Research Article
BibTex RIS Cite

Uleksitin Amonyum Sülfat Çözeltilerindeki Çözünürlüğüne Dehidrasyon İşleminin Etkisi

Year 2018, Volume: 6 Issue: 2, 153 - 163, 03.08.2018
https://doi.org/10.21541/apjes.369381

Abstract

Uleksit ticari olarak önemli bor minerallerinden birisi olup Türkiye’de bol miktarda bulunmaktadır. Uleksit genellikle diğer boratlarla birlikte bulunur ve bor bileşikleri üretiminde ham madde olarak kullanılabilir. Önemli miktarda hidratasyon suyu içeren uleksit, dehidrasyon işlemine maruz bırakıldığı zaman uygulanan sıcaklığa bağlı olarak bu suyun bir kısmını kaybeder. Dehidrasyon işlemi sonucunda kimyasal olarak daha aktif olan gözenekli bir katı elde edilir. Oluşan gözenekli yapı katı ile akışkan arasındaki reaksiyonun daha kolaylıkla meydana gelmesine olanak sağlar ve çözünme hızı artar.
Bu çalışmada, kalsine edilmiş uleksitin amonyum sülfat çözeltilerindeki çözünme kinetiği incelenmiştir. Deneylerde uleksitin çözünmesi üzerine dehidrasyon sıcaklığı, çözelti derişimi, reaksiyon sıcaklığı, katı/sıvı oranı ve karıştırma hızının etkileri araştırılmıştır. Çözelti derişimi ve sıcaklığın artması, katı/sıvı oranının ise azalmasıyla reaksiyon hızının arttığı gözlenmiştir. En yüksek çözünme hızı 150 °C’de kalsine edilmiş örneklerden elde edilmiştir. Çözünme kinetiğinin yalancı birinci mertebe kinetik modele uyduğu belirlenmiştir. Çözünme prosesi için aktivasyon enerjisinin değeri 42 kJ/mol olarak hesaplanmıştır.

References

  • KAYNAKLAR [1] Ü. İpekoğlu, and M. Polat, “Bor endüstrisine genel bakış”, Madencilik, vol. 26, pp. 5-16, 1987.
  • [2] M. S. Celik, H. A. Uzunoglu, and F. Arslan, “Decrepitation properties of some boron minerals”, Powder Technology, vol. 79, pp. 167-172, 1994.
  • [3] M. Tunç, H. Erşahan, S. Yapici, and S. Çolak, “Dehydration kinetics of ulexite from thermogravimetric data”, Journal of Thermal Analysis and Calorimetry, vol. 48, pp. 403-411, 1997.
  • [4] S. Şener, G. Özbayoğlu, and Ş. Demirci, “Changes in the structure of ulexite on heating”, Thermochimica Acta, vol. 362, pp. 107-112, 2000.
  • [5] L. Stoch, “On a model of thermal internal decomposition of solids”, Thermochimica Acta, vol. 203, pp. 259-267, 1992.
  • [6] H. Erşahan, M. Tunç, A. Ekmekyapar, and S. Yapıcı, “Flash dehydration of ulexite and investigation of dehydration kinetics from thermogravimetric data”, Thermochimica Acta, vol. 250, pp. 125-135, 1995.
  • [7] Y. Erdoğan, A. Zeybek, A. Şahin, and A. Demirbaş, “Dehydration kinetics of howlite, ulexite, and tunellite using thermogravimetric data”, Thermochimica Acta, vol. 326, pp. 99-103, 1999.
  • [8] S. Şener, and G. Özbayoğlu, “Investigation of structural chemistry of thermal processes applied for improvement of grindability of ulexite”, Physicochemical Problems of Mineral Processing, vol. 34, pp. 25-33, 2000.
  • [9] A. Künkül, S. Yapıcı, M. M. Kocakerim, and M. Çopur, “Dissolution of thermally dehydrated ulexite in sulfuric acid solution”, Industrial and Engineering Chemistry Research, vol. 36, pp. 4847-4851, 1997.
  • [10] G. Tekin, Y. Onganer, and M. Alkan, “Dissolution kinetics of ulexite in ammonium chloride solution”, Canadian Metallurgical Quarterly, vol. 37, pp. 91-97, 1998.
  • [11] M. Alkan, C. Çifçi, F. Ayaz, and M. Doğan, “Dissolution kinetics of ulexite in aqueous EDTA solutions”, Canadian Metallurgical Quarterly, vol. 39, pp. 433-440, 2000.
  • [12] M. Alkan, M. Doğan, and H. Namlı, “Dissolution kinetics and mechanism of ulexite in oxalic acid solutions”, Industrial and Engineering Chemistry Research, vol. 43, pp.1591-1598, 2004.
  • [13] A. Künkül, and N. Demirkıran, “Dissolution kinetics of calcined ulexite in ammonium carbonate solutions”, Korean Journal of Chemical Engineering, vol. 24, pp. 947-952, 2007.
  • [14] N. Demirkıran, “Leaching kinetics of calcined ulexite in ammonium nitrate solutions”, Journal of Chemical Engineering of Japan, vol. 40, pp. 755-760, 2007.
  • [15] N. Demirkiran, N. Bayrakçı, and C. Asin, “Dissolution of thermally dehydrated ulexite in ammonium acetate solutions”, Transactions of Nonferrous Metals Society of China, vol. 23, pp. 1797-1803, 2013.
  • [16] A. Künkül, N. Demirkıran, and A. Baysar, “Dissolution kinetics of ulexite in ammonium sulfate solutions”, Industrial and Engineering Chemistry Research, vol. 42, pp. 982-986, 2003.
  • [17] H. Gülensoy, Kompleksometrinin Esasları ve Kompleksometrik Titrasyonlar, İstanbul: Fatih Yayınevi Matbaası, 1984.
  • [18] C. Y. Wen, “Noncatalytic heterogeneous solid-fluid reaction models”, Industrial and Engineering Chemistry, vol. 60, pp. 34-54, 1968.
  • [19] O. Levenspiel, Chemical Reaction Engineering, New York: John Wiley, 1972.

Effect of Dehydration Treatment on Dissolution of Ulexite in Ammonium Sulfate Solutions

Year 2018, Volume: 6 Issue: 2, 153 - 163, 03.08.2018
https://doi.org/10.21541/apjes.369381

Abstract

Ulexite is commercially one of important boron minerals, and it is found abundantly in Turkey. Ulexite is generally available together with other borates, and it can be used as a raw material in the production of boron compounds. It includes a significant amount of hydration water. When ulexite is subjected a dehydration process, it loses some part of hydrate water depending upon applied temperature. A porous solid is obtained in consequence of dehydration treatment, and the solid material becomes more chemically active. The resulting porous structure allows occurring more readily the reaction between solid and fluid, and the dissolution rate increases.
In this study, the dissolution kinetics of calcined ulexite in ammonium sulfate solutions was examined. In the experiments, the effects of the dehydration temperature, solution concentration, reaction temperature, solid-to-liquid ratio, and stirring speed on dissolution of ulexite were investigated. It was observed that the reaction rate increased with increasing solution concentration and reaction temperature, and with decreasing solid-to-liquid ratio. The highest dissolution rate was obtained with the sample calcined at 150 °C. It was determined that the dissolution kinetics fit to the first order pseudo-homogeneous kinetic model. The activation energy of the dissolution process was calculated to be 42 kJ/mol.

References

  • KAYNAKLAR [1] Ü. İpekoğlu, and M. Polat, “Bor endüstrisine genel bakış”, Madencilik, vol. 26, pp. 5-16, 1987.
  • [2] M. S. Celik, H. A. Uzunoglu, and F. Arslan, “Decrepitation properties of some boron minerals”, Powder Technology, vol. 79, pp. 167-172, 1994.
  • [3] M. Tunç, H. Erşahan, S. Yapici, and S. Çolak, “Dehydration kinetics of ulexite from thermogravimetric data”, Journal of Thermal Analysis and Calorimetry, vol. 48, pp. 403-411, 1997.
  • [4] S. Şener, G. Özbayoğlu, and Ş. Demirci, “Changes in the structure of ulexite on heating”, Thermochimica Acta, vol. 362, pp. 107-112, 2000.
  • [5] L. Stoch, “On a model of thermal internal decomposition of solids”, Thermochimica Acta, vol. 203, pp. 259-267, 1992.
  • [6] H. Erşahan, M. Tunç, A. Ekmekyapar, and S. Yapıcı, “Flash dehydration of ulexite and investigation of dehydration kinetics from thermogravimetric data”, Thermochimica Acta, vol. 250, pp. 125-135, 1995.
  • [7] Y. Erdoğan, A. Zeybek, A. Şahin, and A. Demirbaş, “Dehydration kinetics of howlite, ulexite, and tunellite using thermogravimetric data”, Thermochimica Acta, vol. 326, pp. 99-103, 1999.
  • [8] S. Şener, and G. Özbayoğlu, “Investigation of structural chemistry of thermal processes applied for improvement of grindability of ulexite”, Physicochemical Problems of Mineral Processing, vol. 34, pp. 25-33, 2000.
  • [9] A. Künkül, S. Yapıcı, M. M. Kocakerim, and M. Çopur, “Dissolution of thermally dehydrated ulexite in sulfuric acid solution”, Industrial and Engineering Chemistry Research, vol. 36, pp. 4847-4851, 1997.
  • [10] G. Tekin, Y. Onganer, and M. Alkan, “Dissolution kinetics of ulexite in ammonium chloride solution”, Canadian Metallurgical Quarterly, vol. 37, pp. 91-97, 1998.
  • [11] M. Alkan, C. Çifçi, F. Ayaz, and M. Doğan, “Dissolution kinetics of ulexite in aqueous EDTA solutions”, Canadian Metallurgical Quarterly, vol. 39, pp. 433-440, 2000.
  • [12] M. Alkan, M. Doğan, and H. Namlı, “Dissolution kinetics and mechanism of ulexite in oxalic acid solutions”, Industrial and Engineering Chemistry Research, vol. 43, pp.1591-1598, 2004.
  • [13] A. Künkül, and N. Demirkıran, “Dissolution kinetics of calcined ulexite in ammonium carbonate solutions”, Korean Journal of Chemical Engineering, vol. 24, pp. 947-952, 2007.
  • [14] N. Demirkıran, “Leaching kinetics of calcined ulexite in ammonium nitrate solutions”, Journal of Chemical Engineering of Japan, vol. 40, pp. 755-760, 2007.
  • [15] N. Demirkiran, N. Bayrakçı, and C. Asin, “Dissolution of thermally dehydrated ulexite in ammonium acetate solutions”, Transactions of Nonferrous Metals Society of China, vol. 23, pp. 1797-1803, 2013.
  • [16] A. Künkül, N. Demirkıran, and A. Baysar, “Dissolution kinetics of ulexite in ammonium sulfate solutions”, Industrial and Engineering Chemistry Research, vol. 42, pp. 982-986, 2003.
  • [17] H. Gülensoy, Kompleksometrinin Esasları ve Kompleksometrik Titrasyonlar, İstanbul: Fatih Yayınevi Matbaası, 1984.
  • [18] C. Y. Wen, “Noncatalytic heterogeneous solid-fluid reaction models”, Industrial and Engineering Chemistry, vol. 60, pp. 34-54, 1968.
  • [19] O. Levenspiel, Chemical Reaction Engineering, New York: John Wiley, 1972.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Nizamettin Demirkıran 0000-0001-9021-2477

Mehmet Kayra Tanaydın This is me 0000-0003-1696-0754

Gülistan Deniz Turhan Özdemir 0000-0003-4749-1989

Publication Date August 3, 2018
Submission Date December 21, 2017
Published in Issue Year 2018 Volume: 6 Issue: 2

Cite

IEEE N. Demirkıran, M. K. Tanaydın, and G. D. Turhan Özdemir, “Uleksitin Amonyum Sülfat Çözeltilerindeki Çözünürlüğüne Dehidrasyon İşleminin Etkisi”, APJES, vol. 6, no. 2, pp. 153–163, 2018, doi: 10.21541/apjes.369381.