Research Article
BibTex RIS Cite

Testere Dişi Çift Bariyer Yapısında Rezonans Tünelleme Olayının İncelenmesi

Year 2017, Volume: 5 Issue: 3, 95 - 100, 01.10.2017
https://doi.org/10.21541/apjes.319961

Abstract

Elektrik alan
öngerilimi altındaki testere dişi çift bariyer yapısında rezonans tünelleme
özelliği, sonlu farklar metodu bazlı denge-dışı Green fonksiyonu yöntemiyle
incelenmiştir. Elektrik alan altında testere dişi çift bariyer yapılarının
tünelleme iletim olasılığı ve rezonans enerji durumları sunulmuştur. Nümerik
sonuçlar, iletim katsayısındaki rezonans pikinin, öngerilim alanına ve yapı
parametrelerine kuvvetli bir şekilde bağlı olduğunu göstermektedir.

References

  • 1. Bati, M., Sakiroglu, S., Sokmen, I. (2016) Electron transport in electrically biased inverse parabolic double-barrier structure, Chinise Physics B, 25(5), 057307. doi: 10.1088/1674-1056/25/5/057307
  • 2. Datta, S. (2005) Quantum transport: atom to transistor, Cambridge University Press, Cambridge.
  • 3. Esaki, L. (1958) New Phenomenon in Narrow Germanium p-n Junctions, Physical Review, 109, 603-604. doi: 10.1103/PhysRev.109.603
  • 4. Ferry, D. K., Goodnick, S. M. ve Bird, J. (2009) Transport in nanostructures, Cambridge University Press, Cambridge.
  • 5. Harrison, P. (2010) Quantum wells, wires and dots: theoretical and computational physics of semiconductor nanostructures, John Wiley & Sons, New York.
  • 6. Levi, A.F.J. (2012) Applied Quantum Mechanics, Cambridge University Press, Cambridge.
  • 7. Luo, M., Yu, G. ve Xia L. (2015) Calculation of conductance for triangular multi-barrier structure in a constant electric field, Superlattices and Microstructures, 83, 168–175. doi: 10.1016/j.spmi.2015.02.015
  • 8. Miyamoto, K. ve Yamamoto, H. (1998). Resonant tunneling in asymmetrical doublebarrier structures under an applied electric field. Journal of Applied Physics, 84(1), 311–318. doi: 10.1063/1.368029
  • 9. Regan, B.C. Aloni, S. Jensen ve K. Zettl, A. (2005) Surface-tension-driven nanoelectromechanical relaxation oscillator, Applied Physics Letters, 86, 123119. doi: 10.1063/1.1887827
  • 10. Shifren, L. ve Ferry, D. (2001) Particle Monte Carlo simulation of Wigner function tunneling. Physics Letters A, 285(3), 217–221. doi: 10.1016/S0375-9601(01)00344-9
  • 11. Wang, H., Xu, H. ve Zhang, Y. (2006) A theoretical study of resonant tunneling characteristics in triangular double-barrier diodes, Physics Letters A, 355(6), 481–488. doi: 10.1016/j.physleta.2006.04.007
  • 12. Wigner, E. (1932) On the quantum correction for thermodynamic equilibrium. Physical Review, 40, 749–759. doi: 10.1103/PhysRev.40.749
  • 13. Tsu, R. ve Esaki, L. (1973) Tunneling in a finite superlattice. Applied Physics Letters, 22(11), 562–564. doi: 10.1063/1.1654509

Investigation of Resonant Tunneling Properties of Sawtooth Double Barrier Structures

Year 2017, Volume: 5 Issue: 3, 95 - 100, 01.10.2017
https://doi.org/10.21541/apjes.319961

Abstract

Resonant tunneling properties of
sawtooth double barrier structures under the electric field bias are investigated
in this paper using the non-equilibrium Green’s functions method based on
finite difference method. Tunneling transmission probability and resonant
energy states of sawtooth double barrier structures under the electric field
are presented. Numerical results reveal that the resonant peak in the
transmission coefficient depends strongly on the bias field and structure
parameters.

References

  • 1. Bati, M., Sakiroglu, S., Sokmen, I. (2016) Electron transport in electrically biased inverse parabolic double-barrier structure, Chinise Physics B, 25(5), 057307. doi: 10.1088/1674-1056/25/5/057307
  • 2. Datta, S. (2005) Quantum transport: atom to transistor, Cambridge University Press, Cambridge.
  • 3. Esaki, L. (1958) New Phenomenon in Narrow Germanium p-n Junctions, Physical Review, 109, 603-604. doi: 10.1103/PhysRev.109.603
  • 4. Ferry, D. K., Goodnick, S. M. ve Bird, J. (2009) Transport in nanostructures, Cambridge University Press, Cambridge.
  • 5. Harrison, P. (2010) Quantum wells, wires and dots: theoretical and computational physics of semiconductor nanostructures, John Wiley & Sons, New York.
  • 6. Levi, A.F.J. (2012) Applied Quantum Mechanics, Cambridge University Press, Cambridge.
  • 7. Luo, M., Yu, G. ve Xia L. (2015) Calculation of conductance for triangular multi-barrier structure in a constant electric field, Superlattices and Microstructures, 83, 168–175. doi: 10.1016/j.spmi.2015.02.015
  • 8. Miyamoto, K. ve Yamamoto, H. (1998). Resonant tunneling in asymmetrical doublebarrier structures under an applied electric field. Journal of Applied Physics, 84(1), 311–318. doi: 10.1063/1.368029
  • 9. Regan, B.C. Aloni, S. Jensen ve K. Zettl, A. (2005) Surface-tension-driven nanoelectromechanical relaxation oscillator, Applied Physics Letters, 86, 123119. doi: 10.1063/1.1887827
  • 10. Shifren, L. ve Ferry, D. (2001) Particle Monte Carlo simulation of Wigner function tunneling. Physics Letters A, 285(3), 217–221. doi: 10.1016/S0375-9601(01)00344-9
  • 11. Wang, H., Xu, H. ve Zhang, Y. (2006) A theoretical study of resonant tunneling characteristics in triangular double-barrier diodes, Physics Letters A, 355(6), 481–488. doi: 10.1016/j.physleta.2006.04.007
  • 12. Wigner, E. (1932) On the quantum correction for thermodynamic equilibrium. Physical Review, 40, 749–759. doi: 10.1103/PhysRev.40.749
  • 13. Tsu, R. ve Esaki, L. (1973) Tunneling in a finite superlattice. Applied Physics Letters, 22(11), 562–564. doi: 10.1063/1.1654509
There are 13 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Mehmet Batı

Publication Date October 1, 2017
Submission Date June 8, 2017
Published in Issue Year 2017 Volume: 5 Issue: 3

Cite

IEEE M. Batı, “Investigation of Resonant Tunneling Properties of Sawtooth Double Barrier Structures”, APJES, vol. 5, no. 3, pp. 95–100, 2017, doi: 10.21541/apjes.319961.