Research Article
BibTex RIS Cite

Tavşanlarda kallus oluşumunda hyaluronik asit’in (Hyalonect) etkisi

Year 2015, Volume: 49 Issue: 3, 319 - 325, 17.07.2015
https://doi.org/10.3944/AOTT.2015.14.0231

Abstract

Amaç: Parçalı ve kemik defektli kırık rekonstrüktif ortopedik cerrahi sırasında, kemik fragmanlarının ve greftin stabilizasyonu önemlidir. Bu çalışmada, tavşan tibia metafizlerinde deneysel kemik bozuklukları (boşluk) iyileşme dinamiklerine Hyalonect cerrahi yamanın etkisi incelendi.

Çalışma planı: Seksen erkek tavşanın proksimal tibia metafizinin ön bölümünde çapı yaklaşık 5 mm olan bozukluklar (boşluk) oluşturuldu. Tavşanlar rastgele bir biçimde dört gruba ayrıldı: Grup I, kontrol grubu olarak bir kemik bozukluğu (boşluk) oluşturuldu ve kendi kendine iyileşmesi için bırakıldı; grup II, boşluklar Hyalonect ile kapatıldı; grup III, boşluklar allogreft ile dolduruldu ve grup IV, boşluklar allogreft ile doldurulup Hyalonect ile örtüldü.

Bulgular: Histolojik olarak, 3 ve 6. haftalarda grup II ve III ya da grup III ve IV arasında anlamlı fark yoktu. Grup II ile IV’te 3. haftada grup I’den anlamlı olarak daha iyi iyileşme vardı (p<0.05). Ek olarak, 3 ve 6. haftalarda grup IV’te grup II’yle karşılaştırıldığında anlamlı olarak daha iyi iyileşme vardı. 6. haftada sadece grup IV grup I’e kıyasla daha iyi iyileşme gösterdi (p<0.05). Radyolojik olarak, 3 ve 6 haftalarda grup II ve IV’te grup I’e kıyasla daha iyi iyileşme gözlendi (p<0.05).

Çıkarımlar: Bu çalışma Hyalonect ve kemik grefti uygulamasının tek başına ya da bir arada kullanıldığında iyileşme sürecini anlamlı olarak hızlandırdığını gösterdi. Greftleme ile Hyalonect’in bir arada kullanımı tek başına kemik greftlemeyle kıyasla radyolojik olarak daha iyi erken iyileşme sağladı.

 

DOI: 10.3944/AOTT.2015.14.0231

Bu özet, makalenin henüz redaksiyonu tamamlanmamış haline aittir ve bilgi verme amaçlıdır. Yayın aşamasında değişiklik gösterebilir.

References

  • Rhodes NP, Hunt JA, Longinotti C, Pavesio A. In vivo characterization of Hyalonect, a novel biodegradable sur- gical mesh. J Surg Res 2011;168:31–8.
  • Aslan M, Simsek G, Dayi E. The effect of hyaluronic acid- supplemented bone graft in bone healing: experimental study in rabbits. J Biomater Appl 2006;20:209–20.
  • Fröhlich M, Grayson WL, Wan LQ, Marolt D, Drobnic M, Vunjak-Novakovic G. Tissue engineered bone grafts: biological requirements, tissue culture and clinical rel- evance. Curr Stem Cell Res Ther 2008;3:254–64.
  • Mizuno M, Shindo M, Kobayashi D, Tsuruga E, Amemiya A, Kuboki Y. Osteogenesis by bone marrow stromal cells maintained on type I collagen matrix gels in vivo. Bone 1997;20:101–7.
  • Grundel RE, Chapman MW, Yee T, Moore DC. Autoge- neic bone marrow and porous biphasic calcium phosphate ceramic for segmental bone defects in the canine ulna. Clin Orthop Relat Res 1991;266:244–58.
  • Stevens MM. Biomaterials for bone tissue engineering. Materials today 2008;11:18–25.
  • Schwartzmann M. Use of collagen membranes for guided bone regeneration: a review. Implant Dent 2000;9:63–6.
  • Pirnazar P, Wolinsky L, Nachnani S, Haake S, Pilloni A, Bernard GW. Bacteriostatic effects of hyaluronic acid. J Periodontol 1999;70:370–4.
  • Kennedy CI, Diegelmann RF, Haynes JH, Yager DR. Pro- inflammatory cytokines differentially regulate hyaluronan synthase isoforms in fetal and adult fibroblasts. J Pediatr Surg 2000;35:874–9.
  • Nandi A, Estess P, Siegelman MH. Hyaluronan anchoring and regulation on the surface of vascular endothelial cells is mediated through the functionally active form of CD44. J Biol Chem 2000;275:14939–48.
  • Watanabe H, Cheung SC, Itano N, Kimata K, Yamada Y. Identification of hyaluronan-binding domains of aggrecan. J Biol Chem 1997;272:28057–65.
  • Pilloni A, Bernard GW. The effect of hyaluronan on mouse intramembranous osteogenesis in vitro. Cell Tissue Res 1998;294:323–33.
  • West DC, Hampson IN, Arnold F, Kumar S. Angiogenesis induced by degradation products of hyaluronic acid. Sci- ence 1985;228:1324–6.
  • Wight TN, Kinsella MG, Qwarnström EE. The role of proteoglycans in cell adhesion, migration and proliferation. Curr Opin Cell Biol 1992;4:793–801.
  • Fraser JR, Laurent TC, Laurent UB. Hyaluronan: its na- ture, distribution, functions and turnover. J Intern Med 1997;242:27–33.
  • Toole BP. Hyaluronate and hyaluronidase in morphogen- esis and differentiation. Amer Zool 1973;13:1061–5.
  • Handley CJ, Lowther DA. Inhibition of proteoglycan bio- synthesis by hyaluronic acid in chondrocytes in cell culture. Biochim Biophys Acta 1976;444:69–74.
  • Boyce DE, Thomas A, Hart J, Moore K, Harding K. Hy- aluronic acid induces tumour necrosis factor-alpha pro- duction by human macrophages in vitro. Br J Plast Surg 1997;50:362–8.
  • Sasaki T, Watanabe C. Stimulation of osteoinduction in bone wound healing by high-molecular hyaluronic acid. Bone 1995;16:9–15.
  • Stern M, Schmidt B, Dodson TB, Stern R, Kaban LB. Fetal cleft lip repair in rabbits: histology and role of hyal- uronic acid. J Oral Maxillofac Surg 1992;50:263–9
  • Emery SE, Brazinski MS, Koka A, Bensusan JS, Stevenson S. The biological and biomechanical effects of irradiation on anterior spinal bone grafts in a canine model. J Bone Joint Surg Am 1994;76:540–8.
  • Yasko AW, Lane JM, Fellinger EJ, Rosen V, Wozney JM, Wang EA. The healing of segmental bone defects, induced by recombinant human bone morphogenetic protein (rh- BMP-2). A radiographic, histological, and biomechanical study in rats. J Bone Joint Surg Am 1992;74:659–70.
  • Oakes DA, Lee CC, Lieberman JR. An evaluation of hu- man demineralized bone matrices in a rat femoral defect model. Clin Orthop Relat Res 2003;413:281–90.
  • Maus U, Andereya S, Gravius S, Siebert CH, Ohnsorge JA, Niedhart C. Lack of effect on bone healing of injectable BMP-2 augmented hyaluronic acid. Arch Orthop Trauma Surg 2008;128:1461–6.
  • Hunt DR, Jovanovic SA, Wikesjö UM, Wozney JM, Ber- nard GW. Hyaluronan supports recombinant human bone morphogenetic protein-2 induced bone reconstruction of advanced alveolar ridge defects in dogs. A pilot study. J Periodontol 2001;72:651–8.
  • Kim HD, Valentini RF. Retention and activity of BMP-2 in hyaluronic acid-based scaffolds in vitro. J Biomed Mater Res 2002;59:573–84.
  • Solchaga LA, Dennis JE, Goldberg VM, Caplan AI. Hy- aluronic acid-based polymers as cell carriers for tissue- engineered repair of bone and cartilage. J Orthop Res 1999;17:205–13.
  • Gauthier O, Bouler JM, Aguado E, Pilet P, Daculsi G. Macroporous biphasic calcium phosphate ceramics: influ- ence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials 1998;19:133–9.
  • Sasaki T, Watanabe C. Stimulation of osteoinduction in bone wound healing by high-molecular hyaluronic acid. Bone 1995;16:9–15.
  • Campoccia D, Doherty P, Radice M, Brun P, Abatangelo G, Williams DF. Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials 1998;19:2101–27.
  • Schmitz JP, Hollinger JO. The critical size defect as an ex- perimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res 1986;205:299&308.
  • de Brito Bezerra B, Mendes Brazão MA, de Campos ML, Casati MZ, Sallum EA, Sallum AW. Association of hy- aluronic acid with a collagen scaffold may improve bone healing in critical-size bone defects. Clin Oral Implants Res 2012;23:938–42.
  • Najjar TA, Kahn D. Comparative study of healing and re- modeling in various bones. J Oral Surg 1977;35:375–9.
  • Aaboe M, Pinholt EM, Hjİrting-Hansen E. Healing of ex- perimentally created defects: a review. Br J Oral Maxillofac Surg 1995;33:312–8.
  • Kilborn SH, Trudel G, Uhthoff H. Review of growth plate closure compared with age at sexual maturity and lifes- pan in laboratory animals. Contemp Top Lab Anim Sci 2002;41:21–6.

Effects of hyaluronic acid (Hyalonect) on callus formation in rabbits

Year 2015, Volume: 49 Issue: 3, 319 - 325, 17.07.2015
https://doi.org/10.3944/AOTT.2015.14.0231

Abstract

Objective: Bone fragment and graft stabilization are important during reconstructive surgery of cases with comminuted fractures and bone defects. We examined the effect of Hyalonect surgical mesh on the healing dynamics of metaphyseal bone defects created in rabbit tibiae.
Methods: Approximately 5-mm defects were created on the anterior aspect of the proximal tibial metaphysis of 80 male rabbits. The rabbits were randomly assigned to four groups: Group I, bone defects left alone (control group); Group II, bone defect covered with Hyalonect; Group III, bone defect filled with allograft; and Group IV, bone defect filled with allograft and covered with Hyalonect.
Results: No significant histological differences were noted between Groups II and III or Groups III and IV at 3 and 6 weeks. At 3 weeks, Groups II, III, and IV had significantly better healing than Group I (p<0.05). In addition, Group IV showed significantly better healing than Group II at 3 and 6 weeks. At 6 weeks, only Group IV showed better healing than Group I (p<0.05). Radiologically, Groups II, III, and IV showed better healing than Group I at 3 and 6 weeks (p<0.05).
Conclusion: Hyalonect application and bone grafting significantly accelerated the healing process when used alone or together. Hyalonect application along with bone grafting resulted in better early radiological healing than bone grafting alone.

References

  • Rhodes NP, Hunt JA, Longinotti C, Pavesio A. In vivo characterization of Hyalonect, a novel biodegradable sur- gical mesh. J Surg Res 2011;168:31–8.
  • Aslan M, Simsek G, Dayi E. The effect of hyaluronic acid- supplemented bone graft in bone healing: experimental study in rabbits. J Biomater Appl 2006;20:209–20.
  • Fröhlich M, Grayson WL, Wan LQ, Marolt D, Drobnic M, Vunjak-Novakovic G. Tissue engineered bone grafts: biological requirements, tissue culture and clinical rel- evance. Curr Stem Cell Res Ther 2008;3:254–64.
  • Mizuno M, Shindo M, Kobayashi D, Tsuruga E, Amemiya A, Kuboki Y. Osteogenesis by bone marrow stromal cells maintained on type I collagen matrix gels in vivo. Bone 1997;20:101–7.
  • Grundel RE, Chapman MW, Yee T, Moore DC. Autoge- neic bone marrow and porous biphasic calcium phosphate ceramic for segmental bone defects in the canine ulna. Clin Orthop Relat Res 1991;266:244–58.
  • Stevens MM. Biomaterials for bone tissue engineering. Materials today 2008;11:18–25.
  • Schwartzmann M. Use of collagen membranes for guided bone regeneration: a review. Implant Dent 2000;9:63–6.
  • Pirnazar P, Wolinsky L, Nachnani S, Haake S, Pilloni A, Bernard GW. Bacteriostatic effects of hyaluronic acid. J Periodontol 1999;70:370–4.
  • Kennedy CI, Diegelmann RF, Haynes JH, Yager DR. Pro- inflammatory cytokines differentially regulate hyaluronan synthase isoforms in fetal and adult fibroblasts. J Pediatr Surg 2000;35:874–9.
  • Nandi A, Estess P, Siegelman MH. Hyaluronan anchoring and regulation on the surface of vascular endothelial cells is mediated through the functionally active form of CD44. J Biol Chem 2000;275:14939–48.
  • Watanabe H, Cheung SC, Itano N, Kimata K, Yamada Y. Identification of hyaluronan-binding domains of aggrecan. J Biol Chem 1997;272:28057–65.
  • Pilloni A, Bernard GW. The effect of hyaluronan on mouse intramembranous osteogenesis in vitro. Cell Tissue Res 1998;294:323–33.
  • West DC, Hampson IN, Arnold F, Kumar S. Angiogenesis induced by degradation products of hyaluronic acid. Sci- ence 1985;228:1324–6.
  • Wight TN, Kinsella MG, Qwarnström EE. The role of proteoglycans in cell adhesion, migration and proliferation. Curr Opin Cell Biol 1992;4:793–801.
  • Fraser JR, Laurent TC, Laurent UB. Hyaluronan: its na- ture, distribution, functions and turnover. J Intern Med 1997;242:27–33.
  • Toole BP. Hyaluronate and hyaluronidase in morphogen- esis and differentiation. Amer Zool 1973;13:1061–5.
  • Handley CJ, Lowther DA. Inhibition of proteoglycan bio- synthesis by hyaluronic acid in chondrocytes in cell culture. Biochim Biophys Acta 1976;444:69–74.
  • Boyce DE, Thomas A, Hart J, Moore K, Harding K. Hy- aluronic acid induces tumour necrosis factor-alpha pro- duction by human macrophages in vitro. Br J Plast Surg 1997;50:362–8.
  • Sasaki T, Watanabe C. Stimulation of osteoinduction in bone wound healing by high-molecular hyaluronic acid. Bone 1995;16:9–15.
  • Stern M, Schmidt B, Dodson TB, Stern R, Kaban LB. Fetal cleft lip repair in rabbits: histology and role of hyal- uronic acid. J Oral Maxillofac Surg 1992;50:263–9
  • Emery SE, Brazinski MS, Koka A, Bensusan JS, Stevenson S. The biological and biomechanical effects of irradiation on anterior spinal bone grafts in a canine model. J Bone Joint Surg Am 1994;76:540–8.
  • Yasko AW, Lane JM, Fellinger EJ, Rosen V, Wozney JM, Wang EA. The healing of segmental bone defects, induced by recombinant human bone morphogenetic protein (rh- BMP-2). A radiographic, histological, and biomechanical study in rats. J Bone Joint Surg Am 1992;74:659–70.
  • Oakes DA, Lee CC, Lieberman JR. An evaluation of hu- man demineralized bone matrices in a rat femoral defect model. Clin Orthop Relat Res 2003;413:281–90.
  • Maus U, Andereya S, Gravius S, Siebert CH, Ohnsorge JA, Niedhart C. Lack of effect on bone healing of injectable BMP-2 augmented hyaluronic acid. Arch Orthop Trauma Surg 2008;128:1461–6.
  • Hunt DR, Jovanovic SA, Wikesjö UM, Wozney JM, Ber- nard GW. Hyaluronan supports recombinant human bone morphogenetic protein-2 induced bone reconstruction of advanced alveolar ridge defects in dogs. A pilot study. J Periodontol 2001;72:651–8.
  • Kim HD, Valentini RF. Retention and activity of BMP-2 in hyaluronic acid-based scaffolds in vitro. J Biomed Mater Res 2002;59:573–84.
  • Solchaga LA, Dennis JE, Goldberg VM, Caplan AI. Hy- aluronic acid-based polymers as cell carriers for tissue- engineered repair of bone and cartilage. J Orthop Res 1999;17:205–13.
  • Gauthier O, Bouler JM, Aguado E, Pilet P, Daculsi G. Macroporous biphasic calcium phosphate ceramics: influ- ence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials 1998;19:133–9.
  • Sasaki T, Watanabe C. Stimulation of osteoinduction in bone wound healing by high-molecular hyaluronic acid. Bone 1995;16:9–15.
  • Campoccia D, Doherty P, Radice M, Brun P, Abatangelo G, Williams DF. Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials 1998;19:2101–27.
  • Schmitz JP, Hollinger JO. The critical size defect as an ex- perimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res 1986;205:299&308.
  • de Brito Bezerra B, Mendes Brazão MA, de Campos ML, Casati MZ, Sallum EA, Sallum AW. Association of hy- aluronic acid with a collagen scaffold may improve bone healing in critical-size bone defects. Clin Oral Implants Res 2012;23:938–42.
  • Najjar TA, Kahn D. Comparative study of healing and re- modeling in various bones. J Oral Surg 1977;35:375–9.
  • Aaboe M, Pinholt EM, Hjİrting-Hansen E. Healing of ex- perimentally created defects: a review. Br J Oral Maxillofac Surg 1995;33:312–8.
  • Kilborn SH, Trudel G, Uhthoff H. Review of growth plate closure compared with age at sexual maturity and lifes- pan in laboratory animals. Contemp Top Lab Anim Sci 2002;41:21–6.
There are 35 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Experimental Study
Authors

Semih Ayanoglu

Cem Esenyel This is me

Oktay Adanir This is me

Semih Dedeoglu This is me

Yunus Imren

Tugce Esen This is me

Publication Date July 17, 2015
Published in Issue Year 2015 Volume: 49 Issue: 3

Cite

APA Ayanoglu, S., Esenyel, C., Adanir, O., Dedeoglu, S., et al. (2015). Effects of hyaluronic acid (Hyalonect) on callus formation in rabbits. Acta Orthopaedica Et Traumatologica Turcica, 49(3), 319-325. https://doi.org/10.3944/AOTT.2015.14.0231
AMA Ayanoglu S, Esenyel C, Adanir O, Dedeoglu S, Imren Y, Esen T. Effects of hyaluronic acid (Hyalonect) on callus formation in rabbits. Acta Orthopaedica et Traumatologica Turcica. July 2015;49(3):319-325. doi:10.3944/AOTT.2015.14.0231
Chicago Ayanoglu, Semih, Cem Esenyel, Oktay Adanir, Semih Dedeoglu, Yunus Imren, and Tugce Esen. “Effects of Hyaluronic Acid (Hyalonect) on Callus Formation in Rabbits”. Acta Orthopaedica Et Traumatologica Turcica 49, no. 3 (July 2015): 319-25. https://doi.org/10.3944/AOTT.2015.14.0231.
EndNote Ayanoglu S, Esenyel C, Adanir O, Dedeoglu S, Imren Y, Esen T (July 1, 2015) Effects of hyaluronic acid (Hyalonect) on callus formation in rabbits. Acta Orthopaedica et Traumatologica Turcica 49 3 319–325.
IEEE S. Ayanoglu, C. Esenyel, O. Adanir, S. Dedeoglu, Y. Imren, and T. Esen, “Effects of hyaluronic acid (Hyalonect) on callus formation in rabbits”, Acta Orthopaedica et Traumatologica Turcica, vol. 49, no. 3, pp. 319–325, 2015, doi: 10.3944/AOTT.2015.14.0231.
ISNAD Ayanoglu, Semih et al. “Effects of Hyaluronic Acid (Hyalonect) on Callus Formation in Rabbits”. Acta Orthopaedica et Traumatologica Turcica 49/3 (July 2015), 319-325. https://doi.org/10.3944/AOTT.2015.14.0231.
JAMA Ayanoglu S, Esenyel C, Adanir O, Dedeoglu S, Imren Y, Esen T. Effects of hyaluronic acid (Hyalonect) on callus formation in rabbits. Acta Orthopaedica et Traumatologica Turcica. 2015;49:319–325.
MLA Ayanoglu, Semih et al. “Effects of Hyaluronic Acid (Hyalonect) on Callus Formation in Rabbits”. Acta Orthopaedica Et Traumatologica Turcica, vol. 49, no. 3, 2015, pp. 319-25, doi:10.3944/AOTT.2015.14.0231.
Vancouver Ayanoglu S, Esenyel C, Adanir O, Dedeoglu S, Imren Y, Esen T. Effects of hyaluronic acid (Hyalonect) on callus formation in rabbits. Acta Orthopaedica et Traumatologica Turcica. 2015;49(3):319-25.