Research Article
BibTex RIS Cite

Piezoelektrik Yama Dönüştürücülerle Diz Hareketinden Enerji Hasadı

Year 2019, Volume: 7 Issue: 2, 255 - 260, 25.05.2019
https://doi.org/10.21541/apjes.449102

Abstract

Bu çalışmada insanların yürüyüşleri esnasında diz hareketinden enerji elde edebilen bir piezoelektrik enerji hasadı aygıtının geliştirilmesi ve test edilmesi ele alınmıştır. Aygıt diz çevresine yerleştirmek üzere optimize edilmiş ve minimal ölçülere sahip iki adet MEMS tabanlı piezoelektrik yama dönüştürücüden oluşmaktadır. COMSOL programında yapılan simülasyonlar ile normal yürüme sırasında elde edilebilecek maksimum performans incelenmiştir. Piezoelektrik dönüştürücülerin iç kapasitans ve dirençlerinin 80 nF ile 470 kohm mertebesinde olduğu ölçülmüştür. Dönüştürücüler bir gönüllünün taktığı dizliğe yerleştirilerek, üretilen gerilim ve güç değerleri test edilmiştir. Yürüme sırasında maksimum 14 V ve 6.2 uW rms güç elde edilmiştir. Bu değerlerin orta hızlı koşma esnasında 14.4 V ve 12uW’a çıktığı gözlemlenmiştir. Ölçülen gerilim ve güç değerleri, bu aygıtın giyilebilir elektronik aletleri çalıştırabilme ve bu aletlerin pillerini sürekli şarj edebilme potansiyelini ortaya koymaktadır.

References

  • [1]. Y. Kuang, Z. Yang, and M. Zhu, “Design and characterization of a piezoelectric knee-joint energy harvester with frequency up-conversion through magnetic plucking”, Smart Mater. Struct., vol. 25, 085029, 2016.
  • [2]. E. Iranmanesh, A. Rasheed, W. Li, and K. Wang, "A wearable piezoelectric energy harvester rectified by a dual-gate thin-film transistor", IEEE Trans. Electron Devices, vol. 65, no 2, pp. 542-546, February 2018.
  • [3]. Y.M. Choi, M. G. Lee, and Y. Jeon, “Wearable biomechanical energy harvesting technologies”, Energies, vol. 10, 1483, September 2017.
  • [4]. T. Starner, “Human-powered wearable computing”, IBM Syst. J., vol. 35, no. 3-4, pp. 618-629, 1996
  • [5]. A. Cadei, A. Dionisi, E. Sardini, and M. Serpelloni, “Kinetic and thermal energy harvesters for implantable medical devices and biomedical autonomous sensors,” Meas. Sci. Technol., vol. 25, 012003, 2014.
  • [6]. L. Moro and D. Benasciutti, “Harvested power and sensitivity analysis of vibrating shoe-mounted piezoelectric cantilevers”, Smart Mater. Struct., vol. 19, 115011, 2010.
  • [7]. J. X. Shen, C. F. Wang, P. C. K. Luk, D. M. Miao, D. Shi, and C. Xu, “A shoe-equipped linear generator for energy harvesting”, IEEE Trans. Ind. Appl., vol. 49, no. 2, pp. 990-996, March/April 2013.
  • [8]. Z. Whang, V. Leonov, P. Fiorini, and C. V. Hoof, “Realization of a wearable miniaturized thermoelectric generator for human body applications”, Sens. Actuators A Phys., vol. 156, pp. 95-102, 2009.
  • [9]. L. Francioso, C. De Pascali, I. Farella, C. Martucci, P. Creti, and P. Siciliano, “Flexible thermoelectric generator for wearable biometric sensors”, Proc. IEEE Sensors 2010 Conf., HI, USA, pp. 747-750, 2010.
  • [10]. S. E. Jo, M. K. Kim, M. S. Kim, and Y. J. Kim, “Flexible thermoelectric generator for human body heat harvesting”, Electron. Lett., vol. 48, no. 16, pp. 1013-1015, August 2012.
  • [11]. J. M. Donelan, Q. Li, V. Naing, J. A. Hoffer, D. J. Weber, and A. D. Kuo, “Biomechanical energy harvesting: generating electricity during walking with minimal user effort”, Science, 319, 807, 2008.
  • [12]. M. Pozzi and M. Zhu, “Plucked piezoelectric bimorphs for knee-joint energy harvesting: modelling and experimental validation”, Smart Mater. Struct., vol. 20, 055007, 2011.
  • [13]. M. Pozzi and M. Zhu, “Characterization of a rotary piezoelectric energy harvester based on plucking excitation for knee-joint wearable applications”, Smart Mater. Struct., vol. 21, 055004, 2012.
  • [14]. Y. Kuang and M. Zhu, “Characterization of a knee-joint energy harvester powering a wireless communication sensing node”, Smart Mater. Struct., vol. 25, 055013, 2016.
  • [15]. Y. Kuang, T. Ruan, Z. J. Chew, and M. Zhu, “Energy harvesting during human walking to power a wireless sensor node”, Sens. Actuators A Phys., vol. 254, pp. 69-77, 2017.
  • [16]. G. De Pasquale and A. Soma, “Energy harvesting from human motion with piezo fibers for the body monitoring by MEMS sensors”, Proc. Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), Barcelona, Spain, 13672479, April 2013.
  • [17]. G. Bassani, A. Filippeschi, and E. Ruffaldi, “Human motion energy harvesting using a piezoelectric mfc patch”, Proc. Annual International Conference on the IEEE Engineering in Medicine and Biology Society, Milan, Italy, pp. 5070-5073, August 2015.
  • [18]. A. Proto, K. Vlach, S. Conforto, V. Kasik, D. Bibbo, D. Vala, I. Bernabucci, M. Penhaker, and M. Schmid, “Using pvdf films as flexible piezoelectric generators for biomechanical energy harvesting”, Clinician and Technology, vol. 47, pp. 5-10, 2017.
  • [19]. M. Kim and K. S. Yun, “Helical piezoelectric energy harvester and its application to energy harvesting garments”, Micromachines, 8, 115, 2017.
  • [20]. R. Riemer and A. Shapiro, “Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions”, J. Neuroeng. Rehabil., vol. 8:22, 2011.

Energy Harvesting from Knee Motion Using Piezoelectric Patch Transducers

Year 2019, Volume: 7 Issue: 2, 255 - 260, 25.05.2019
https://doi.org/10.21541/apjes.449102

Abstract



















This paper presents a piezoelectric energy harvesting device that generates electrical power from knee motion during human
gait. The device is composed of two MEMS-based piezoelectric patch transducers optimized for placement around knee joints
with minimal footprint. Simulations were performed on COMSOL software to reveal maximum performance that can be
achieved under normal walking conditions. The internal capacitance of the patch transducers was measured to be 80 nF, while
the resistance was on the order of 470 k. The patch transducers were inserted in a knee brace worn by a volunteer subject, and
were characterized for voltage and power generation. During walking, the maximum open circuit voltage and rms power were
measured to be 14 V and 6.2 W, respectively. These values were observed to increase up to 14.4 V and 12 W during a moderate
running activity. The level of power achieved in the experiments shows the potential of this device as an independent onboard
power component and as a continuous battery charger for wearable electronic devices. 

References

  • [1]. Y. Kuang, Z. Yang, and M. Zhu, “Design and characterization of a piezoelectric knee-joint energy harvester with frequency up-conversion through magnetic plucking”, Smart Mater. Struct., vol. 25, 085029, 2016.
  • [2]. E. Iranmanesh, A. Rasheed, W. Li, and K. Wang, "A wearable piezoelectric energy harvester rectified by a dual-gate thin-film transistor", IEEE Trans. Electron Devices, vol. 65, no 2, pp. 542-546, February 2018.
  • [3]. Y.M. Choi, M. G. Lee, and Y. Jeon, “Wearable biomechanical energy harvesting technologies”, Energies, vol. 10, 1483, September 2017.
  • [4]. T. Starner, “Human-powered wearable computing”, IBM Syst. J., vol. 35, no. 3-4, pp. 618-629, 1996
  • [5]. A. Cadei, A. Dionisi, E. Sardini, and M. Serpelloni, “Kinetic and thermal energy harvesters for implantable medical devices and biomedical autonomous sensors,” Meas. Sci. Technol., vol. 25, 012003, 2014.
  • [6]. L. Moro and D. Benasciutti, “Harvested power and sensitivity analysis of vibrating shoe-mounted piezoelectric cantilevers”, Smart Mater. Struct., vol. 19, 115011, 2010.
  • [7]. J. X. Shen, C. F. Wang, P. C. K. Luk, D. M. Miao, D. Shi, and C. Xu, “A shoe-equipped linear generator for energy harvesting”, IEEE Trans. Ind. Appl., vol. 49, no. 2, pp. 990-996, March/April 2013.
  • [8]. Z. Whang, V. Leonov, P. Fiorini, and C. V. Hoof, “Realization of a wearable miniaturized thermoelectric generator for human body applications”, Sens. Actuators A Phys., vol. 156, pp. 95-102, 2009.
  • [9]. L. Francioso, C. De Pascali, I. Farella, C. Martucci, P. Creti, and P. Siciliano, “Flexible thermoelectric generator for wearable biometric sensors”, Proc. IEEE Sensors 2010 Conf., HI, USA, pp. 747-750, 2010.
  • [10]. S. E. Jo, M. K. Kim, M. S. Kim, and Y. J. Kim, “Flexible thermoelectric generator for human body heat harvesting”, Electron. Lett., vol. 48, no. 16, pp. 1013-1015, August 2012.
  • [11]. J. M. Donelan, Q. Li, V. Naing, J. A. Hoffer, D. J. Weber, and A. D. Kuo, “Biomechanical energy harvesting: generating electricity during walking with minimal user effort”, Science, 319, 807, 2008.
  • [12]. M. Pozzi and M. Zhu, “Plucked piezoelectric bimorphs for knee-joint energy harvesting: modelling and experimental validation”, Smart Mater. Struct., vol. 20, 055007, 2011.
  • [13]. M. Pozzi and M. Zhu, “Characterization of a rotary piezoelectric energy harvester based on plucking excitation for knee-joint wearable applications”, Smart Mater. Struct., vol. 21, 055004, 2012.
  • [14]. Y. Kuang and M. Zhu, “Characterization of a knee-joint energy harvester powering a wireless communication sensing node”, Smart Mater. Struct., vol. 25, 055013, 2016.
  • [15]. Y. Kuang, T. Ruan, Z. J. Chew, and M. Zhu, “Energy harvesting during human walking to power a wireless sensor node”, Sens. Actuators A Phys., vol. 254, pp. 69-77, 2017.
  • [16]. G. De Pasquale and A. Soma, “Energy harvesting from human motion with piezo fibers for the body monitoring by MEMS sensors”, Proc. Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), Barcelona, Spain, 13672479, April 2013.
  • [17]. G. Bassani, A. Filippeschi, and E. Ruffaldi, “Human motion energy harvesting using a piezoelectric mfc patch”, Proc. Annual International Conference on the IEEE Engineering in Medicine and Biology Society, Milan, Italy, pp. 5070-5073, August 2015.
  • [18]. A. Proto, K. Vlach, S. Conforto, V. Kasik, D. Bibbo, D. Vala, I. Bernabucci, M. Penhaker, and M. Schmid, “Using pvdf films as flexible piezoelectric generators for biomechanical energy harvesting”, Clinician and Technology, vol. 47, pp. 5-10, 2017.
  • [19]. M. Kim and K. S. Yun, “Helical piezoelectric energy harvester and its application to energy harvesting garments”, Micromachines, 8, 115, 2017.
  • [20]. R. Riemer and A. Shapiro, “Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions”, J. Neuroeng. Rehabil., vol. 8:22, 2011.
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mustafa Beyaz 0000-0003-4591-2882

Publication Date May 25, 2019
Submission Date July 30, 2018
Published in Issue Year 2019 Volume: 7 Issue: 2

Cite

IEEE M. Beyaz, “Energy Harvesting from Knee Motion Using Piezoelectric Patch Transducers”, APJES, vol. 7, no. 2, pp. 255–260, 2019, doi: 10.21541/apjes.449102.