BibTex RIS Cite

Rüzgar Türbinleri için Farklı Kanat Profillerinin Sayısal Olarak Test Edilmesi

Year 2016, Volume: 4 Issue: 2, 0 - 0, 31.05.2016
https://doi.org/10.21541/apjes.38605

Abstract

Daha verimli rüzgar türbinleri oluşturmak için farklı kanatçık ailesinden beş kanat profili seçilmiştir. Seçilen bu kanatlar farklı hücum açılarında (0o, 5o, 10o, 15o ve 20o)  ve farklı rüzgar hızlarında (4,7,12 ve 20 m/s) sayısal olarak test edilmişlerdir. Burada amaç  rüzgar türbininin verimi üzerinde doğrudan etkili olan kanat performansını ölçmektedir. Genel olarak bir kanadın performansı CL / CD oranı ile ölçülmektedir. Burada CL kaldırma kuvveti katsayısı ve CD ise sürükleme kuvveti katsayısıdır. Sayısal çalışmadan elde edilen CL/CD değerleri hücum açısıyla ve serbest akım hızıyla olan değişimleri analiz edilmiştir. Yapılan sayısal analize göre rüzgar hızının artması tüm kanat performanslarını azalan bir eğimle artırmıştır. Kanatlar içerisinde FX 63-137 kanat profili  0 ≤ α ≤ 15o hücum açıları arasında  en yüksek performansa sahip olmuştur. GOE 795 profili 4o ≤ α ≤ 6o derece hücum açıları arasında ve EPPLER 580 0o ≤ α ≤ 5o hücum açılarında FX 63-137 ile benzer performans göstermişlerdir. Genel olarak 3o ≤ α ≤ 7o hücum açıları arasında tüm kanatlarda tüm hız değişimlerinde maksimum performans gözlemlenmiştir.

References

  • Amanullah Choudhry, , Maziar Arjomandi, Richard Kelso "A study of long separation bubbleon thick airfoils and its consequent effects" International Journal of Heat and Fluid Flow Volume 52, April 2015, Pages 84–96
  • Bertagnolio F., Sorensen N.N. and Rasmussen F., "New Insight into the Flow around a Wind Turbine Airfoil Section" J. Solar Energy-Trans. ASME, 217(2), 214-222, 2005
  • Dongli Ma, Yanping Zhao, Yuhang Qiao, Guanxiong Li, "Effects of relative thickness on aerodynamic characteristics of airfoil at a low Reynolds number" Chinese Journal of Aeronautics Volume 28, Issue 4, August 2015, Pages 1003–1015
  • Geissler W., Numerical Study of Buffet and Transonic Flutter on the NLR 7301 Airfoil, Aerospace Science and Technology, 7, 540-550, 2003
  • Heyong Xu, Shilong Xing, Zhengyin Ye, "Numerical simulation of the effect of a co- flow jet on the wind turbine airfoil aerodynamic characteristics" Procedia Engineering 126 (2015) 706 – 710
  • K. Melih GÜLEREN ve Sinan DEMİR, "Rüzgar Türbinleri İçin Düşük Hücum Açılarında Farklı Kanat Profillerinin Performans Analizi" Isı Bilimi ve Tekniği Dergisi, 31,2, 51-59, (2011)
  • Michael S. Selig and Bryan D. Mc Granahan, "Wind Tunnel Aerodynamic Tests of Six Airfoils for Use on Small Wind Turbines" National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov, Period of Performance: October 31, 2002–January 31
  • Martinat G., Braza M., Hoarau Y. and Harran G., Turbulence Modelling of the Flow Past a Pitching (2008). NACA0012 Airfoil at 105 and 106 Reynolds Numbers, J. Fluids and Structures, 24, 1294-1303, 2008
  • Nicolas Pellerin, Sébastien Leclaire, Marcelo Reggio (2015), "An implementation of the Spalart–Allmaras turbulence model in a multi-domain lattice Boltzmann method for solving turbulent airfoil flows Computers & Mathematics with Applications" Volume 70, Issue 12, December, Pages 3001–3018, (2015)
  • P. A. Costa Rocha, H. H. Barbosa Rocha, F. O. Moura Carneiro, M. E. Vieira da Silva, C. Freitas de Andrade, "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils" Energy Volume 97, 15 February 2016, Pages 144–150
  • Parezanovic V., Rasuo B. and Adzic M., “Design of Airfoils for Wind Turbine Blades”, The French-Serbian European Summer University: Renewable Energy Sources and Environment-Multidisciplnary Aspect, 17-24 October 2006, Rnjačka Banja, Serbia
  • Quan Wang, Jin Chen, Xiaoping Pang, Songlin Li, Xiaofeng Guo "A new direct design method for the medium thickness wind turbine airfoil" Journal of Fluids and Structures Volume 43, November 2013, Pages 287–301
  • Tangler J. T. and Somers D. M., "NREL Airfoil Families for HAWT" Proc. Wınd Power '95, Washington D.C., ABD, 117-123, 1995
  • Wei Zhang, Wan Cheng, Wei Gao, Adnan Qamar, Ravi Samtaney, "Geometrical effects on the airfoil flow separation and transition" Computers&Fluids Volume 116, 15 August 2015, Pages 60–73
  • internet, http://m-selig.ae.illinois.edu/ads/coord_database.html
Year 2016, Volume: 4 Issue: 2, 0 - 0, 31.05.2016
https://doi.org/10.21541/apjes.38605

Abstract

References

  • Amanullah Choudhry, , Maziar Arjomandi, Richard Kelso "A study of long separation bubbleon thick airfoils and its consequent effects" International Journal of Heat and Fluid Flow Volume 52, April 2015, Pages 84–96
  • Bertagnolio F., Sorensen N.N. and Rasmussen F., "New Insight into the Flow around a Wind Turbine Airfoil Section" J. Solar Energy-Trans. ASME, 217(2), 214-222, 2005
  • Dongli Ma, Yanping Zhao, Yuhang Qiao, Guanxiong Li, "Effects of relative thickness on aerodynamic characteristics of airfoil at a low Reynolds number" Chinese Journal of Aeronautics Volume 28, Issue 4, August 2015, Pages 1003–1015
  • Geissler W., Numerical Study of Buffet and Transonic Flutter on the NLR 7301 Airfoil, Aerospace Science and Technology, 7, 540-550, 2003
  • Heyong Xu, Shilong Xing, Zhengyin Ye, "Numerical simulation of the effect of a co- flow jet on the wind turbine airfoil aerodynamic characteristics" Procedia Engineering 126 (2015) 706 – 710
  • K. Melih GÜLEREN ve Sinan DEMİR, "Rüzgar Türbinleri İçin Düşük Hücum Açılarında Farklı Kanat Profillerinin Performans Analizi" Isı Bilimi ve Tekniği Dergisi, 31,2, 51-59, (2011)
  • Michael S. Selig and Bryan D. Mc Granahan, "Wind Tunnel Aerodynamic Tests of Six Airfoils for Use on Small Wind Turbines" National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov, Period of Performance: October 31, 2002–January 31
  • Martinat G., Braza M., Hoarau Y. and Harran G., Turbulence Modelling of the Flow Past a Pitching (2008). NACA0012 Airfoil at 105 and 106 Reynolds Numbers, J. Fluids and Structures, 24, 1294-1303, 2008
  • Nicolas Pellerin, Sébastien Leclaire, Marcelo Reggio (2015), "An implementation of the Spalart–Allmaras turbulence model in a multi-domain lattice Boltzmann method for solving turbulent airfoil flows Computers & Mathematics with Applications" Volume 70, Issue 12, December, Pages 3001–3018, (2015)
  • P. A. Costa Rocha, H. H. Barbosa Rocha, F. O. Moura Carneiro, M. E. Vieira da Silva, C. Freitas de Andrade, "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils" Energy Volume 97, 15 February 2016, Pages 144–150
  • Parezanovic V., Rasuo B. and Adzic M., “Design of Airfoils for Wind Turbine Blades”, The French-Serbian European Summer University: Renewable Energy Sources and Environment-Multidisciplnary Aspect, 17-24 October 2006, Rnjačka Banja, Serbia
  • Quan Wang, Jin Chen, Xiaoping Pang, Songlin Li, Xiaofeng Guo "A new direct design method for the medium thickness wind turbine airfoil" Journal of Fluids and Structures Volume 43, November 2013, Pages 287–301
  • Tangler J. T. and Somers D. M., "NREL Airfoil Families for HAWT" Proc. Wınd Power '95, Washington D.C., ABD, 117-123, 1995
  • Wei Zhang, Wan Cheng, Wei Gao, Adnan Qamar, Ravi Samtaney, "Geometrical effects on the airfoil flow separation and transition" Computers&Fluids Volume 116, 15 August 2015, Pages 60–73
  • internet, http://m-selig.ae.illinois.edu/ads/coord_database.html
There are 15 citations in total.

Details

Journal Section Articles
Authors

Hasan Düz

Publication Date May 31, 2016
Submission Date May 7, 2016
Published in Issue Year 2016 Volume: 4 Issue: 2

Cite

IEEE H. Düz, “Rüzgar Türbinleri için Farklı Kanat Profillerinin Sayısal Olarak Test Edilmesi”, APJES, vol. 4, no. 2, 2016, doi: 10.21541/apjes.38605.