Research Article
BibTex RIS Cite

Fren Balatası Üretimi için Zirkonya Esaslı Yeni Kompozisyonların Geliştirilmesi

Year 2019, Volume: 7 Issue: 2, 274 - 284, 25.05.2019
https://doi.org/10.21541/apjes.457628

Abstract

Bu çalışmada, fren balatası üretiminde günümüzde tercih edilen toksik esaslı malzeme bileşenlerinin yerine saflığı yüksek, düşük
maliyetli ve en önemlisi insan sağlığı açısında zararlı olmayan tozları kullanmak amaçlanmıştır. Bu doğrultuda, fren balatası
üretiminde genellikle dört veya beş bileşen olarak çoklu sayıda kullanılan hammaddelere alternatif olarak, üretimde içeriğe
eklenecek tamamen seramik esaslı iki bileşenli yeni kompozit malzemeler geliştirilmiştir. Ayrıca, bu kompozit malzeme içeriği
ile birlikte fren balatası ömrünün de uzatılması hedeflenmiştir. Kompozitin ana kompozisyonunu oluşturan başlangıç
malzemesinde itriyum stabilize tetragonal zirkonya (Y-TZP) tozları matris faz olarak tercih edilmiştir. Y-TZP yüksek refrakterlik
ve tokluk değerleri göstermesi sebebiyle kompozisyonun temel bileşimini oluşturmaktadır. Y-TZP içerisine belirli oranlarda
alümina (Al2O3) ve mangan oksit (MnO) takviyesi yapılarak hazırlanan başlangıç bileşimlerinin soğuk izostatik preslenmesi
(CIP) sonrası 1500-1600oC’de sinterlenmesi ile yığınsal prototip numuneler üretilmiştir. Numunelerdeki faz ve mikroyapısal
değişim ile birlikte fiziksel ve mekanik özellikler, sırasıyla X-ışını kırınımı (XRD), taramalı elektron mikroskobu (SEM) ve
enerji saçınımlı X-ışını (EDX) spektroskopisi, Arşimet yoğunluk ölçümü, Vickers sertlik ve tokluk analizleri ile triboloji aşınma
testleri uygulanarak tespit edilmiştir. Elde edilen sonuçlar birlikte değerlendirildiğinde, fren balata sistemlerinin üretiminde
içeriğe eklenecek bir seramik kompozit örneğinin, seramik esaslı malzemelerden hazırlanarak yüksek mekanik özelliğe ve düşük
aşınmaya sahip olabileceği mümkün görülmüştür. Böylece, bu çalışma ile fren balatalarının mevcut üretim teknolojileri üzerine
farklı yeni bir yaklaşım sunulmuştur.

References

  • [1] Ertan R, Yavuz N. Balata malzemelerinde kullanılan yapısalların balatanın tribolojik ve fiziksel özelliklerine etkisi. Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 2010; 1.
  • [2] Elakhame ZU, Alhassan OA, Samuel AE. Development and production of brake pads from palm kernel shell composite. International Journal of Scientific & Engineering Research 2014; 10: 735-744.
  • [3] Aku Shakerau Y, Amaren S.G. and Yawas Danjuma S. Evaluation of the wear and thermal properties of asbestos free brack pad using periwinkles shell particles. Usak University Journal of Material Sciences 2013;1:99 – 108.
  • [4] Onyeneke FN, Anaele JU and Ugwuegbu CC. Production of motor vehicle brake pad using local materials (perriwinkle and coconut shell). The International Journal Of Engineering And Science (IJES) 2014; 9: 17-24.
  • [5] Mohanty S, Chugh YP. Development of fly ash-based automotive brake lining. Tribology International 2007; 7: 1217-1224.
  • [6] Bultan Ö, Öngül D, Türkoğlu P. Zirkonyanın mikroyapılarına ve üretim şekillerine göre sınıflandırılması, İstanbul Üniversitesi Diş hekimliği Fakültesi Dergisi 2010; 2: 197-204.
  • [7] Marin R, Sponchia G, Zucchetta E, Riello P, Enrichi F, Portu GD ve Benedetti A. Monitoring the t m martensitic phase transformation by photoluminescence emission in Eu+3- doped zirconia powders. J. Am. Ceram. Soc. 2013; 8: 2628-2635.
  • [8] Theunissen GSAM, Winnubst AJA, Burggraaf AJ. Effect of dopants on the sintering behaviour and stability of tetragonal zirconia ceramics. Journal of the European Ceramic Society 1992; 9: 251-263.
  • [9] Khamverdi Z, Moshiri Z. An up-to date Literature Review 2013; 4:1.
  • [10] Muoto CK, Jordan E H, Gell M, Aindow M. Phase homogeneity in MgO–ZrO2 nanocomposites synthesized by a combined sol–gel/thermal decomposition route. Journal of the American Ceramic Society 2010;10: 3102-3109.
  • [11] Abbas HA, Hamad FF, Mohamad AK, Hanafi ZM, Kilo M. Structural properties of zirconia doped with some oxides. Diffusion Fundamentals 2008; 8.[12] Bandyopadhyay AK. Nano Materials; New Age International (P) Limited 2008; 140.
  • [13] Mazaheri M, Simchi A, Golestani-Fard F. Densification and grain growth of nanocrystalline 3Y-TZP during two-step sintering. Journal of the European Ceramic Society 2008; 28: 2933-2939.
  • [14] Senthil Kumar A, Raja Durai A, Sornakumar T. Development of alumina- ceria ceramic composite cutting tool. International Journal of Refractory Metals &Hard Materials 2004; 22: 17-20.
  • [15] Senthil Kumar A, Raja Durai A, Sornakumar T. Machinability of hardened steel using alumina based ceramic cutting tools, International Journal of Refractory Metals &Hard Materials 2003; 21: 109-117.
  • [16] Piconi C, Condo SG and Kosmacˇ T. Alumina- and zirconia-based ceramics for load-bearing applications. Advanced Ceramics for Dentistry 2014; 219-253.
  • [17] Stevens R. Zirconia and Zirconia Ceramics. 2nd ed. 2000.
  • [18] Kuo CW, Shen YH, Yen FL, Cheng HZ, Hung IM, Wen SB, et al. Phase transformation behavior of 3 mol% yttria partially-stabilized ZrO2 (3Y–PSZ) precursor powder by anisothermal method. Ceramics International 2014;40: 3243-3251.
  • [19] Vasylkiv O, Sakka Y, Skorokhod VV, Hardness and Fracture toughness of alumina-doped tetragonal zirconia with different yttria contents, Materials Transactions, 2003; 44(10): 2235-2238.
  • [20] Ramesh S, Meenaloshini S, Tan CY, Chew WJK, Teng WD, Effect of manganese oxide on the sintered properties and low temperature degradation of Y-TZP ceramics. Ceramics International 2008; 34: 1603-1608

The Development of Zirconia-Based New Formulations for Brake Pad Production

Year 2019, Volume: 7 Issue: 2, 274 - 284, 25.05.2019
https://doi.org/10.21541/apjes.457628

Abstract

In present research, it was aimed to utilize high-purity, low-cost, and most importantly non-toxic powders for human health
instead of their toxic-based material counterparts which are now preferred in brake pads production. For this purpose, ceramicbased two-component bearing new composite materials added to content in production were developed for common raw
materials that consisted of generally four or five constituents used in the production of brake pad. In addition, it was also expected
to extend the life span of brake pad by this composite material content. In the brake pad production, yttrium-stabilized tetragonal
zirconia (Y-TZP) powders were preferred to matrix phase among the starting materials that forming the main composition of
composite. Y-TZP was also considered as key component due to its high refractory and toughness properties. The bulk prototype
samples were produced by cold isostatic pressing (CIP) and following the sintering at 1500-1600oC from starting formulations
that composed of alumina (Al2O3) and manganese oxide (MnO) reinforcement into the Y-TZP matrix phase at certain
proportions. Phase and microstructural changes in the samples as well as their physical and mechanical properties were
respectively determined by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray
(EDX) spectroscopy, Archimedes’ density measurement, Vickers hardness and toughness analyses and tribology wear tests.
When the results are evaluated together, it is seen that a ceramic composite sample which will be added to the content in the
production of brake lining systems can be prepared from ceramic based materials and can have high mechanical property and
low wear. Thus, this study clearly proposes a new different approach to current production technologies of brake pads.

References

  • [1] Ertan R, Yavuz N. Balata malzemelerinde kullanılan yapısalların balatanın tribolojik ve fiziksel özelliklerine etkisi. Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 2010; 1.
  • [2] Elakhame ZU, Alhassan OA, Samuel AE. Development and production of brake pads from palm kernel shell composite. International Journal of Scientific & Engineering Research 2014; 10: 735-744.
  • [3] Aku Shakerau Y, Amaren S.G. and Yawas Danjuma S. Evaluation of the wear and thermal properties of asbestos free brack pad using periwinkles shell particles. Usak University Journal of Material Sciences 2013;1:99 – 108.
  • [4] Onyeneke FN, Anaele JU and Ugwuegbu CC. Production of motor vehicle brake pad using local materials (perriwinkle and coconut shell). The International Journal Of Engineering And Science (IJES) 2014; 9: 17-24.
  • [5] Mohanty S, Chugh YP. Development of fly ash-based automotive brake lining. Tribology International 2007; 7: 1217-1224.
  • [6] Bultan Ö, Öngül D, Türkoğlu P. Zirkonyanın mikroyapılarına ve üretim şekillerine göre sınıflandırılması, İstanbul Üniversitesi Diş hekimliği Fakültesi Dergisi 2010; 2: 197-204.
  • [7] Marin R, Sponchia G, Zucchetta E, Riello P, Enrichi F, Portu GD ve Benedetti A. Monitoring the t m martensitic phase transformation by photoluminescence emission in Eu+3- doped zirconia powders. J. Am. Ceram. Soc. 2013; 8: 2628-2635.
  • [8] Theunissen GSAM, Winnubst AJA, Burggraaf AJ. Effect of dopants on the sintering behaviour and stability of tetragonal zirconia ceramics. Journal of the European Ceramic Society 1992; 9: 251-263.
  • [9] Khamverdi Z, Moshiri Z. An up-to date Literature Review 2013; 4:1.
  • [10] Muoto CK, Jordan E H, Gell M, Aindow M. Phase homogeneity in MgO–ZrO2 nanocomposites synthesized by a combined sol–gel/thermal decomposition route. Journal of the American Ceramic Society 2010;10: 3102-3109.
  • [11] Abbas HA, Hamad FF, Mohamad AK, Hanafi ZM, Kilo M. Structural properties of zirconia doped with some oxides. Diffusion Fundamentals 2008; 8.[12] Bandyopadhyay AK. Nano Materials; New Age International (P) Limited 2008; 140.
  • [13] Mazaheri M, Simchi A, Golestani-Fard F. Densification and grain growth of nanocrystalline 3Y-TZP during two-step sintering. Journal of the European Ceramic Society 2008; 28: 2933-2939.
  • [14] Senthil Kumar A, Raja Durai A, Sornakumar T. Development of alumina- ceria ceramic composite cutting tool. International Journal of Refractory Metals &Hard Materials 2004; 22: 17-20.
  • [15] Senthil Kumar A, Raja Durai A, Sornakumar T. Machinability of hardened steel using alumina based ceramic cutting tools, International Journal of Refractory Metals &Hard Materials 2003; 21: 109-117.
  • [16] Piconi C, Condo SG and Kosmacˇ T. Alumina- and zirconia-based ceramics for load-bearing applications. Advanced Ceramics for Dentistry 2014; 219-253.
  • [17] Stevens R. Zirconia and Zirconia Ceramics. 2nd ed. 2000.
  • [18] Kuo CW, Shen YH, Yen FL, Cheng HZ, Hung IM, Wen SB, et al. Phase transformation behavior of 3 mol% yttria partially-stabilized ZrO2 (3Y–PSZ) precursor powder by anisothermal method. Ceramics International 2014;40: 3243-3251.
  • [19] Vasylkiv O, Sakka Y, Skorokhod VV, Hardness and Fracture toughness of alumina-doped tetragonal zirconia with different yttria contents, Materials Transactions, 2003; 44(10): 2235-2238.
  • [20] Ramesh S, Meenaloshini S, Tan CY, Chew WJK, Teng WD, Effect of manganese oxide on the sintered properties and low temperature degradation of Y-TZP ceramics. Ceramics International 2008; 34: 1603-1608
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Arife Yurdakul 0000-0002-3126-7336

Nurdan Baştürk This is me 0000-0002-3231-6523

Publication Date May 25, 2019
Submission Date September 5, 2018
Published in Issue Year 2019 Volume: 7 Issue: 2

Cite

IEEE A. Yurdakul and N. Baştürk, “Fren Balatası Üretimi için Zirkonya Esaslı Yeni Kompozisyonların Geliştirilmesi”, APJES, vol. 7, no. 2, pp. 274–284, 2019, doi: 10.21541/apjes.457628.