Research Article
BibTex RIS Cite

Effects of Surface Characteristics on the in Vitro Biocompatibility Response of Niti Shape Memory Alloys

Year 2019, Volume: 7 Issue: 2, 285 - 290, 25.05.2019
https://doi.org/10.21541/apjes.461169

Abstract

Biocompatibility of three sets of Nickel-Titanium (NiTi) shape memory alloys (SMAs) with varying geometries and surface
characteristics were investigated through qualitative and quantitative in vitro experiments. One set of the alloy samples used in
the experiments had a plate geometry while the other two sets had cylindrical geometries with different radii. Prior to the cell
culture experiments, through the structural electron microscopy and profilometer investigations, the samples were detected to
exhibit different surface properties based on their geometries. With the in vitro experiments which were conducted following the
structural characterization procedures, the influence of surface feature shape, distribution, and depth on the cell attachment and
proliferation behaviors was investigated via electron microcopy analysis and cell count experiments. Results revealed that sample geometry and surface roughness are determining factors for initial cell attachment. However, in terms of formation of
interconnected cellular networks, depth and organization of surface grooves become more critical. Overall, this study
demonstrates that the biocompatibility of metallic biomaterials can be improved through the manipulation of surface properties,
especially the organization and depth of surface features.

References

  • [1] L.G. Machado, M.A. Savi, Medical applications of shape memory alloys, Brazilian J. Med. Biological Res. 36 (2003) 683-91.
  • [2] C. Wirth, V. Comte, C. Lagneau, P. Exbrayat, M. Lissac, N. Jaffrezic-Renault, L. Ponsonnet, Nitinol surface roughness modulates in vitro cell response: a comparison between fibroblasts and osteoblasts, Mater. Sci. Eng. C 25 (2005) 51–60.
  • [3] S.M. Toker, D. Canadinc, H.J. Maier, O. Birer, Evaluation of passive oxide layer formation–biocompatibility relationship in NiTi shape memory alloys: Geometry and body location dependency, Mater. Sci. Eng. C 36 (2014) 118–129.
  • [4] C. Wirth, B. Grosgogeat, C. Lagneau, N. Jaffrezic-Renault, L. Ponsonnet, Biomaterial surface properties modulate in vitro rat calvaria osteoblasts response: Roughness and or chemistry?, Mater. Sci. Eng. C 28 (2008) 990-1001.
  • [5] S. Bauer, P. Schmuki, K. Mark, J. Park, Engineering biocompatible implant surfaces Part I: Materials and surfaces, Prog. Mater. Sci. 58 (2013) 261-326.
  • [6] K. Anselme, M. Bigerelle, B. Noël, A. Lost, P. Hardouin, Effect of grooved titanium substratum on human osteoblastic cell growth, J Biomed Mater Res. 60(4) (2002) 529-40.
  • [7] C. Wu, M. Chen, T. Zheng, X. Yang, Effect of surface roughness on the initial response of MC3T3-E1 cells cultured on polished titanium alloy, Bio-Med. Mater. Eng. 26 (2015) 155-64.
  • [8] L. Le Guehennec, M.A. Lopez-Heredia, B. Enkel, P. Weiss, Y. Amouriq, P. Layrolle, Osteoblastic cell behaviour on different titanium implant surfaces, Acta Biomater. 4 (2008) 535–43.
  • [9] Y. Estrin, C. Kasper, S. Diederichs, R. Lapovok, Accelerated growth of preosteoblastic cells on ultrafine grained titanium, J Biomed Mater Res A. 90(4) (2009) 1239-42.
  • [10] B. Uzer, S.M. Toker, A. Cingoz, T. Bagci-Onder, G. Gerstein, H.J. Maier, D. Canadinc, An exploration of plastic deformation dependence of cell viability and adhesion in metallic implant materials, J. Mech. Behav. Biomed. Mater. 60 (2016) 177-86.
  • [11] P.K.C. Venkatsurya, W.W. Thein-Han, R.D.K. Misra, M.C. Somani, L.P. Karjalainen, Advancing nanograined/ultrafine-grained structures for metal implant technology: Interplay between grooving of nano/ultrafine grains and cellular response, Mater. Sci. Eng. C 30 (2010) 1050-59.
  • [12] E. Zhang, C. Zou, G. Yu, Surface microstructure and cell biocompatibility of silicon-substituted hydroxyapatite coating on titanium substrate prepared by a biomimetic process, Mater. Sci. Eng. C 29 (2009) 298-305.
  • [13] Z.D. Cui, M.F. Chen, L.Y. Zhang, R.X. Hu, S.L. Zhu, X.J. Yang, Improving the biocompatibility of NiTi alloy by chemical treatments: An in vitro evaluation in 3T3 human fibroblast cell, Mater. Sci. Eng. C 28 (2008) 1117–22.
  • [14] C. Brunot, B. Grosgogeat, C. Picart, C. Lagneau, N. Jaffrezic-Renault, L. Ponsonnet, Response of fibroblast activity and polyelectrolyte multilayer films coating titanium, Dental Mater. 24 (2008) 1025-35.

Yüzey Karakteristiklerinin NiTi Şekil Hafızalı Alaşımlarının in vitro Biyouyumluluk Davranışı Üzerindeki Etkileri

Year 2019, Volume: 7 Issue: 2, 285 - 290, 25.05.2019
https://doi.org/10.21541/apjes.461169

Abstract

Farklı geometrilere ve yüzey özelliklerine sahip üç set Nikel-Titanyum (NiTi) şekil hafızalı alaşımının (ŞHA) biyouyumluluğu,
nitel ve nicel in vitro deneylerle incelenmiştir. Deneylerde kullanılan alaşımların bir seti levha, diğer iki seti ise farklı yarıçaplarda
silindirik geometriye sahip örneklerdir. Hücre kültürü deneyleri öncesinde yapılan yapısal elektron mikroskobu ve profilometre
incelemelerinde örneklerin geometrilerine bağlı olarak farklı yüzey özellikleri gösterdiği saptanmıştır. Yapısal karakterizasyon
işlemlerinin devamında yapılan in vitro deneylerde ise, yüzey özelliklerinin şekil, dağılım ve derinliğinin hücre yapışması ve
çoğalma davranışları üzerindeki etkileri elektron mikroskobu incelemeleri ve hücre sayımı deneyi ile araştırılmıştır. Sonuçlar
örnek geometrisi ve yüzey pürüzlülüğünün ilk hücre yapışması açısından belirleyici faktörler olduğunu ortaya çıkarmıştır.
Bununla birlikte, birbiriyle bağlantılı hücre ağlarının oluşumu açısından, yüzey oluklarının derinliği ve organizasyonunun daha
kritik olduğu gözlemlenmiştir. Genel olarak bu çalışma, metalik biyomalzemelerin biyouyumluluğunun; yüzey özelliklerinin
manipülasyonu, özellikle de yüzey karakteristiklerinin dağılım ve derinliğinin değiştirilmesi yoluyla geliştirilebileceğini
göstermektedir.

References

  • [1] L.G. Machado, M.A. Savi, Medical applications of shape memory alloys, Brazilian J. Med. Biological Res. 36 (2003) 683-91.
  • [2] C. Wirth, V. Comte, C. Lagneau, P. Exbrayat, M. Lissac, N. Jaffrezic-Renault, L. Ponsonnet, Nitinol surface roughness modulates in vitro cell response: a comparison between fibroblasts and osteoblasts, Mater. Sci. Eng. C 25 (2005) 51–60.
  • [3] S.M. Toker, D. Canadinc, H.J. Maier, O. Birer, Evaluation of passive oxide layer formation–biocompatibility relationship in NiTi shape memory alloys: Geometry and body location dependency, Mater. Sci. Eng. C 36 (2014) 118–129.
  • [4] C. Wirth, B. Grosgogeat, C. Lagneau, N. Jaffrezic-Renault, L. Ponsonnet, Biomaterial surface properties modulate in vitro rat calvaria osteoblasts response: Roughness and or chemistry?, Mater. Sci. Eng. C 28 (2008) 990-1001.
  • [5] S. Bauer, P. Schmuki, K. Mark, J. Park, Engineering biocompatible implant surfaces Part I: Materials and surfaces, Prog. Mater. Sci. 58 (2013) 261-326.
  • [6] K. Anselme, M. Bigerelle, B. Noël, A. Lost, P. Hardouin, Effect of grooved titanium substratum on human osteoblastic cell growth, J Biomed Mater Res. 60(4) (2002) 529-40.
  • [7] C. Wu, M. Chen, T. Zheng, X. Yang, Effect of surface roughness on the initial response of MC3T3-E1 cells cultured on polished titanium alloy, Bio-Med. Mater. Eng. 26 (2015) 155-64.
  • [8] L. Le Guehennec, M.A. Lopez-Heredia, B. Enkel, P. Weiss, Y. Amouriq, P. Layrolle, Osteoblastic cell behaviour on different titanium implant surfaces, Acta Biomater. 4 (2008) 535–43.
  • [9] Y. Estrin, C. Kasper, S. Diederichs, R. Lapovok, Accelerated growth of preosteoblastic cells on ultrafine grained titanium, J Biomed Mater Res A. 90(4) (2009) 1239-42.
  • [10] B. Uzer, S.M. Toker, A. Cingoz, T. Bagci-Onder, G. Gerstein, H.J. Maier, D. Canadinc, An exploration of plastic deformation dependence of cell viability and adhesion in metallic implant materials, J. Mech. Behav. Biomed. Mater. 60 (2016) 177-86.
  • [11] P.K.C. Venkatsurya, W.W. Thein-Han, R.D.K. Misra, M.C. Somani, L.P. Karjalainen, Advancing nanograined/ultrafine-grained structures for metal implant technology: Interplay between grooving of nano/ultrafine grains and cellular response, Mater. Sci. Eng. C 30 (2010) 1050-59.
  • [12] E. Zhang, C. Zou, G. Yu, Surface microstructure and cell biocompatibility of silicon-substituted hydroxyapatite coating on titanium substrate prepared by a biomimetic process, Mater. Sci. Eng. C 29 (2009) 298-305.
  • [13] Z.D. Cui, M.F. Chen, L.Y. Zhang, R.X. Hu, S.L. Zhu, X.J. Yang, Improving the biocompatibility of NiTi alloy by chemical treatments: An in vitro evaluation in 3T3 human fibroblast cell, Mater. Sci. Eng. C 28 (2008) 1117–22.
  • [14] C. Brunot, B. Grosgogeat, C. Picart, C. Lagneau, N. Jaffrezic-Renault, L. Ponsonnet, Response of fibroblast activity and polyelectrolyte multilayer films coating titanium, Dental Mater. 24 (2008) 1025-35.
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Sıdıka Mine Toker 0000-0003-0762-242X

Gabriella Sugerman This is me

Elliot Christian Frey This is me

Publication Date May 25, 2019
Submission Date September 18, 2018
Published in Issue Year 2019 Volume: 7 Issue: 2

Cite

IEEE S. M. Toker, G. Sugerman, and E. C. Frey, “Effects of Surface Characteristics on the in Vitro Biocompatibility Response of Niti Shape Memory Alloys”, APJES, vol. 7, no. 2, pp. 285–290, 2019, doi: 10.21541/apjes.461169.