Research Article
BibTex RIS Cite

-

Year 2015, , 676 - 682, 28.10.2015
https://doi.org/10.3944/AOTT.2015.15.0158

Abstract

Amaç: Bu çalışmanın amacı; pentoksifilinin (PTX) anjiogenezis ve sıçan radius diafizi “critical-sized” segmenter kemik kaybı modelinde iyileşme üzerine etkisini radyolojik ve histolojik derecelendirme sistemleri kullanılarak değerlendirilmesidir.Çalışma planı: Bu çalışmaya 24 female Sprague Dawley sıçan (ağırlık: 300±20 gram) katılmıştır ve 4 gruba ayrılmıştır. Sıçanların radius diafizlerinde “critical-sized” segmenter kemik kaybı oluşturuldu. Grup 1’de morselize iliak krest otogreftleri segmenter kemik defektini doldurmada kullanıldı. Grup 2’de segmenter kemik defekti morselize iliak krest otogreftleri ile dolduruldu ve günlük intraperitoneal olarak 25 mg/kg PTX uygulandı. Grup 3’te kemik defekti doldurulmadı. Grup 4’te kemik defekti doldurulmadı ve günlük intraperitoneal olarak 25 mg/kg PTX uygulandı. Postoperatif sekizinci haftada sıçanlar feda edildi. Defektler radiografik, histolojik ve immünokimyasal metodlar ile değerlendirildi.Bulgular: Group 1 ve 2 arasında radyolojik değerlendirme sonucunda (p=0.003) ve defekt bölgesinde kaynama kalitesi açısından (p=0.01) belirgin farklılık izlendi. Kaynama kalitesi grup 4’te grup 3’e göre fazlaydı (p=0.01). CD-31 ve VEGF seviyeleri grup 2’de grup 3 ve 4’e göre fazlaydı.Çıkarımlar: Radyolojik ve histolojik parametrelere göre; pentoksifilinin angiogenezis ve sıçan radius diafizi “critical-sized” segmenter kemik kaybı modelinde iyileşme üzerine olumlu etkisi bulunmaktadır.Bu çalışmanın amacı; pentoksifilinin (PTX) angiogenesis ve sıçan radius diafizi “critical-sized” segmenter kemik kaybı modelinde iyileşme üzerine etkisini radyolojik ve histolojik derecelendirme sistemleri kullanılarak değerlendirilmesidir.Gereç ve yöntemBu çalışma üniversitemiz Etik kurul onayı alındıktan sonra Hayvan Araştırma Laboratuvarlarında yapılmıştır

References

  • Zhu DJ, Xia B, Bi Q, Zhang SJ, Qiu BS, Zhao C. Func- tional protection of pentoxifylline against spinal cord isch- emia/reperfusion injury in rabbits: necrosis and apoptosis effects. Chin Med J (Engl) 2008;121:2444–9.
  • Kishi M, Tanaka H, Seiyama A, Takaoka M, Matsuoka T, Yoshioka T, et al. Pentoxifylline attenuates reperfusion in- jury in skeletal muscle after partial ischemia. Am J Physiol 1998;274:H1435–42.
  • Emrecan B, Tulukoğlu E, Bozok S, Aksun M, Yağdi S, Oz- can AV, et al. Iloprost and pentoxifylline attenuate isch- emia-reperfusion injury in skeletal muscle in rabbit model. Ulus Travma Acil Cerrahi Derg 2008;14:182–7.
  • Cook SD, Baffes GC, Wolfe MW, Sampath TK, Rueger DC. Recombinant human bone morphogenetic protein-7 induces healing in a canine long-bone segmental defect model. Clin Orthop Relat Res 1994;301:302–12.
  • Boden SD, Zdeblick TA, Sandhu HS, et al. The use of rhBMP-2 in interbody fusion cages. Definitive evidence of osteoinduction in humans: a preliminary report. Spine (Phila Pa 1976) 2000;25:376.
  • Salkeld SL, Patron LP, Barrack RL, Cook SD. The effect of osteogenic protein-1 on the healing of segmental bone defects treated with autograft or allograft bone. J Bone Joint Surg Am 2001;83-A:803–16.
  • Ozturk AM, Cila E, Kanatli U, Isik I, Senkoylu A, Uzu- nok D, Piskin E. Treatment of segmental bone defects in rats by the stimulation of bone marrow osteo-progenitor cells with prostaglandin E2. Int Orthop 2005;29:73–7.
  • Cakmak G, Bolukbasi S, Simsek A, Erdem O, Yilmaz G, Senkoylu A. Effect of synthetic cell-binding peptide on the healing of cortical segmental bone defects. Saudi Med J 2006;27:777–80.
  • Bostrom M, Lane JM, Tomin E, Browne M, Berberian W, Turek T, et al. Use of bone morphogenetic protein-2 in the rabbit ulnar nonunion model. Clin Orthop Relat Res 1996;327:272–82.
  • Bostrom MP, Yang X, Kennan M, Sandhu H, Dicarlo E, Lane JM. An unexpected outcome during testing of com- mercially available demineralized bone graft materials: how safe are the nonallograft components? Spine (Phila Pa 1976) 2001;26:1425–8.
  • Brighton CT, Hunt RM. Early histological and ultrastruc- tural changes in medullary fracture callus. J Bone Joint Surg Am 1991;73:832–47.
  • Huss WJ, Hanrahan CF, Barrios RJ, Simons JW, Green- berg NM. Angiogenesis and prostate cancer: identifi- cation of a molecular progression switch. Cancer Res 2001;61:2736–43.
  • Vecchi A, Garlanda C, Lampugnani MG, Resnati M, Mat- teucci C, Stoppacciaro A, et al. Monoclonal antibodies specific for endothelial cells of mouse blood vessels. Their application in the identification of adult and embryonic endothelium. Eur J Cell Biol 1994;63:247–54.
  • Vanzulli S, Gazzaniga S, Braidot MF, Vecchi A, Man- tovani A, Wainstok de Calmanovici R. Detection of en- dothelial cells by MEC 13.3 monoclonal antibody in mice mammary tumors. Biocell 1997;21:39–46.
  • DeLisser HM, Christofidou-Solomidou M, Strieter RM, Burdick MD, Robinson CS, Wexler RS, et al. Involvement of endothelial PECAM-1/CD31 in angiogenesis. Am J Pathol 1997;151:671–7.
  • Einhorn TA. The cell and molecular biology of fracture healing. Clin Orthop Relat Res 1998;(355 Suppl):7–21.
  • Szpalski M, Gunzburg R. Applications of calcium phos- phate-based cancellous bone void fillers in trauma surgery. Orthopedics 2002;25(5 Suppl):601–9.
  • Kelly CM, Wilkins RM, Gitelis S, Hartjen C, Watson JT, Kim PT. The use of a surgical grade calcium sulfate as a bone graft substitute: results of a multicenter trial. Clin Orthop Relat Res 200;382:42–50.
  • Webb JCJ, Tricker J. A review of fracture healing. Current Orthopaedics 2000;14:457–63.
  • Greenwald AS, Boden SD, Goldberg VM, Khan Y, Lau- rencin CT, Rosier RN. Bone-graft substitutes: facts, fic- tions, and applications. J Bone Joint Surg Am 2001;83-A Suppl 2 Pt 2:98–103.
  • Buttermann GR, Glazer PA, Bradford DS. The use of bone allografts in the spine. Clin Orthop Relat Res 1996;324:75–85.
  • Kerimoğlu S, Livaoğlu M, Sönmez B, Yuluğ E, Aynaci O, Topbas M, et al. Effects of human amniotic fluid on frac- ture healing in rat tibia. J Surg Res 2009;152:281–7.
  • Hannouche D, Petite H, Sedel L. Current trends in the enhancement of fracture healing. J Bone Joint Surg Br 2001;83:157–64.
  • Einhorn TA. Enhancement of fracture-healing. J Bone Joint Surg Am 1995;77:940–56.
  • Adams JG Jr, Dhar A, Shukla SD, Silver D. Effect of pentoxifylline on tissue injury and platelet-activating fac- tor production during ischemia-reperfusion injury. J Vasc Surg 1995;21:742–9.
  • Hoie EB, McGuire TR, Leuschen PM, Zach TL. Pent- oxifylline inhibits tumor necrosis factor-alpha induced synthesis of complement component C3 in human endo- thelial cells. Biol Pharm Bull 2004;27:1670–3.
  • Bombini G, Canetti C, Rocha FA, Cunha FQ. Tumour necrosis factor-alpha mediates neutrophil migration to the knee synovial cavity during immune inflammation. Eur J Pharmacol 2004;496:197–204.
  • Feng D, Nagy JA, Pyne K, Dvorak HF, Dvorak AM. Ul- trastructural localization of platelet endothelial cell adhe- sion molecule (PECAM-1, CD31) in vascular endothe- lium. J Histochem Cytochem 2004;52:87–101.
  • Luu NT, Rainger GE, Buckley CD, Nash GB. CD31 reg- ulates direction and rate of neutrophil migration over and under endothelial cells. J Vasc Res 2003;40:467–79.
  • Kiyoshima T, Fukuda S, Matsumoto M, Iida Y, Oka S, Nakakimura K, et al. Lack of evidence for apoptosis as a cause of delayed onset paraplegia after spinal cord isch- emia in rabbits. Anesth Analg 2003;96:839–46.
  • Mackey ME, Wu Y, Hu R, DeMaro JA, Jacquin MF, Kanel- lopoulos GK, et al. Cell death suggestive of apoptosis after spinal cord ischemia in rabbits. Stroke 1997;28:2012–7.
  • Oz Oyar E, Korkmaz A, Kardesş O, Omeroğlu S. Aortic cross-clamping-induced spinal cord oxidative stress in rab- bits: the role of a novel antioxidant adrenomedullin. J Surg Res 2008;147:143–7.
  • Delanian S, Chatel C, Porcher R, Depondt J, Lefaix JL. Complete restoration of refractory mandibular osteora- dionecrosis by prolonged treatment with a pentoxifylline- tocopherol-clodronate combination (PENTOCLO): a phase II trial. Int J Radiat Oncol Biol Phys 2011;80:832–9.
  • Ahlström M, Lamberg-Allardt C. Rapid protein kinase A-mediated activation of cyclic AMP-phosphodiesterase by parathyroid hormone in UMR-106 osteoblast-like cells. J Bone Miner Res 1997;12:172–8.
  • Kimmel DB, Bozzato RP, Kronis KA, Coble T, Sindrey D, Kwong P, et al. The effect of recombinant human (1–84) or synthetic human (1–34) parathyroid hormone on the skeleton of adult osteopenic ovariectomized rats. Endocri- nology 1993;132:1577–84.
  • Shen V, Dempster DW, Birchman R, Xu R, Lindsay R. Loss of cancellous bone mass and connectivity in ovari- ectomized rats can be restored by combined treatment with parathyroid hormone and estradiol. J Clin Invest 1993;91:2479–87.
  • Kurtoglu S, Gunes T, Koklu E, Bastug O, Canoz O, Kula M, et al. Influence of maternal nicotine exposure on neo- natal rat bone: protective effect of pentoxifylline. Exp Biol Med (Maywood) 2007;232:398–405.
  • Kinoshita T, Kobayashi S, Ebara S, Yoshimura Y, Hori- uchi H, Tsutsumimoto T, et al. Phosphodiesterase in- hibitors, pentoxifylline and rolipram, increase bone mass mainly by promoting bone formation in normal mice. Bone 2000;27:811–7.
  • Horiuchi H, Saito N, Kinoshita T, Wakabayashi S, Tsut- sumimoto T, Takaoka K. Enhancement of bone morpho- genetic protein-2-induced new bone formation in mice by the phosphodiesterase inhibitor pentoxifylline. Bone 2001;28:290–4.
  • Shimizu K, Yoshikawa H, Matsui M, Masuhara K, Taka- oka K. Periosteal and intratumorous bone formation in athymic nude mice by Chinese hamster ovary tumors ex- pressing murine bone morphogenetic protein-4. Clin Or- thop Relat Res 1994;300:274–80.
  • Lee YS, Chuong CM. Activation of protein kinase A is a pivotal step involved in both BMP-2- and cyclic AMP- induced chondrogenesis. J Cell Physiol 1997;170:153–65.
  • Aydin K, Sahin V, Gürsu S, Mercan AS, Demir B, Yildir- im T. Effect of pentoxifylline on fracture healing: an exper- imental study. Eklem Hastalik Cerrahisi 2011;22:160–5.

Effect of pentoxifylline on healing of segmental bone defects and angiogenesis

Year 2015, , 676 - 682, 28.10.2015
https://doi.org/10.3944/AOTT.2015.15.0158

Abstract

Objective: The aim of this study was to determine the effect of pentoxifylline (PTX) on angiogenesis and the healing of a critical-sized segmental defect of the radius diaphysis in a rat model, using radiological and histological grading systems.
Methods: The study included 24 female Sprague-Dawley rats (weight: 300±20 g) divided into 4 groups. A critical-sized segmental defect was created in the radius diaphysis in all rats. In Group 1, morcellized iliac crest autografts were used to fill the segmental bone defect. In Group 2, segmental bone defects were filled using morcellized iliac crest autografts, and 25 mg/kg/day PTX was applied intraperitoneally. In Group 3, the segmental bone defects were not filled, and in Group 4 the segmental bone defects were left unfilled, and an intraperitoneal (IP) dose of 25 mg/kg/day PTX was applied. Rats were sacrificed at postoperative Week 8, and defects were evaluated using radiographic, histological and immunohistochemical methods.
Results: There were significant differences between Group 1 and 2 according to radiological evaluation (p=0.003) and quality of union at the defect site (p=0.01). Union quality was higher in Group 4 than Group 3 (p=0.01). Cluster of differentiation 31 (CD31) and vascular endothelial growth factor (VEGF) levels were higher in Group 2 than in Groups 3 and 4.
Conclusion: According to radiological and histological parameters, PTX appears to improve angiogenesis and healing of segmental cortical bone defects of the radius in a rat model.

References

  • Zhu DJ, Xia B, Bi Q, Zhang SJ, Qiu BS, Zhao C. Func- tional protection of pentoxifylline against spinal cord isch- emia/reperfusion injury in rabbits: necrosis and apoptosis effects. Chin Med J (Engl) 2008;121:2444–9.
  • Kishi M, Tanaka H, Seiyama A, Takaoka M, Matsuoka T, Yoshioka T, et al. Pentoxifylline attenuates reperfusion in- jury in skeletal muscle after partial ischemia. Am J Physiol 1998;274:H1435–42.
  • Emrecan B, Tulukoğlu E, Bozok S, Aksun M, Yağdi S, Oz- can AV, et al. Iloprost and pentoxifylline attenuate isch- emia-reperfusion injury in skeletal muscle in rabbit model. Ulus Travma Acil Cerrahi Derg 2008;14:182–7.
  • Cook SD, Baffes GC, Wolfe MW, Sampath TK, Rueger DC. Recombinant human bone morphogenetic protein-7 induces healing in a canine long-bone segmental defect model. Clin Orthop Relat Res 1994;301:302–12.
  • Boden SD, Zdeblick TA, Sandhu HS, et al. The use of rhBMP-2 in interbody fusion cages. Definitive evidence of osteoinduction in humans: a preliminary report. Spine (Phila Pa 1976) 2000;25:376.
  • Salkeld SL, Patron LP, Barrack RL, Cook SD. The effect of osteogenic protein-1 on the healing of segmental bone defects treated with autograft or allograft bone. J Bone Joint Surg Am 2001;83-A:803–16.
  • Ozturk AM, Cila E, Kanatli U, Isik I, Senkoylu A, Uzu- nok D, Piskin E. Treatment of segmental bone defects in rats by the stimulation of bone marrow osteo-progenitor cells with prostaglandin E2. Int Orthop 2005;29:73–7.
  • Cakmak G, Bolukbasi S, Simsek A, Erdem O, Yilmaz G, Senkoylu A. Effect of synthetic cell-binding peptide on the healing of cortical segmental bone defects. Saudi Med J 2006;27:777–80.
  • Bostrom M, Lane JM, Tomin E, Browne M, Berberian W, Turek T, et al. Use of bone morphogenetic protein-2 in the rabbit ulnar nonunion model. Clin Orthop Relat Res 1996;327:272–82.
  • Bostrom MP, Yang X, Kennan M, Sandhu H, Dicarlo E, Lane JM. An unexpected outcome during testing of com- mercially available demineralized bone graft materials: how safe are the nonallograft components? Spine (Phila Pa 1976) 2001;26:1425–8.
  • Brighton CT, Hunt RM. Early histological and ultrastruc- tural changes in medullary fracture callus. J Bone Joint Surg Am 1991;73:832–47.
  • Huss WJ, Hanrahan CF, Barrios RJ, Simons JW, Green- berg NM. Angiogenesis and prostate cancer: identifi- cation of a molecular progression switch. Cancer Res 2001;61:2736–43.
  • Vecchi A, Garlanda C, Lampugnani MG, Resnati M, Mat- teucci C, Stoppacciaro A, et al. Monoclonal antibodies specific for endothelial cells of mouse blood vessels. Their application in the identification of adult and embryonic endothelium. Eur J Cell Biol 1994;63:247–54.
  • Vanzulli S, Gazzaniga S, Braidot MF, Vecchi A, Man- tovani A, Wainstok de Calmanovici R. Detection of en- dothelial cells by MEC 13.3 monoclonal antibody in mice mammary tumors. Biocell 1997;21:39–46.
  • DeLisser HM, Christofidou-Solomidou M, Strieter RM, Burdick MD, Robinson CS, Wexler RS, et al. Involvement of endothelial PECAM-1/CD31 in angiogenesis. Am J Pathol 1997;151:671–7.
  • Einhorn TA. The cell and molecular biology of fracture healing. Clin Orthop Relat Res 1998;(355 Suppl):7–21.
  • Szpalski M, Gunzburg R. Applications of calcium phos- phate-based cancellous bone void fillers in trauma surgery. Orthopedics 2002;25(5 Suppl):601–9.
  • Kelly CM, Wilkins RM, Gitelis S, Hartjen C, Watson JT, Kim PT. The use of a surgical grade calcium sulfate as a bone graft substitute: results of a multicenter trial. Clin Orthop Relat Res 200;382:42–50.
  • Webb JCJ, Tricker J. A review of fracture healing. Current Orthopaedics 2000;14:457–63.
  • Greenwald AS, Boden SD, Goldberg VM, Khan Y, Lau- rencin CT, Rosier RN. Bone-graft substitutes: facts, fic- tions, and applications. J Bone Joint Surg Am 2001;83-A Suppl 2 Pt 2:98–103.
  • Buttermann GR, Glazer PA, Bradford DS. The use of bone allografts in the spine. Clin Orthop Relat Res 1996;324:75–85.
  • Kerimoğlu S, Livaoğlu M, Sönmez B, Yuluğ E, Aynaci O, Topbas M, et al. Effects of human amniotic fluid on frac- ture healing in rat tibia. J Surg Res 2009;152:281–7.
  • Hannouche D, Petite H, Sedel L. Current trends in the enhancement of fracture healing. J Bone Joint Surg Br 2001;83:157–64.
  • Einhorn TA. Enhancement of fracture-healing. J Bone Joint Surg Am 1995;77:940–56.
  • Adams JG Jr, Dhar A, Shukla SD, Silver D. Effect of pentoxifylline on tissue injury and platelet-activating fac- tor production during ischemia-reperfusion injury. J Vasc Surg 1995;21:742–9.
  • Hoie EB, McGuire TR, Leuschen PM, Zach TL. Pent- oxifylline inhibits tumor necrosis factor-alpha induced synthesis of complement component C3 in human endo- thelial cells. Biol Pharm Bull 2004;27:1670–3.
  • Bombini G, Canetti C, Rocha FA, Cunha FQ. Tumour necrosis factor-alpha mediates neutrophil migration to the knee synovial cavity during immune inflammation. Eur J Pharmacol 2004;496:197–204.
  • Feng D, Nagy JA, Pyne K, Dvorak HF, Dvorak AM. Ul- trastructural localization of platelet endothelial cell adhe- sion molecule (PECAM-1, CD31) in vascular endothe- lium. J Histochem Cytochem 2004;52:87–101.
  • Luu NT, Rainger GE, Buckley CD, Nash GB. CD31 reg- ulates direction and rate of neutrophil migration over and under endothelial cells. J Vasc Res 2003;40:467–79.
  • Kiyoshima T, Fukuda S, Matsumoto M, Iida Y, Oka S, Nakakimura K, et al. Lack of evidence for apoptosis as a cause of delayed onset paraplegia after spinal cord isch- emia in rabbits. Anesth Analg 2003;96:839–46.
  • Mackey ME, Wu Y, Hu R, DeMaro JA, Jacquin MF, Kanel- lopoulos GK, et al. Cell death suggestive of apoptosis after spinal cord ischemia in rabbits. Stroke 1997;28:2012–7.
  • Oz Oyar E, Korkmaz A, Kardesş O, Omeroğlu S. Aortic cross-clamping-induced spinal cord oxidative stress in rab- bits: the role of a novel antioxidant adrenomedullin. J Surg Res 2008;147:143–7.
  • Delanian S, Chatel C, Porcher R, Depondt J, Lefaix JL. Complete restoration of refractory mandibular osteora- dionecrosis by prolonged treatment with a pentoxifylline- tocopherol-clodronate combination (PENTOCLO): a phase II trial. Int J Radiat Oncol Biol Phys 2011;80:832–9.
  • Ahlström M, Lamberg-Allardt C. Rapid protein kinase A-mediated activation of cyclic AMP-phosphodiesterase by parathyroid hormone in UMR-106 osteoblast-like cells. J Bone Miner Res 1997;12:172–8.
  • Kimmel DB, Bozzato RP, Kronis KA, Coble T, Sindrey D, Kwong P, et al. The effect of recombinant human (1–84) or synthetic human (1–34) parathyroid hormone on the skeleton of adult osteopenic ovariectomized rats. Endocri- nology 1993;132:1577–84.
  • Shen V, Dempster DW, Birchman R, Xu R, Lindsay R. Loss of cancellous bone mass and connectivity in ovari- ectomized rats can be restored by combined treatment with parathyroid hormone and estradiol. J Clin Invest 1993;91:2479–87.
  • Kurtoglu S, Gunes T, Koklu E, Bastug O, Canoz O, Kula M, et al. Influence of maternal nicotine exposure on neo- natal rat bone: protective effect of pentoxifylline. Exp Biol Med (Maywood) 2007;232:398–405.
  • Kinoshita T, Kobayashi S, Ebara S, Yoshimura Y, Hori- uchi H, Tsutsumimoto T, et al. Phosphodiesterase in- hibitors, pentoxifylline and rolipram, increase bone mass mainly by promoting bone formation in normal mice. Bone 2000;27:811–7.
  • Horiuchi H, Saito N, Kinoshita T, Wakabayashi S, Tsut- sumimoto T, Takaoka K. Enhancement of bone morpho- genetic protein-2-induced new bone formation in mice by the phosphodiesterase inhibitor pentoxifylline. Bone 2001;28:290–4.
  • Shimizu K, Yoshikawa H, Matsui M, Masuhara K, Taka- oka K. Periosteal and intratumorous bone formation in athymic nude mice by Chinese hamster ovary tumors ex- pressing murine bone morphogenetic protein-4. Clin Or- thop Relat Res 1994;300:274–80.
  • Lee YS, Chuong CM. Activation of protein kinase A is a pivotal step involved in both BMP-2- and cyclic AMP- induced chondrogenesis. J Cell Physiol 1997;170:153–65.
  • Aydin K, Sahin V, Gürsu S, Mercan AS, Demir B, Yildir- im T. Effect of pentoxifylline on fracture healing: an exper- imental study. Eklem Hastalik Cerrahisi 2011;22:160–5.
There are 42 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Experimental Study
Authors

Gokhan Cakmak

Mehmet Sahin This is me

Handan Ozdemir This is me

Emre Karadeniz This is me

Publication Date October 28, 2015
Published in Issue Year 2015

Cite

APA Cakmak, G., Sahin, M., Ozdemir, H., Karadeniz, E. (2015). Effect of pentoxifylline on healing of segmental bone defects and angiogenesis. Acta Orthopaedica Et Traumatologica Turcica, 49(6), 676-682. https://doi.org/10.3944/AOTT.2015.15.0158
AMA Cakmak G, Sahin M, Ozdemir H, Karadeniz E. Effect of pentoxifylline on healing of segmental bone defects and angiogenesis. Acta Orthopaedica et Traumatologica Turcica. October 2015;49(6):676-682. doi:10.3944/AOTT.2015.15.0158
Chicago Cakmak, Gokhan, Mehmet Sahin, Handan Ozdemir, and Emre Karadeniz. “Effect of Pentoxifylline on Healing of Segmental Bone Defects and Angiogenesis”. Acta Orthopaedica Et Traumatologica Turcica 49, no. 6 (October 2015): 676-82. https://doi.org/10.3944/AOTT.2015.15.0158.
EndNote Cakmak G, Sahin M, Ozdemir H, Karadeniz E (October 1, 2015) Effect of pentoxifylline on healing of segmental bone defects and angiogenesis. Acta Orthopaedica et Traumatologica Turcica 49 6 676–682.
IEEE G. Cakmak, M. Sahin, H. Ozdemir, and E. Karadeniz, “Effect of pentoxifylline on healing of segmental bone defects and angiogenesis”, Acta Orthopaedica et Traumatologica Turcica, vol. 49, no. 6, pp. 676–682, 2015, doi: 10.3944/AOTT.2015.15.0158.
ISNAD Cakmak, Gokhan et al. “Effect of Pentoxifylline on Healing of Segmental Bone Defects and Angiogenesis”. Acta Orthopaedica et Traumatologica Turcica 49/6 (October 2015), 676-682. https://doi.org/10.3944/AOTT.2015.15.0158.
JAMA Cakmak G, Sahin M, Ozdemir H, Karadeniz E. Effect of pentoxifylline on healing of segmental bone defects and angiogenesis. Acta Orthopaedica et Traumatologica Turcica. 2015;49:676–682.
MLA Cakmak, Gokhan et al. “Effect of Pentoxifylline on Healing of Segmental Bone Defects and Angiogenesis”. Acta Orthopaedica Et Traumatologica Turcica, vol. 49, no. 6, 2015, pp. 676-82, doi:10.3944/AOTT.2015.15.0158.
Vancouver Cakmak G, Sahin M, Ozdemir H, Karadeniz E. Effect of pentoxifylline on healing of segmental bone defects and angiogenesis. Acta Orthopaedica et Traumatologica Turcica. 2015;49(6):676-82.