.15
  • Knight C A, Molinari N A & Petrov D A (2005). The Large Genome Constraint Hypothesis: Evolution, Ecology and Phenotype Annals of Botany 95: 177–190. doi: 10.1093/aob/mci011
  • Kouam E B, Kamga-Fotso A M & Anoumaa M (2023). Exploring agro-morphological profiles of Phaseolus vulgaris germplasm shows manifest diversity and opportunities for genetic improvement. Journal of Agriculture and Food Research 14:100772. doi: 10.1016/j.jafr.2023.100772
  • Kul R & Yıldırım E (2023). Evaluation of some agro-morphological characteristics of Dwarf Snap Bean genotypes collected from Erzurum province. Turkish Journal of Agriculture- Food Science and Technology, 11(6): 1087-1095. doi: 10.24925/turjaf.v11i6.1087-1095.5920
  • LabotanJ D, Miller T, Gil J, Ariza D, De la Hoz J F, Soler A, Beebe S, Duitama J, Gepts P & Raatz B (2018). Resequencing of common bean identifies regions of inter-gene pool introgression and provides comprehensive resources for molecular breeding. Plant Genome 11(2): 1 21. doi: 10.3835/ plantgenome2017.08.0068
  • Loko L E Y, Orobiyi A, Adjatin A, Akpo J, Toffa J, Djedatin G & Dansi A (2018). Morphological characterization of common bean (Phaseolus vulgaris L.) landraces of Central region of Benin Republic. Journal of Plant Breeding and Crop Sciences 10(11):304–318. doi: 10.5897/JPBCS2018.0766 Mekki L, Badr A & Fekry M (2007). Cytogenetic studies on nine genotypes of Phaseolus vulgaris L. cultivated in Egypt in relation to zinc efficiency. Pakistan Journal of Biological Sciences 10 (23): 4230-4235. doi: 10.3923/pjbs.2007.4230.4235
  • Nadeem M A, Karaköy T, Yeken M Z, Habyarimana E, Hatipoglu R, Çiftçi V, Nawaz M A, Sönmez F, Shahid M Q, Yang S H, Chung G & Baloch F S (2020). Phenotypic characterization of 183 Turkish common bean accessions for agronomic, trading, and consumer-preferred plant characteristics for breeding purposes. Agronomy 10 (2): 272- 282. doi: 10.3390/agronomy10020272
  • Nagl W & Treviranus A (1995). A flow cytometric analysis of the nuclear 2C DNA content in 17 Phaseolus species (53 genotypes). Botanica Acta 108 (5): 403-406. doi: 10.1111/j.1438-8677.1995.tb00513.x
  • Nemli S, Aşçıoğul T K, Ateş D, Eşiyok D & Tanyolaç M B (2017). Diversity and genetic analysis through DArTseq in common bean (Phaseolus vulgaris L.) germplasm from Turkiye. Turkish Journal of Agriculture and Forestry 41 (5): 389-404. doi: 10.3906/tar- 1707-89
  • Ohri D (1998). Genome size variation and plant systematics. Annals of Botany 82 (1): 75-83. doi: 10.1006/anbo.1998.0765
  • Özkan H, Tuna M & Arumuganathan K (2003). Non-Additive Chandes in genome size during allopolyl, ploidization in the wheat (AegilopsTriticum) group. Journal of Heredity 94 (3),260-264. doi: 10.1093/jhered/esg053
  • Pandey V, Singh V K & Upadhyay D K (2013). Determination of green pod yield components in French bean (Phaseolus vulgaris L.) through correlation and path coefficient analyses. Vegetos 26(2):438-443. doi: 10.5958/J.2229-4473.26.2.108
  • Pedrosa-Harrand A, Souza de Almeida C C, Mosiolek M, Blair M W, Schweizer D & Guerra M (2006). Extensive ribosomal DNA amplification during Andean common bean (Phaseolus vulgaris L.) evolution. Theoretical and Applied Genetic 112 (5): 924-933. doi: 10.1007/s00122-005-0196-8
  • Pekşen E & Gülümser A (2005). Relationships and path analysis between yield and yield components in some bean (Phaseolus vulgaris L.) genotypes. Ondokuz Mayıs University Journal of Agriculture Faculty 20(3):82-87. doi: 10.7161/anajas.2005.20.3.82-87 (In Turkish) Porch T G, Beaver J S, Debouck D G, Jackson S A, Kelly J D & Dempewolf H (2013). Use of wild relatives and closely related species to adapt common bean to climate change. Agronomy 3 (2):433–461. doi: 10.3390/agronomy3020433
  • Rana J C, Sharma T R, Tyagi R K, Chahota R K, Gautam N K, Singh M, Sharma P N & Ojha S N et al. (2015). Characterisation of 4274 accessions of common bean (Phaseolus vulgaris L.) germplasm conserved in the Indian gene bank for phenological, morphological and agricultural traits. Euphytica 205:441–457. doi: 10.1007/s10681-015-1406-3
  • Rayburn A L, Dudley J W & Biradar D P (1994). Selection for early flowering results in simultaneous selection for reduced nuclear DNA content in maize. Plant Breeding 112 (4): 318–322. doi: 10.1111/j.1439-0523.1994.tb00690.x
  • Savaş Tuna G, Yücel G, Kaygısız Aşçıoğul T, Ateş D, Eşiyok D, Tanyolaç M B & Tuna M. 2020. Molecular cytogenetic characterization of common bean (Phaseolus vulgaris L.) accessions. Turkish Journal of Agriculture and Forestry 44: 612-630. doi: 10.3906/tar-1910-33
  • Scully B T & Wallace D H (1990). Variation in and relationship of biomass, growth rate, harvest ındex, and phenology to yield of common bean. American Society for Horticultural Science 115(2):218-225. doi: 10.21273/JASHS.115.2.218
  • Smarda P & Bures P (2006). Intraspecific DNA content variability in Festuca pallens on different geographical scales and ploidy levels. Annals of Botany 98 (1): 665-678. doi: 10.1093/aob/ mcl150
  • Souza G, Costa L, Guignard M S, Van-Lume B, Pellicer J, Gagnon E, Leitch I J & Lewis G P (2019). Do tropical plants have smaller genomes? Correlation between genome size and climatic variables in the Caesalpinia Group (Caesalpinioideae, Leguminosae). Perspectives in Plant Ecology, Evolution and Systematics 38:13-23. doi: 10.1016/j.ppees.2019.03.002
  • Stoilova T, Pereira G, Tavares de Sousa M M & Carnide V (2005). Diversity in common bean landraces (Phaseolus vulgaris L.) from Bulgaria and Portugal. Journal of Central European Agriculture 6 (4), 443-448.
  • Tenaillon M I, Manicacci D, Nicolas S D, Tardieu F & Welcker C (2016). Testing the link between genome size and growth rate in maize. Peer Journal 4:e2408. doi: 10.7717/peerj.2408. eCollection 2016
  • Tomlekova N, Idziak-Helmcke D, Franke P, Rojek-Jelonek M & Kwasniewska J (2024). Phaseolus vulgaris mutants reveal variation in the nuclear genome. Frontiers in Plant Science 14:1308830. doi: 10.3389/fpls.2023.1308830
  • Vesely P, Bures P, Smarda P & Pavlıcek T (2012). Genome size and DNA base composition of geophytes: the mirror of phenology and ecology. Annals of Botany 109: 65–75. doi: 10.1093/aob/mcr267
  • Wang B, Mao J F, Zhao W & Wang X R (2013). Impact of geography and climate on the genetic differentiation of the subtropical pine Pinus yunnanensis. PLoS ONE 8 (6): e67345. doi: 10.1371/journal.pone.0067345
  • Zhang F P & Zhang S B (2021). Genome size and labellum epidermal cell size are evolutionarily correlated with floral longevity in Paphiopedilum species. Frontiers in Plant Science 12:793516. doi: 10.3389/fpls.2021.793516

Investigation of the Relationship Between Genome Size and Some Agro morphological Characteristics in Common Bean (Phaseolus vulgaris L.) Accessions

Year 2025, Volume: 31 Issue: 4, 904 - 916, 30.09.2025
https://doi.org/10.15832/ankutbd.1545091

Abstract

The common bean (Phaseolus vulgaris L.), one of the most well-known members of the legume family, is a very important source of protein, carbohydrates, vitamins, and minerals in the human diet. The objective of this study was to determine the correlation between genome size and some agro-morphological characteristics of 154 common bean accessions investigated in Tekirdağ condition. Based on the results of the flow cytometric analyses, it was determined that the mean genome sizes of the accessions varied between 1.28 pg2C-1 and 1.55 pg2C-1. When agromorphological characteristics were investigated, it was observed that plant height ranged from 28.8 to 327 cm, flowering time from 36.8 to 55.6 days, first pod formation from 44.6 to 63.8 days, first harvest time from 58.6 to 80.6 days, vegetation period from 81.4 to 100.2 days, number of pods per plant from 9.2 to 109 pods plant-1, number of seeds per pod from 1.66 to 7.34 seeds pod-1, 100-seed weight from 7.64 to 140.25 g, and seed yield per plant from 6.74 to 80.64 g plant-1. In the statistical analyses performance, it was found that the accessions had a wide variation in terms of all the characteristics studied (P<0.01). In addition, it was observed that dwarf beans flowered and formed pods earlier than climbing beans, but the number of seeds per plant, 100-seed weight, and seed yield per plant were higher in climbing beans compared to dwarf beans. Correlation analysis showed that there was a positive relationship between the genome sizes of accessions and some of their agro-morphological characteristics as flowering time, first pod formation, and vegetation period. In conclusion, the genetic resource collection of the common bean displayed significant variation for all characteristics investigated in the study and information on the genome size may provide alternative strategies to future breeding studies in selecting parents or genotypes with some specific agro-morphological characteristics.

Supporting Institution

TÜBİTAK

Project Number

116O057

Thanks

We would like to thank the Scientific and Technological Research Council of Turkiye (TÜBİTAK) for providing financial support for this study under project no. 116O057.

References

  • Asati B S & Singh A K (2008). Genetic components studies in French bean (Phaseolus vulgaris L.). New Agriculturist 19(1/2):117-123
  • Assefa T A, Mahama A, Brown A V, Cannon E K S, Rubyogo J C, Rao I M, Blair M W & Cannon S B (2019). A review of breeding objectives, genomic resources, and marker-assisted methods in common bean (Phaseolus vulgaris L.). Moleculer Breeding 39: 20. doi: 10.1007/s11032-018-0920-0
  • Ayonoadu U W U (1974). Nuclear DNA variation in Phaseolus. Chromosoma 48 (1): 41-49
  • Baetcke K, Sparrow A, Nauman C & Schwemmer S S (1967). The relationship of DNA content to nuclear and chromosome volumes and to radiosensitivity (LD50). Proceedings of the National Academy of Sciences 58:533-540. doi: 10.1073/pnas.58.2.533
  • Barow M & Meister A (2002). Lack of correlation between AT frequency and genome size in higher plants and the effect of nonrandomness of base sequences on dye binding. Cytometry 47 (1): 1–7. doi: 10.1002/cyto.10030
  • Basavaraja T, Manjunatha L, Chandora R, Gurumurthy S & Singh N P (2021). Assessment of genetic variability, diversity and trait correlation analysis in common bean (Phaseolus vulgaris L.) genotypes. Legume Research- An International Journal 44(3): 252-260. doi: 10.18805/LR-4208
  • Basavaraja T, Tripathi N, Chandora R, Pratap A, Manjuanatha L, Gurumurthy S, Singh M, Rana J C, Nitesh Kumar S D & Katiyar P K (2023). Evaluation of phenological development and agronomic traits in exotic common bean germplasm across multiple environments. Plant Genetic Resources 21(3):195-203. doi: 10.1017/S1479262123000618
  • Beaulieu J M, Leitch I J, Patel S, Pendharkar A & Knight C A (2008). Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytologist 179(4): 975–986. doi: 10.1111/j.1469-8137.2008.02528.x
  • Beaulieu J M, Moles A T, Leitch I J, Bennett M D, Dickie J B & Knight C A (2007). Correlated evolution of genome size and seed mass. New Phytologist 173: 422-437. doi: 10.1111/j.1469-8137.2006.01919.x PMID: 17204088
  • Beletti P, Marzachi C & Lanteri S (1997). Flow cytometric estimation of nuclear DNA content in different species of Phaseolus. DI.VA.P.R.A. - Plant Breeding and Seed Production. Torino, Italy: University of Turin.
  • Bennett M D, Heslop-Harrison J S, Smith J B & Ward J P (1983). DNA density in mitotic and meiotic metaphase chromosomes of plants and animals. Journal of Cell Science 63:173–179. doi: 10.1242/jcs.63.1.173
  • Bennett M D & Leitch I J (1995). Nuclear DNA amounts in angiosperm. Annals of Botany 76 (2): 113-176. doi: 10.1006/anbo.1995.1085
  • Bennett M D & Leitch I J (2005). Plant DNA C-values Database (release 4.0, October 2005). http://data.kew.org/cvalues/
  • Bilinski P, Albert P S, Berg J J, Birchler J A, Grote M N, Lorant A, Quezada J, Swarts K, Yang J & Ross-Ibarra J (2018). Parallel altitudinal clines reveal trends in adaptive evolution of genome size in Zea mays. Plos Genetics 14(5): e1007162. doi: 10.1371/journal.pgen.1007162
  • Boros L, Wawer A & Borucka K (2014). Morphological, phenological and agronomical characterisation of variability among common bean (Phaseolus vulgaris L.). Local population from the national centre for plant genetic resources: Polish Genebank. Journal of Horticultural Research 22(2): 123-130. doi: 10.2478/johr-2014-0029
  • Bottini M C J, Greizerstein E J, Aulicino M B & Poggio L (2000). Relationships among genome size, environmental conditions and geographical distribution in natural populations of NW Patagonian species of Berberis L. (Berberidaceae). Annals of Botany 86 (3): 565573. doi: 10.1006/anbo.2000.1218
  • Burucu D (2023). Product report legume – 2023, Agricultural Economics and Policy Development Institute (TEPGE), Publication no: 391 (In Turkish).
  • Caproni L, Raggi L, Ceccarelli S, Negri V & Carboni A (2019). In-depth characterisation of common bean diversity discloses ıts breeding potential for sustainable agriculture. Sustainability 11(19): 5443. doi: 10.3390/su11195443
  • Castagnaro A P, Poggio L & Naranjo C A (1990). Nuclear DNA content variation in Phaseolus (Fabaceae). Darwiniana 30 (1/4): 195-200.
  • Chen Z, Guan Y, Han M, Guo Y, Zhang J, Guo Z, Sun G & Yan X (2022). Altitudinal patterns in adaptive evolution of genome size and ıntergenome hybridization between three Elymus species from the Qinghai–Tibetan Plateau. Front. Ecology and Evolution 10:923967. doi: 10.3389/fevo.2022.923967
  • Choudhary N, Gupta M, Shafi S, Jan S, Mir A H, Singh B & Mir R R (2022). Molecular diversity and nutriment studies of common bean. Crop & Pasture Science 73: 249–262. doi: 10.1071/CP21347
  • Coelho R C, Faria M A, Rocha J, Reis A, Oliveira M B P P & Nunes E (2009). Assessing genetic variability in germplasm of Phaseolus vulgaris L., collected in Northern Portugal. Scientia Horticulturae 122 (2009): 333-338. doi: 10.1016/j.scienta.2009.05.035
  • Comertpay G (2019). Assessment of nuclear DNA contents variation and their relationship with flowering in corn genotypes. Turkish Journal of Field Crops 24(1):39-45. doi: 10.17557/tjfc.562640
  • Dolezel J & Bartos J (2005). Plant DNA flow cytometry and estimation of nuclear genome size. Annals of Botany 95 (1): 99-110. doi: 10.1093/aob/mci005
  • Edwards G A & Endrizzi J L (1975). Cell size nuclear size and DNA content relationships in Gossypium. Canadian Journal of Genetics and Cytology 17:181–186. doi: 10.1139/g75-024
  • Elkoca E, Kantar F, Haliloğlu K, Adak A, Eken C & Dönmez M F (2022). Assessing genetic diversity by morphological markers of bean (Phaseolus vulgaris L.) germplasm from Northeast Anatolia. Atatürk University Journal of Agricultural Faculty 53(3):155-165. doi: 10.5152/AUAF.2022.98975
  • Evans G M, Rees H, Snell C L & Sun S (1972). The relation between nuclear DNA amount and the duration of the mitotic cycle. Chromosomes Today 3: 24–31
  • Fridley J D & Craddock A (2015). Contrasting growth phenology of native and invasive forest shrubs mediated by genome size. New Phytologist (2015) 207: 659–668. doi: 10.1111/nph.13384
  • Gregory T R, Hebert P D & Kolasa J (2000) Evolutionary implications of the relationship between genome size and body size in flatworms and copepods. Heredity 84: 201-208. doi: 10.1046/j.1365
  • IBPGR (1982). International Board for Plant Genetic Resources. Descriptors List for Phaseolus vulgaris, Secretariat Rome, Italy
  • Ikani V O, Falusi O A, Daudu O A Y & Abubakar A (2024). Agro-morphological characterization of Common bean accessions in northern region of Nigeria. Journal of Applied Biological Sciences 18(2): 209-222. doi: 10.5281/zenodo.12209644
  • Jakob S S, Meister A & Blattner F R (2004). The considerable genome size variation of Hordeum species (Poaceae) is linked to phylogeny, life form, ecology, and speciation rates. Molecular Biology and Evolution 21 (5): 860-869. doi: 10.1093/molbev/msh092
  • Jenkins G & Hasterok R (2007). BAC landing on chromosomes of Brachypodium distachyon for comparative genome alignment. Nature Protocols 2: 88-98. doi: 10.1038/nprot.2006.490
  • Jung C & Muller A E (2009). Flowering time control and applications in plant breeding. Trends in Plant Science 14(10):563–573. doi: 10.1016/j.tplants.2009.07.005
  • Kamfwa K, Cichy K A & Kelly J D (2015). Genome-wide association study of agronomic traits in common bean. The Plant Genome 8(2): 1 12. doi: 10.3835/bitki genomu2014.09.0059
  • Ketema W & Geleta N (2022). Studies on genetic variability of common bean (Phaseolus vulgaris l.) varieties for yield and yield related traits in western Ethiopia. International Journal of Applied Agricultural Sciences 8(1):41-49. doi: 10.11648/j.ijaas.20220801.15
  • Knight C A, Molinari N A & Petrov D A (2005). The Large Genome Constraint Hypothesis: Evolution, Ecology and Phenotype Annals of Botany 95: 177–190. doi: 10.1093/aob/mci011
  • Kouam E B, Kamga-Fotso A M & Anoumaa M (2023). Exploring agro-morphological profiles of Phaseolus vulgaris germplasm shows manifest diversity and opportunities for genetic improvement. Journal of Agriculture and Food Research 14:100772. doi: 10.1016/j.jafr.2023.100772
  • Kul R & Yıldırım E (2023). Evaluation of some agro-morphological characteristics of Dwarf Snap Bean genotypes collected from Erzurum province. Turkish Journal of Agriculture- Food Science and Technology, 11(6): 1087-1095. doi: 10.24925/turjaf.v11i6.1087-1095.5920
  • LabotanJ D, Miller T, Gil J, Ariza D, De la Hoz J F, Soler A, Beebe S, Duitama J, Gepts P & Raatz B (2018). Resequencing of common bean identifies regions of inter-gene pool introgression and provides comprehensive resources for molecular breeding. Plant Genome 11(2): 1 21. doi: 10.3835/ plantgenome2017.08.0068
  • Loko L E Y, Orobiyi A, Adjatin A, Akpo J, Toffa J, Djedatin G & Dansi A (2018). Morphological characterization of common bean (Phaseolus vulgaris L.) landraces of Central region of Benin Republic. Journal of Plant Breeding and Crop Sciences 10(11):304–318. doi: 10.5897/JPBCS2018.0766 Mekki L, Badr A & Fekry M (2007). Cytogenetic studies on nine genotypes of Phaseolus vulgaris L. cultivated in Egypt in relation to zinc efficiency. Pakistan Journal of Biological Sciences 10 (23): 4230-4235. doi: 10.3923/pjbs.2007.4230.4235
  • Nadeem M A, Karaköy T, Yeken M Z, Habyarimana E, Hatipoglu R, Çiftçi V, Nawaz M A, Sönmez F, Shahid M Q, Yang S H, Chung G & Baloch F S (2020). Phenotypic characterization of 183 Turkish common bean accessions for agronomic, trading, and consumer-preferred plant characteristics for breeding purposes. Agronomy 10 (2): 272- 282. doi: 10.3390/agronomy10020272
  • Nagl W & Treviranus A (1995). A flow cytometric analysis of the nuclear 2C DNA content in 17 Phaseolus species (53 genotypes). Botanica Acta 108 (5): 403-406. doi: 10.1111/j.1438-8677.1995.tb00513.x
  • Nemli S, Aşçıoğul T K, Ateş D, Eşiyok D & Tanyolaç M B (2017). Diversity and genetic analysis through DArTseq in common bean (Phaseolus vulgaris L.) germplasm from Turkiye. Turkish Journal of Agriculture and Forestry 41 (5): 389-404. doi: 10.3906/tar- 1707-89
  • Ohri D (1998). Genome size variation and plant systematics. Annals of Botany 82 (1): 75-83. doi: 10.1006/anbo.1998.0765
  • Özkan H, Tuna M & Arumuganathan K (2003). Non-Additive Chandes in genome size during allopolyl, ploidization in the wheat (AegilopsTriticum) group. Journal of Heredity 94 (3),260-264. doi: 10.1093/jhered/esg053
  • Pandey V, Singh V K & Upadhyay D K (2013). Determination of green pod yield components in French bean (Phaseolus vulgaris L.) through correlation and path coefficient analyses. Vegetos 26(2):438-443. doi: 10.5958/J.2229-4473.26.2.108
  • Pedrosa-Harrand A, Souza de Almeida C C, Mosiolek M, Blair M W, Schweizer D & Guerra M (2006). Extensive ribosomal DNA amplification during Andean common bean (Phaseolus vulgaris L.) evolution. Theoretical and Applied Genetic 112 (5): 924-933. doi: 10.1007/s00122-005-0196-8
  • Pekşen E & Gülümser A (2005). Relationships and path analysis between yield and yield components in some bean (Phaseolus vulgaris L.) genotypes. Ondokuz Mayıs University Journal of Agriculture Faculty 20(3):82-87. doi: 10.7161/anajas.2005.20.3.82-87 (In Turkish) Porch T G, Beaver J S, Debouck D G, Jackson S A, Kelly J D & Dempewolf H (2013). Use of wild relatives and closely related species to adapt common bean to climate change. Agronomy 3 (2):433–461. doi: 10.3390/agronomy3020433
  • Rana J C, Sharma T R, Tyagi R K, Chahota R K, Gautam N K, Singh M, Sharma P N & Ojha S N et al. (2015). Characterisation of 4274 accessions of common bean (Phaseolus vulgaris L.) germplasm conserved in the Indian gene bank for phenological, morphological and agricultural traits. Euphytica 205:441–457. doi: 10.1007/s10681-015-1406-3
  • Rayburn A L, Dudley J W & Biradar D P (1994). Selection for early flowering results in simultaneous selection for reduced nuclear DNA content in maize. Plant Breeding 112 (4): 318–322. doi: 10.1111/j.1439-0523.1994.tb00690.x
  • Savaş Tuna G, Yücel G, Kaygısız Aşçıoğul T, Ateş D, Eşiyok D, Tanyolaç M B & Tuna M. 2020. Molecular cytogenetic characterization of common bean (Phaseolus vulgaris L.) accessions. Turkish Journal of Agriculture and Forestry 44: 612-630. doi: 10.3906/tar-1910-33
  • Scully B T & Wallace D H (1990). Variation in and relationship of biomass, growth rate, harvest ındex, and phenology to yield of common bean. American Society for Horticultural Science 115(2):218-225. doi: 10.21273/JASHS.115.2.218
  • Smarda P & Bures P (2006). Intraspecific DNA content variability in Festuca pallens on different geographical scales and ploidy levels. Annals of Botany 98 (1): 665-678. doi: 10.1093/aob/ mcl150
  • Souza G, Costa L, Guignard M S, Van-Lume B, Pellicer J, Gagnon E, Leitch I J & Lewis G P (2019). Do tropical plants have smaller genomes? Correlation between genome size and climatic variables in the Caesalpinia Group (Caesalpinioideae, Leguminosae). Perspectives in Plant Ecology, Evolution and Systematics 38:13-23. doi: 10.1016/j.ppees.2019.03.002
  • Stoilova T, Pereira G, Tavares de Sousa M M & Carnide V (2005). Diversity in common bean landraces (Phaseolus vulgaris L.) from Bulgaria and Portugal. Journal of Central European Agriculture 6 (4), 443-448.
  • Tenaillon M I, Manicacci D, Nicolas S D, Tardieu F & Welcker C (2016). Testing the link between genome size and growth rate in maize. Peer Journal 4:e2408. doi: 10.7717/peerj.2408. eCollection 2016
  • Tomlekova N, Idziak-Helmcke D, Franke P, Rojek-Jelonek M & Kwasniewska J (2024). Phaseolus vulgaris mutants reveal variation in the nuclear genome. Frontiers in Plant Science 14:1308830. doi: 10.3389/fpls.2023.1308830
  • Vesely P, Bures P, Smarda P & Pavlıcek T (2012). Genome size and DNA base composition of geophytes: the mirror of phenology and ecology. Annals of Botany 109: 65–75. doi: 10.1093/aob/mcr267
  • Wang B, Mao J F, Zhao W & Wang X R (2013). Impact of geography and climate on the genetic differentiation of the subtropical pine Pinus yunnanensis. PLoS ONE 8 (6): e67345. doi: 10.1371/journal.pone.0067345
  • Zhang F P & Zhang S B (2021). Genome size and labellum epidermal cell size are evolutionarily correlated with floral longevity in Paphiopedilum species. Frontiers in Plant Science 12:793516. doi: 10.3389/fpls.2021.793516
There are 61 citations in total.

Details

Primary Language English
Subjects Plant Morphology and Anatomy, Botany (Other), Agricultural Biotechnology (Other), Cereals and Legumes, Field Crops and Pasture Production (Other)
Journal Section Makaleler
Authors

Gülsemin Savaş Tuna 0000-0003-2089-2790

Project Number 116O057
Publication Date September 30, 2025
Submission Date September 7, 2024
Acceptance Date May 6, 2025
Published in Issue Year 2025 Volume: 31 Issue: 4

Cite

APA Savaş Tuna, G. (2025). Investigation of the Relationship Between Genome Size and Some Agro morphological Characteristics in Common Bean (Phaseolus vulgaris L.) Accessions. Journal of Agricultural Sciences, 31(4), 904-916. https://doi.org/10.15832/ankutbd.1545091
AMA Savaş Tuna G. Investigation of the Relationship Between Genome Size and Some Agro morphological Characteristics in Common Bean (Phaseolus vulgaris L.) Accessions. J Agr Sci-Tarim Bili. September 2025;31(4):904-916. doi:10.15832/ankutbd.1545091
Chicago Savaş Tuna, Gülsemin. “Investigation of the Relationship Between Genome Size and Some Agro Morphological Characteristics in Common Bean (Phaseolus Vulgaris L.) Accessions”. Journal of Agricultural Sciences 31, no. 4 (September 2025): 904-16. https://doi.org/10.15832/ankutbd.1545091.
EndNote Savaş Tuna G (September 1, 2025) Investigation of the Relationship Between Genome Size and Some Agro morphological Characteristics in Common Bean (Phaseolus vulgaris L.) Accessions. Journal of Agricultural Sciences 31 4 904–916.
IEEE G. Savaş Tuna, “Investigation of the Relationship Between Genome Size and Some Agro morphological Characteristics in Common Bean (Phaseolus vulgaris L.) Accessions”, J Agr Sci-Tarim Bili, vol. 31, no. 4, pp. 904–916, 2025, doi: 10.15832/ankutbd.1545091.
ISNAD Savaş Tuna, Gülsemin. “Investigation of the Relationship Between Genome Size and Some Agro Morphological Characteristics in Common Bean (Phaseolus Vulgaris L.) Accessions”. Journal of Agricultural Sciences 31/4 (September2025), 904-916. https://doi.org/10.15832/ankutbd.1545091.
JAMA Savaş Tuna G. Investigation of the Relationship Between Genome Size and Some Agro morphological Characteristics in Common Bean (Phaseolus vulgaris L.) Accessions. J Agr Sci-Tarim Bili. 2025;31:904–916.
MLA Savaş Tuna, Gülsemin. “Investigation of the Relationship Between Genome Size and Some Agro Morphological Characteristics in Common Bean (Phaseolus Vulgaris L.) Accessions”. Journal of Agricultural Sciences, vol. 31, no. 4, 2025, pp. 904-16, doi:10.15832/ankutbd.1545091.
Vancouver Savaş Tuna G. Investigation of the Relationship Between Genome Size and Some Agro morphological Characteristics in Common Bean (Phaseolus vulgaris L.) Accessions. J Agr Sci-Tarim Bili. 2025;31(4):904-16.

Journal of Agricultural Sciences is published as open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).