Research Article
BibTex RIS Cite

Physiological Effects of Arbuscular Mycorrhizal Fungi (AMF), Plant Growth Promoting Rhizobacteria (PGPRs), and Trichoderma harzianum on Tomato (Solanum lycopersicum L.) Infected with Branched Broomrape [Phelipanche ramosa (L.) Pomel]

Year 2025, Volume: 31 Issue: 4, 917 - 930, 30.09.2025
https://doi.org/10.15832/ankutbd.1624187

Abstract

Tomato (Solanum lycopersicum L.), one of the most produced and consumed vegetables in the world, belongs to Family Solanaceae. Branched broomrape [Phelipanche ramosa (L.) Pomel; Syn: Orobanche ramosa L.] parasitizes many cultivated plants, especially tomatoes. The parasitic weeds, for which there is no effective control method, cause serious yield and quality losses in their host crops. In this study, two different mycorrhizal (AMF) species, Funneliformis mosseae, and a commercial product, Endo Roots Soluble (ERS), along with Trichoderma harzianum T22, two different plant growth-promoting rhizobacteria (PGPR) isolates (Pseudomonas caspiana V30G2 and Bacillus velezensis V40K2), were applied to tomatoes. Additionally, a commercial product, Plant Success Great White Premium Mycorrhiza, and their combinations were used to determine the changes occurring in both the plants and the broomrape. This study investigated the number of tubercles, the levels of several oxidative stress enzymes (catalase, CAT; superoxide dismutase, SOD; and ascorbate peroxidase, APX), the level of lipid peroxidation (malondialdehyde, MDA), and the total phenolic and antioxidant contents of tomato plants infected and not infected with broomrape. Compared to the control group, the treatments were found to prevent tubercule formation at rates ranging from 60 to 72.7%. Broomrape infection caused oxidative stress in the tomatoes; the CAT and MDA contents in the broomrape-contaminated plants were higher than those in the noncontaminated plants. The results revealed that the bioproducts including some microorganisms and biological preparations applied to tomatoes responded differently to broomrape stress through enzymatic and nonenzymatic antioxidant activities.

Ethical Statement

For this study, no ethical statement is required.

Supporting Institution

Van Yüzüncü Yıl University, Scientific Research Projects Department

Project Number

FDK-2020-8850

References

  • Abbes Z, Bouallegue A, Trabelsi I, Trabelsi N, Taamalli A, Amri M & Kharrat M (2020). Investigation of some biochemical mechanisms involved in the resistance of faba bean (Vicia faba L.) varieties to Orobanche spp. Plant Protection Science 56(4). doi: 10.17221/103/2019-PPS
  • Abogadallah G M (2010). Insights into the significance of antioxidative defense under salt stress. Plant Signaling & Behavior 5(4): 369-374. https://doi.org/10.4161/psb.5.4.10873
  • Aksoy E (2003). Importance of broomrape species (Orobanche spp. ) in Çukurova region and research on control possibilities of broomrape. Çukurova University. Institute of Science. Phd thesis. (Advisor: Prof. Dr. Nezihi Uygur). Adana.
  • Alam M Z, Choudhury T R & Mridha M (2023). Arbuscular mycorrhizal fungi enhance biomass growth, mineral content, and antioxidant activity in tomato plants under drought stress. Journal of Food Quality 2023(1): 2581608. https://doi.org/10.1155/2023/2581608
  • Albanova I A, Zagorchev L I, Teofanova D R, Odjakova M K, Kutueva L I & Ashapkin V V (2023). Host resistance to parasitic plants current knowledge and future perspectives. Plants 12(7), 1447. https://doi.org/10.3390/ plants12071447
  • Altın N & Tayyar B (2005). Common properties and effects of plant growth promoting rhizobacteria. Anadolu Journal of Aegean Agricultural Research Institute 15(2): 87-103
  • Apel K & Hirt H (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55: 373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
  • Arshad M & Frankenberger J W T (1997). Plant growth-regulating substances in the rhizosphere: microbial production and functions. Advances in Agronomy 62: 45-151. https://doi.org/10.1016/S0065-2113(08)60567-2
  • Aybeke M (2017). Fusarium infection causes genotoxic disorders and antioxidant-based damages in Orobanche spp. Microbiological Research 201: 46-51. https://doi.org/10.1016/j.micres.2017.05.001
  • Benzie I F & Strain J J (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power” the FRAP assay. Analytical Biochemistry, 239(1): 70-76. https://doi.org/10.1006/abio.1996.0292
  • Bhat M Y, Gul M Z & Dar J S (2022). Gene expression and role of antioxidant enzymes in crop plants under stress, antioxidant defense in plants: Molecular Basis of Regulation: 31-56: Springer.
  • Boari A & Vurro M (2004). Evaluation of Fusarium spp. and other fungi as biological control agents of broomrape (Orobanche ramosa L.). Biological Control 30(2): 212-219. https://doi.org/10.1016/j.biocontrol.2003.12.003
  • Borges N O, da Silva Solino A J, Franscischini R, Campos H D, Oliveira J S B & Schwan Estrada K R F (2022). Induction of soybean resistance mechanisms to anthracnose by biocontrol agents. Revista Caatinga, 35(02): 265-275. https://doi.org/10.1590/1983-21252022v35n203rc
  • Bouraoui M, Abbes Z, L’taief B, Alshaharni M O, Abdi N, Hachana A & Sifi B (2024). Exploring the biochemical dynamics in faba bean (Vicia faba L. minor) in response to Orobanche foetida Poir. parasitism under inoculation with different rhizobia strains. Plos One 19(5). https://doi.org/10.1371/journal.pone.0304673
  • Boyno G, Demir S & Danesh Y R (2022). Effects of some biological agents on the growth and biochemical parameters of tomato plants infected with Alternaria solani (Ellis & Martin) Sorauer. European Journal of Plant Pathology 162(1): 19-29. https://doi.org/10.1007/s10658-021-02398-2
  • Brahmi I, Mabrouk Y, Brun G, Delavault P, Belhadj O & Simier P (2016). Phenotypical and biochemical characterisation of resistance for parasitic weed (Orobanche foetida Poir.) in radiation‐mutagenised mutants of chickpea. Pest management science 72(12): 2330-2338. https://doi.org/10.1002/ps.4278
  • Büyük İ, Soydam A S & Aras S (2012). Molecular responses of plants to stress conditions. Turkish Bulletin of Hygiene & Experimental Biology 69(2): 97-110. doi: 10.5505/TurkHijyen.2012.40316
  • Caccavo V, Forlano P, Mang S M, Fanti P, Nuzzaci M, Battaglia D & Trotta V (2022). Effects of Trichoderma harzianum Strain T22 on the Arthropod community associated with tomato plants and on the crop performance in an experimental field. Insects 13(5): 418. https://doi.org/10.3390/insects13050418
  • Çakmak İ, Strbac D & Marschner H (1993). Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds. Journal of Experimental Botany 44(1): 127-132. https://doi.org/10.1093/jxb/44.1.127
  • Campos‐Soriano L, García M J & Segundo B S (2012). The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence‐related genes in rice leaves and confers resistance to pathogen infection. Molecular Plant Pathology 13(6): 579-592. https://doi.org/10.1111/j.1364-3703.2011.00773.x
  • Caverzan A, Piasecki C, Chavarria G, Stewart J C N & Vargas L (2019). Defenses against ROS in crops and weeds: The effects of interference and herbicides. International Journal of Molecular Sciences 20(5): 1086. https://doi.org/10.3390/ijms20051086.
  • Chen Z, Silva H & Klessig DF (1993). Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262(5141): 1883-1886. https://doi.org/10.1126/science.82660
  • Cho U H & Seo N H (2005). Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Science168(1): 113-120. https://doi.org/10.1016/j.plantsci.2004.07.021
  • Cochavi A (2025). Broomrape–host interaction: host morphology and physiology as metrics for infestation. Planta 261(1): 4. https://doi.org/10.1007/s00425-024-04581-1
  • Dames J F (2014). Biological Control: PGPR and arbuscular mycorrhizal fungi working together. Use of Microbes for the Alleviation of Soil Stresses: Volume 2: Alleviation of Soil Stress by PGPR and Mycorrhizal Fungi 39-53. ISBN 978-1-4939-0720-5. doi: 10.1007/978-1 4939-0721-2
  • Daniel A I, Fadaka A O, Gokul A, Bakare O O, Aina O, Fisher S, Burt A F, Mavumengwana V, Keyster M & Klein A (2022). Biofertilizer: the future of food security and food safety.Microorganisms 10(6): 1220. https://doi.org/10.3390/microorganisms10061220
  • Davis D G & Swanson H R (2001). Activity of stress-related enzymes in the perennial weed leafy spurge (Euphorbia esula L.). Environmental and Experimental Botany 46(2): 95-108. https://doi.org/10.1016/S0098-8472(01)00081-8
  • Demirbaş S & Acar O (2008). Superoxide dismutase and peroxidase activities from antioxidative enzymes in Helianthus annuus L. roots during Orobanche cumana Wallr. penetration. Fresenius Environmental Bulletin 17(8a): 1038-1044
  • Demirkan H (1992). Research on the Biology and Control of Broomrape, a Problematic Weed in Tomato Fields of the Marmara Region. Ege University Department of Plant Protection, Faculty of Agriculture, Ph.D. Thesis, İzmir. (In Turkish) Dhindsa R S & Matowe W (1981). Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. Journal of Experimental Botany 32(1): 79-91. https://doi.org/10.1093/jxb/32.1.79
  • Doley K & Jite P K (2014). Interaction effects of Glomus fasciculatum and Trichoderma viride inoculations on groundnut plants inoculated with pathogen Macrophomina phaseolina. International Journal of Agricultural Sciences 4(9): 281-288
  • Echevarria Z S, Pérez-de-Luque A, Jorrín J, & Maldonado A M (2006). Pre-haustorial resistance to broomrape (Orobanche cumana) in sunflower (Helianthus annuus): cytochemical studies. Journal of Experimental Botany 57(15): 4189-4200. https://doi.org/10.1093/jxb/erl195
  • El-Maraghy S, Tohamy A & Hussein K (2021). Plant protection properties of the Plant Growth-Promoting Fungi (PGPF): Mechanisms and potentiality. Journal of Fungal Biology 11(1): 391-415. doi: 10.5943/cream/11/1/29
  • Faradonbeh H, Nayerehalsadat H, Darbandi EI, Karimmojeni H & Nezami A (2020). Physiological and growth responses of cucumber (Cucumis sativus L.) genotypes to Egyptian broomrape (Phelipanche aegyptiaca (Pers.) Pomel) parasitism. Acta Physiologiae Plantarum 42: 1-15. https://doi.org/10.1007/s11738-020-03127-8
  • Faradonbeh H, Nayerehalsadat Izadi D E, Karimmojeni H & Nezami A (2021). The morphological and physiological traits of Cucumis sativus Phelipanche aegyptiaca association affected by arbuscular mycorrhizal fungi symbiosis. Journal of Crop Protection 10(4): 669-684
  • Fernández-Aparicio M, Flores F & Rubiales D (2016). The effect of Orobanche crenata infection severity in faba bean, field pea, and grass pea productivity. Frontiers in Plant Science 7: 1409. https://doi.org/10.3389/fpls.2016.01409
  • Fernández-Aparicio M, García‐Garrido J, Ocampo J A & Rubiales D (2010). Colonisation of field pea roots by arbuscular mycorrhizal fungi reduces Orobanche and Phelipanche species seed germination. Weed Research 50(3): 262-268. https://doi.org/10.1111/j.1365 3180.2010.00771.x
  • Fidan E, Özkan R Y & Tepe I (2024). The effects of different amounts of branched broomrape (Phelipanche ramosa (L.) Pomel) seeds on some cultivated plants. Harran Journal of Agricultural and Food Science 28(4): 564-569. https://doi.org/10.29050/harranziraat.1561651
  • Gianinazzi P V, Gollotte A, Cordier C & Gianinazzi S (1996). Root defence responses in relation to cell and tissue invasion by symbiotic microorganisms: cytological investigations, Histology, ultrastructure and molecular cytology of plant-microorganism interactions: 177191: Springer.
  • Gill S S & Tuteja N (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48(12): 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016
  • Glick B R (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012: 15. https://doi.org/10.6064/2012/963401
  • Gworgwor N A & Weber HC (2003). Arbuscular mycorrhizal fungi-parasite-host interaction for the control of Striga hermonthica (Del.) Benth. in sorghum [Sorghum bicolor (L.) Moench]. Mycorrhiza 13: 277-281. doi: 10.1007/s00572-003-0238-5
  • Hassan M M & Abakeer R A (2013). Effects of arbuscular mycorrhizal fungi (AMF) and bacterial strains on Orobanche crenata Forsk, on faba bean. Universal Journal of Applied Science 1(1): 27-32. doi: 10.13189/ujas.2013.010105
  • Heath R L & Packer L (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125(1): 189-198. https://doi.org/10.1016/0003-9861(68)90654-1
  • İmriz G, Özdemir F, Topal İ, Ercan B, Taş M, Yakışır E & Okur O (2014). Rhizobacteria (PGPRs) promoting plant growth in plant production and their mechanisms of action. Electronic Microbiology 12: 1–19
  • Jain S, Kumar R, Gunsola D, Živković S, Vasić T, Chattaraj S & Mitra D (2025). Strigolactones and control of parasitic weeds. Strigolactones: Emerging Plant Hormones, 261-279. https://doi.org/10.1002/9781394302826.ch12
  • Jamshidi G K, Moosavi S S, Amirmahani F, Salehi F & Nazari M (2020). Assessment of changes in growth traits, oxidative stress parameters, and enzymatic and non-enzymatic antioxidant defense mechanisms in Lepidium draba plant under osmotic stress induced by polyethylene glycol. Protoplasma 257: 459-473. https://doi.org/10.1007/s00709-019-01457-0
  • Jebara S, Jebara M, Limam F & Aouani M E (2005). Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. Journal of Plant Physiology 162(8): 929-936. https://doi.org/10.1016/j.jplph.2004.10.005
  • Joel D (2007). Direct infection of potato tubers by the root parasite Orobanche aegyptiaca. Weed Research 47(4): 276-279. https://doi.org/10.1111/j.1365-3180.2007.00570.x
  • Junaid M D & Gokce A F (2024). Global agricultural losses and their causes. Bulletin of Biological and Allied Sciences Research 2024(1): 66 66. https://doi.org/10.54112/bbasr.v2024i1.66
  • Kadıoğlu İ (2009). Description, Damages and Control of Broomrape (Orobanche spp.). Turkish Journal of Weed Science 12(2): 1-6
  • Kang G, Li G & Guo T (2014). Molecular mechanism of salicylic acid-induced abiotic stress tolerance in higher plants. Acta Physiologiae Plantarum, 36: 2287-2297. doi: 10.1007/s11738-014-1603-z
  • Kaur S, Samota M K, Choudhary M, Choudhary M, Pandey A K, Sharma A & Thakur J (2022). How do plants defend themselves against pathogens-Biochemical mechanisms and genetic interventions. Physiology and Molecular Biology of Plants 28(2): 485-504. https://doi.org/10.1007/s12298-022-01146-y
  • Kıpçak S, Ekincialp A, Erdinç Ç, Kabay T & Şensoy S (2019). Effects of salt stress on some nutrient content and total antioxidant and total phenol content in different bean genotypes. Yuzuncu Yıl University Journal of Agricultural Sciences 29(1): 136-144. https://doi.org/10.29133/yyutbd.504748
  • Kiracı S, Gönülal E & Padem H (2014). The effects of different mycorrhizae species on quality properties in organic carrot growing. Journal of Tekirdag Agricultural Faculty 11(1): 106-113
  • Krupp A, Heller A & Spring O (2019). Development of phloem connection between the parasitic plant Orobanche cumana and its host sunflower. Protoplasma 256: 1385-1397. https://doi.org/10.1007/s00709-019-01393-z
  • Kumari S, Bharat N K & Thakur A K (2020). Role of plant growth-promoting rhizobacteria (PGPR) and bio-control agents (BCAs) in crop production. International Journal of Economic Plants 7(3): 144-150. doi: 10.23910/2/2020.0379
  • Kwon S Y, Jeong Y J, Lee H S, Kim J, Cho K, Allen R & Kwak SS (2002). Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen‐mediated oxidative stress. Plant, Cell & Environment 25(7): 873-882. https://doi.org/10.1046/j.1365-3040.2002.00870.x
  • Leman J K, Brun G, Rohwedder H M & Wicke S (2024). Parasitic success of the pathogenic plant Phelipanche ramosa (L.) Pomel.(Orobanchaceae) differs in some re‐infected versus naïve tomato cultivars. Weed Research 1–14. doi: 10.1111/wre.12634
  • Lendzemo V W, Kuyper T W, Matusova R, Bouwmeester H J & Ast A V (2007). Colonization by arbuscular mycorrhizal fungi of sorghum leads to reduced germination and subsequent attachment and emergence of Striga hermonthica. Plant Signaling & Behavior 2(1): 58-62. https://doi.org/10.4161/psb.2.1.3884
  • Lops F, Disciglio G, Carlucci A, Gatta G, Frabboni L, Tarantino A & Tarantino E (2017). Biological methods to control parasitic weed Phelipanche ramosa L. Pomel in the field tomato Crop. International Journal of Agricultural and Biosystems Engineering 11(3): 264-267.
  • Lops F, Frabboni L, Carlucci A, Tarantino A, Raimondo M L & Disciglio G (2022). Management of Branched Broomrape in Field Processing Tomato Crop. Tomato-From Cultivation to Processing Technology doi: 10.5772/intechopen.106057
  • Madany M M, Zinta G, Abuelsoud W, Hozzein W N, Selim S, Asard H & Abd Elgawad H (2020). Hormonal seed-priming improves tomato resistance against broomrape infection. Journal of Plant Physiology 250: 153184. https://doi.org/10.1016/j.jplph.2020.153184
  • McNeal J R, Bennett J R, Wolfe A D & Mathews S (2013). Phylogeny and origins of holoparasitism in Orobanchaceae. American Journal of Botany, 100(5): 971-983. https://doi.org/10.3732/ajb.1200448
  • Mennan H, Jabran K, Zandstra B H & Pala F (2020). Non-chemical weed management in vegetables by using cover crops: A review. Agronomy 10(2): 257. https://doi.org/10.3390/agronomy10020257
  • Mishev K, Dobrev P I, Lacek J, Filepová R, Yuperlieva-Mateeva B, Kostadinova A, & Hristeva T (2021). Hormonomic changes driving the negative impact of broomrape on plant host interactions with arbuscular mycorrhizal fungi. International Journal of Molecular Sciences 22(24), 13677. https://doi.org/10.3390/ijms222413677
  • Musa T S A (2012). Development and Integration of Biocontrol Products in Branched Broomrape (Phelipanche ramosa) management in Tomato: Cuvillier Verlag. Mutuku J. M, Cui S, Hori C, Takeda Y, Tobimatsu Y, Nakabayashi R & Shirasu K (2019). The structural integrity of lignin is crucial for resistance against Striga hermonthica parasitism in rice. Plant physiology 179(4): 1796-1809. https://doi.org/10.1104/pp.18.01133
  • Nakano Y & Asada K (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology 22(5): 867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
  • Parker C (2009). Observations on the current status of Orobanche and Striga problems worldwide. Pest Management Science: formerly Pesticide Science 65(5): 453-459. https://doi.org/10.1002/ps.1713
  • Pérez‐de‐Luque A, Jorrín J, Cubero J & Rubiales D (2005). Orobanche crenata resistance and avoidance in pea (Pisum spp.) operate at different developmental stages of the parasite. Weed Research 45(5): 379-387. https://doi.org/10.1111/j.1365-3180.2005.00464.x
  • Prasad R, Bhola D, Akdi K, Cruz C, KVSS S, Tuteja N & Varma A (2017). Introduction to mycorrhiza: historical development. Mycorrhiza function, diversity, state of the Art 1-7
  • Rajput V D, Harish Singh R K, Verma K K, Sharma L, Quiroz F R, Meena M, Gour V S, Minkina T & Sushkova S (2021). Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology 10(4): 267. https://doi.org/10.3390/biology10040267
  • Rişvanli M R (2022). Determination of population performance and feeding capacity of Spodoptera exigua on Trichoderma harzianum applied potato and cotton plant. Van Yüzüncü Yıl University, Institute Of Natural And Applied Sciences. Phd Thesis, (Advisor: Prof. Dr. Remzi Atlıhan) Van, Türkiye. enhanced Sharma K, Malhi G S, Gupta G & Kaur M (2020). Biological weed control: a way to sustainable weed management. Indian Farmer 7(9): 853-860 Singh A, Sarma B K, Upadhyay R S & Singh H B (2013). Compatible rhizosphere microbes mediated alleviation of biotic stress in chickpea through antioxidant and phenylpropanoid activities. Microbiological Research, 168(1): 33-40. https://doi.org/10.1016/j.micres.2012.07.001
  • Sisou D, Tadmor Y, Plakhine D, Ziadna H, Hübner S & Eizenberg H (2021). Biological and transcriptomic characterization of pre-haustorial resistance to sunflower broomrape (Orobanche cumana W.) in sunflowers (Helianthus annuus). Plants 10(9), 1810. https://doi.org/10.3390/plants10091810
  • Song Y Y, Ye M, Li C Y, Wang R L, Wei X C, Luo S M & Zeng R S (2013). Priming of anti-herbivore defense in tomato by arbuscular mycorrhizal fungus and involvement of the jasmonate pathway. Journal of Chemical Ecology, 39: 1036-1044. doi: 10.1007/s10886-013 0312-1
  • Sood M, Kapoor D, Kumar V, Sheteiwy MS, Ramakrishnan M, Landi M, Araniti F & Sharma A (2020). Trichoderma: The “secrets” of a multitalented biocontrol agent. Plants 9(6): 762. https://doi.org/10.3390/plants9060762
  • SPSS (2021). IBM SPSS Statistics 22.0 for Windows. Armonk, N.Y. . Swain T & Hillis W (1959). The phenolic constituents of Prunus domestica L. The quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture 10(1): 63-68. https://doi.org/10.1002/jsfa.2740100110
  • Van Camp W, Inzé D & Van M M (1997). The regulation and function of tobacco superoxide dismutases. Free Radical Biology and Medicine 23(3): 515-520. https://doi.org/10.1016/S0891-5849(97)00112-3
  • Van der Putten W H, Vet L E, Harvey J A & Wäckers F L (2001). Linking above-and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends in Ecology & Evolution 16(10): 547-554. https://doi.org/10.1016/S0169 5347(01)02265-0
  • Vurro M, Boari A, Pilgeram A L & Sands DC (2006). Exogenous amino acids inhibit seed germination and tubercle formation by Orobanche ramosa (broomrape): potential application for management of parasitic weeds. Biological Control 36(2): 258-265. https://doi.org/10.1016/j.biocontrol.2005.09.017
  • Xu M, Sheng J, Chen L, Men Y, Gan L, Guo S & Shen L (2014). Bacterial community compositions of tomato (Lycopersicum esculentum Mill.) seeds and plant growth promoting activity of ACC deaminase producing Bacillus subtilis (HYT-12-1) on tomato seedlings. World Journal of Microbiology and Biotechnology 30: 835-845. doi: 10.1007/s11274-013-1486-y
  • Yoneyama K, Xie X, Kusumoto D, Sekimoto H, Sugimoto Y, Takeuchi Y & Yoneyama K (2007). Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227: 125-132. doi: 10.1007/s00425-007-0600-5
  • Yonghua Q, Shanglong Z, Asghar S, Lingxiao Z, Qiaoping Q, Kunsong C & Changjie X (2005). Regeneration mechanism of Toyonoka strawberry under different color plastic films. Plant Science 168(6): 1425-1431. https://doi.org/10.1016/j.plantsci.2004.11.016
There are 82 citations in total.

Details

Primary Language English
Subjects Phytopathology, Herbology
Journal Section Makaleler
Authors

Enes Fidan 0000-0002-4567-2375

Işık Tepe 0000-0002-9156-9467

Project Number FDK-2020-8850
Publication Date September 30, 2025
Submission Date January 21, 2025
Acceptance Date May 6, 2025
Published in Issue Year 2025 Volume: 31 Issue: 4

Cite

APA Fidan, E., & Tepe, I. (2025). Physiological Effects of Arbuscular Mycorrhizal Fungi (AMF), Plant Growth Promoting Rhizobacteria (PGPRs), and Trichoderma harzianum on Tomato (Solanum lycopersicum L.) Infected with Branched Broomrape [Phelipanche ramosa (L.) Pomel]. Journal of Agricultural Sciences, 31(4), 917-930. https://doi.org/10.15832/ankutbd.1624187
AMA Fidan E, Tepe I. Physiological Effects of Arbuscular Mycorrhizal Fungi (AMF), Plant Growth Promoting Rhizobacteria (PGPRs), and Trichoderma harzianum on Tomato (Solanum lycopersicum L.) Infected with Branched Broomrape [Phelipanche ramosa (L.) Pomel]. J Agr Sci-Tarim Bili. September 2025;31(4):917-930. doi:10.15832/ankutbd.1624187
Chicago Fidan, Enes, and Işık Tepe. “Physiological Effects of Arbuscular Mycorrhizal Fungi (AMF), Plant Growth Promoting Rhizobacteria (PGPRs), and Trichoderma Harzianum on Tomato (Solanum Lycopersicum L.) Infected With Branched Broomrape [Phelipanche Ramosa (L.) Pomel]”. Journal of Agricultural Sciences 31, no. 4 (September 2025): 917-30. https://doi.org/10.15832/ankutbd.1624187.
EndNote Fidan E, Tepe I (September 1, 2025) Physiological Effects of Arbuscular Mycorrhizal Fungi (AMF), Plant Growth Promoting Rhizobacteria (PGPRs), and Trichoderma harzianum on Tomato (Solanum lycopersicum L.) Infected with Branched Broomrape [Phelipanche ramosa (L.) Pomel]. Journal of Agricultural Sciences 31 4 917–930.
IEEE E. Fidan and I. Tepe, “Physiological Effects of Arbuscular Mycorrhizal Fungi (AMF), Plant Growth Promoting Rhizobacteria (PGPRs), and Trichoderma harzianum on Tomato (Solanum lycopersicum L.) Infected with Branched Broomrape [Phelipanche ramosa (L.) Pomel]”, J Agr Sci-Tarim Bili, vol. 31, no. 4, pp. 917–930, 2025, doi: 10.15832/ankutbd.1624187.
ISNAD Fidan, Enes - Tepe, Işık. “Physiological Effects of Arbuscular Mycorrhizal Fungi (AMF), Plant Growth Promoting Rhizobacteria (PGPRs), and Trichoderma Harzianum on Tomato (Solanum Lycopersicum L.) Infected With Branched Broomrape [Phelipanche Ramosa (L.) Pomel]”. Journal of Agricultural Sciences 31/4 (September2025), 917-930. https://doi.org/10.15832/ankutbd.1624187.
JAMA Fidan E, Tepe I. Physiological Effects of Arbuscular Mycorrhizal Fungi (AMF), Plant Growth Promoting Rhizobacteria (PGPRs), and Trichoderma harzianum on Tomato (Solanum lycopersicum L.) Infected with Branched Broomrape [Phelipanche ramosa (L.) Pomel]. J Agr Sci-Tarim Bili. 2025;31:917–930.
MLA Fidan, Enes and Işık Tepe. “Physiological Effects of Arbuscular Mycorrhizal Fungi (AMF), Plant Growth Promoting Rhizobacteria (PGPRs), and Trichoderma Harzianum on Tomato (Solanum Lycopersicum L.) Infected With Branched Broomrape [Phelipanche Ramosa (L.) Pomel]”. Journal of Agricultural Sciences, vol. 31, no. 4, 2025, pp. 917-30, doi:10.15832/ankutbd.1624187.
Vancouver Fidan E, Tepe I. Physiological Effects of Arbuscular Mycorrhizal Fungi (AMF), Plant Growth Promoting Rhizobacteria (PGPRs), and Trichoderma harzianum on Tomato (Solanum lycopersicum L.) Infected with Branched Broomrape [Phelipanche ramosa (L.) Pomel]. J Agr Sci-Tarim Bili. 2025;31(4):917-30.

Journal of Agricultural Sciences is published as open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).