Research Article
BibTex RIS Cite

Effect of the Oscillator Length on the Characteristics of a Feedback Type Fluidic Oscillator

Year 2020, Volume: 8 Issue: 3, 432 - 438, 30.09.2020
https://doi.org/10.21541/apjes.583500

Abstract

This work characterizes the various length fluidic oscillators with constant depth and having the same main geometric dimensions. A change in fluidic oscillator's length affects the frequency and sweeping characteristics of the fluidic oscillators. These characteristics were extracted by means of constant temperature anemometry hot-wire measurements and water flow visualizations. A total number of ten fluidic oscillators were compared to the baseline fluidic oscillator design. It was observed that shortening the fluidic oscillator ceases the oscillations after a threshold oscillator length whereas elongating the fluidic oscillator decreases the frequency and sweep angle gradually. Furthermore, the frequency maps obtained from hot-wire measurements for each considered fluidic oscillator design provided overall detail about the frequency of the oscillations for a wide range of flow rate. For a constant supply flow rate where the frequency and the sweep angle of an oscillator is constant, changing the length of a fluidic oscillator will allow varying these characteristics of the oscillator. Thus the oscillator can be tailored for a specific need of an application.

Supporting Institution

University of Cincinnati and the Ohio State University Technology Commercialization Office

Project Number

60065789

Thanks

The author would like to thank Dr. Liran Oren of University of Cincinnati for allowing access to use the Constant Temperature Anemometry system. The experimental models used in this work was built by using an Accelerator Fast Track funding (Project No. 60065789) awarded by the Ohio State University Technology Commercialization Office.

References

  • [1]. R. W. Warren, U.S. Patent Application for “Fluid Oscillator,” Docket No. 3,016,066, filed 9 Jan. 1962.
  • [2]. R. D. Stouffer, “Liquid Oscillator Device,” U.S. Patent 4,508,267, filed 2 Apr. 1985.
  • [3]. T. Shakouchi, “Fluidic Oscillator Operated by Gas(Air)-Liquid(Water) Two-Phase Flow (Measurement of Flow Rate of Gas-Liquid Two-Phase Flow in Pipe),” Proceedings of the ASME Fluids Engineering Division Summer Meeting, Vol. 1, American Society of Mechanical Engineers, New York, pp. 895–901, 2001.
  • [4]. H. Wang, S. B. M. Beck, G.H. Priestman and R. F. Boucher, “Fluidic Pressure Pulse Transmitting Flowmeter,” Chemical Engineering Research and Design: Transactions of the Institute of Chemical Engineers, Part A, Vol. 75, No. A4, pp. 381–391, 1997.
  • [5]. G. Raman and S. Raghu, “Cavity Resonance Suppression Using Miniature Fluidic Oscillators,” AIAA Journal Vol. 45, 2608–2612, 2004.
  • [6]. D. Guyot, B. C. Bobusch, C. O. Paschereit and S. Raghu, “Active Combustion Control Using a Fluidic Oscillator for Asymmetric Fuel Flow Modulation,” 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 2008-4956, 2008.
  • [7]. C. Cerretelli and K. Kirtley, “Boundary Layer Separation Control with Fluidic Oscillators,” Journal of Turbomachinery, Vol. 131, No. 4, pp. 1-9, 2009.
  • [8]. R. Seele, P. Tewes, R. Woszidlo, M. A. McVeigh, N. Lucas and I. J. Wygnanski, “Discrete Sweeping Jets as Tools for Improving the Performance of the V-22,” Journal of Aircraft, Vol. 46, No. 6, pp. 2098–2106, 2009.
  • [9]. J. W. Gregory and M. N. Tomac, “A Review of Fluidic Oscillator Development,” 43rd Fluid Dynamics Conference, AIAA Paper 2013-2474, 2013.
  • [10]. S. Raghu, “Fluidic oscillators for flow control,” Experiments in Fluids, Vol. 54, No.2, pp.1455, 2013.
  • [11]. E. A. Whalen, A. Shmilovich, M. Spoor, J. Tran, P. Vijgen, J. C. Lin and M. Andino, “Flight Test of an Active Flow Control Enhanced Vertical Tail, ” AIAA Journal Vol. 56, 3393–3398, 2018.
  • [12]. S. R. Ahmed, G. Ramm and G. Faltin, G., “Some Salient Features of the Time Averaged Vehicle Wake,” SAE Technical Paper No. 840300, 1984.
  • [13]. G. M. R. van Raemdonck and M. J. L. van Tooren, “Time-Averaged Phenomenological Investigation of a Wake behind a Bluff Body”. Proc. Bluff Body Aerodynamics & Applications VI, Milan, Italy, 2008.
  • [14]. J.-F. Beaudoin and J.-L. Aider, “Drag and Lift Reduction of a 3D Bluff Body Using Flaps,” Experiments in Fluids, Vol. 44, No.4, pp. 491–501, 2008.
  • [15]. S. Krajnovic, “Large Eddy Simulation Exploration of Passive Flow Control around an Ahmed Body,” ASME Journal of Fluids Engineering, Vol.13, No.12, p. 121103, 2014.
  • [16]. P. Joseph, X. Amandole`se and J.-L. Aider, “Drag Reduction on the 25° Slant Angle Ahmed Reference Body Using Pulsed Jets,” Experiments in Fluids, Vol. 52, No.5, pp. 1169–1185, 2012.
  • [17]. R. Woszidlo, T. Stumper, C. Nayeri and C. O. Paschereit, “Experimental study on bluff body drag reduction with fluidic oscillators,” 52nd Aerospace Sciences Meeting, AIAA Paper 2014-0403, 2014.
  • [18]. M. Metka, J.W. Gregory, “Drag reduction on the 25-deg Ahmed model using fluidic oscillators,” Journal of Fluids Engineering, Vol. 13, No.5, p.051108, 2015.
  • [19]. B. C. Bobusch, R. Woszidlo, J. M. Bergada, C. N. Nayeri and C. O. Paschereit, “Experimental study of the internal flow structures inside a fluidic oscillator,” Experiments in Fluids, Vol. 54, No.6, p.1559, 2013.
  • [20]. R. Woszidlo, F. Ostermann, C. N. Nayeri and C. O. Paschereit, “The time-resolved natural flow field of a fluidic oscillator,” Experiments in Fluids, Vol. 56, No.6, p. 125, 2015.
  • [21]. M. Sieber, F. Ostermann, R. Woszidlo, K. Oberleithner and C. O. Paschereit, “Lagrangian coherent structures in the flow field of a fluidic oscillator,” Physical Review Fluids, Vol. 1, No. 5, p. 050509, 2016.
  • [22]. M. N. Tomac, M.N. and J. W. Gregory, “Internal Jet Interactions in a Fluidic Oscillator at Low Flow Rate,” Experiments in Fluids, Vol. 55, No.5, p. 1730, 2014.
  • [23]. M. N. Tomac, M.N. and J. W. Gregory, “Internal Flow Physics of a Fluidic Oscillator Spray in the Transition Regime,” Atomization and Sprays, Vol. 26, No.7, 2016.
  • [24]. M. N. Tomac, M.N. and J. W. Gregory, “Oscillation Characteristics of Mutually Impinging Dual Jets in a Mixing Chamber,” Physics of Fluids, Vol. 30, No. 11, p. 117102, 2018.
  • [25]. M. N. Tomac, M.N. and J. W. Gregory, “Phase-Synchronized Fluidic Oscillator Pair,” AIAA Journal, Vol. 57, pp. 670 - 681, 2018.
  • [26]. M. N. Tomac, M.N. and E. Sundström, “Adjustable Frequency Fluidic Oscillator with Supermode Frequency,” AIAA Journal, accessed June 11, 2019.
  • [27]. H. C. Bray, “Cold Weather Fluidic Fan Spray Devices and Method,” U.S. Patent 4463904, 1984.

Effect of the Oscillator Length on the Characteristics of a Feedback Type Fluidic Oscillator

Year 2020, Volume: 8 Issue: 3, 432 - 438, 30.09.2020
https://doi.org/10.21541/apjes.583500

Abstract

Bu çalışma sabit derinlikli ve aynı ana geometrik boyutlara sahip çeşitli uzunluktaki fluidik osilatörleri karakterize etmektedir. Fluidik osilatörün uzunluğundaki bir değişim osilatörün osilasyon frekansı ve süpürme karakteristiklerini etkilemektedir. Bu karakteristikler Sabit Sıcaklık Anemometri Sistemi sıcak-tel ölçümleri ile ve su akış vizülasyonları ile ortaya çıkarılmıştır. Toplamda on adet değişik uzunluktaki fluidik osilatör, refereans modeli ile karşılaştırılmıştır. Fluidik osilatörün kısaltılmasının belli bir eşik uzunluğundan sonra osilasyonları durdurduğu, uzatılmasının ise aşamalı olarak osilasyon frekansı ve süpürme açısını azalttığı gözlemlenmiştir. Ayrıca, sıcak-tel ölçümlerinden her osilatör için elde edilen frekans haritaları sayesinde osilasyon frekanslarının kapsamlı detayları da geniş bir debi aralığı için verilmiştir. Osilatörün osilasyon frekansının ve süpürme açısının sabit olacağı sabit bir besleme debisi için fluidik osilatör uzunluğunun değiştirilmesi, bu iki karakterin değiştirilmesine olanak verecektir.Böylece osilatör kullanılacağı uygulamanın özel ihtiyaçlarına göre adapte edilebilecektir.

Project Number

60065789

References

  • [1]. R. W. Warren, U.S. Patent Application for “Fluid Oscillator,” Docket No. 3,016,066, filed 9 Jan. 1962.
  • [2]. R. D. Stouffer, “Liquid Oscillator Device,” U.S. Patent 4,508,267, filed 2 Apr. 1985.
  • [3]. T. Shakouchi, “Fluidic Oscillator Operated by Gas(Air)-Liquid(Water) Two-Phase Flow (Measurement of Flow Rate of Gas-Liquid Two-Phase Flow in Pipe),” Proceedings of the ASME Fluids Engineering Division Summer Meeting, Vol. 1, American Society of Mechanical Engineers, New York, pp. 895–901, 2001.
  • [4]. H. Wang, S. B. M. Beck, G.H. Priestman and R. F. Boucher, “Fluidic Pressure Pulse Transmitting Flowmeter,” Chemical Engineering Research and Design: Transactions of the Institute of Chemical Engineers, Part A, Vol. 75, No. A4, pp. 381–391, 1997.
  • [5]. G. Raman and S. Raghu, “Cavity Resonance Suppression Using Miniature Fluidic Oscillators,” AIAA Journal Vol. 45, 2608–2612, 2004.
  • [6]. D. Guyot, B. C. Bobusch, C. O. Paschereit and S. Raghu, “Active Combustion Control Using a Fluidic Oscillator for Asymmetric Fuel Flow Modulation,” 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 2008-4956, 2008.
  • [7]. C. Cerretelli and K. Kirtley, “Boundary Layer Separation Control with Fluidic Oscillators,” Journal of Turbomachinery, Vol. 131, No. 4, pp. 1-9, 2009.
  • [8]. R. Seele, P. Tewes, R. Woszidlo, M. A. McVeigh, N. Lucas and I. J. Wygnanski, “Discrete Sweeping Jets as Tools for Improving the Performance of the V-22,” Journal of Aircraft, Vol. 46, No. 6, pp. 2098–2106, 2009.
  • [9]. J. W. Gregory and M. N. Tomac, “A Review of Fluidic Oscillator Development,” 43rd Fluid Dynamics Conference, AIAA Paper 2013-2474, 2013.
  • [10]. S. Raghu, “Fluidic oscillators for flow control,” Experiments in Fluids, Vol. 54, No.2, pp.1455, 2013.
  • [11]. E. A. Whalen, A. Shmilovich, M. Spoor, J. Tran, P. Vijgen, J. C. Lin and M. Andino, “Flight Test of an Active Flow Control Enhanced Vertical Tail, ” AIAA Journal Vol. 56, 3393–3398, 2018.
  • [12]. S. R. Ahmed, G. Ramm and G. Faltin, G., “Some Salient Features of the Time Averaged Vehicle Wake,” SAE Technical Paper No. 840300, 1984.
  • [13]. G. M. R. van Raemdonck and M. J. L. van Tooren, “Time-Averaged Phenomenological Investigation of a Wake behind a Bluff Body”. Proc. Bluff Body Aerodynamics & Applications VI, Milan, Italy, 2008.
  • [14]. J.-F. Beaudoin and J.-L. Aider, “Drag and Lift Reduction of a 3D Bluff Body Using Flaps,” Experiments in Fluids, Vol. 44, No.4, pp. 491–501, 2008.
  • [15]. S. Krajnovic, “Large Eddy Simulation Exploration of Passive Flow Control around an Ahmed Body,” ASME Journal of Fluids Engineering, Vol.13, No.12, p. 121103, 2014.
  • [16]. P. Joseph, X. Amandole`se and J.-L. Aider, “Drag Reduction on the 25° Slant Angle Ahmed Reference Body Using Pulsed Jets,” Experiments in Fluids, Vol. 52, No.5, pp. 1169–1185, 2012.
  • [17]. R. Woszidlo, T. Stumper, C. Nayeri and C. O. Paschereit, “Experimental study on bluff body drag reduction with fluidic oscillators,” 52nd Aerospace Sciences Meeting, AIAA Paper 2014-0403, 2014.
  • [18]. M. Metka, J.W. Gregory, “Drag reduction on the 25-deg Ahmed model using fluidic oscillators,” Journal of Fluids Engineering, Vol. 13, No.5, p.051108, 2015.
  • [19]. B. C. Bobusch, R. Woszidlo, J. M. Bergada, C. N. Nayeri and C. O. Paschereit, “Experimental study of the internal flow structures inside a fluidic oscillator,” Experiments in Fluids, Vol. 54, No.6, p.1559, 2013.
  • [20]. R. Woszidlo, F. Ostermann, C. N. Nayeri and C. O. Paschereit, “The time-resolved natural flow field of a fluidic oscillator,” Experiments in Fluids, Vol. 56, No.6, p. 125, 2015.
  • [21]. M. Sieber, F. Ostermann, R. Woszidlo, K. Oberleithner and C. O. Paschereit, “Lagrangian coherent structures in the flow field of a fluidic oscillator,” Physical Review Fluids, Vol. 1, No. 5, p. 050509, 2016.
  • [22]. M. N. Tomac, M.N. and J. W. Gregory, “Internal Jet Interactions in a Fluidic Oscillator at Low Flow Rate,” Experiments in Fluids, Vol. 55, No.5, p. 1730, 2014.
  • [23]. M. N. Tomac, M.N. and J. W. Gregory, “Internal Flow Physics of a Fluidic Oscillator Spray in the Transition Regime,” Atomization and Sprays, Vol. 26, No.7, 2016.
  • [24]. M. N. Tomac, M.N. and J. W. Gregory, “Oscillation Characteristics of Mutually Impinging Dual Jets in a Mixing Chamber,” Physics of Fluids, Vol. 30, No. 11, p. 117102, 2018.
  • [25]. M. N. Tomac, M.N. and J. W. Gregory, “Phase-Synchronized Fluidic Oscillator Pair,” AIAA Journal, Vol. 57, pp. 670 - 681, 2018.
  • [26]. M. N. Tomac, M.N. and E. Sundström, “Adjustable Frequency Fluidic Oscillator with Supermode Frequency,” AIAA Journal, accessed June 11, 2019.
  • [27]. H. C. Bray, “Cold Weather Fluidic Fan Spray Devices and Method,” U.S. Patent 4463904, 1984.
There are 27 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mehmet Tomac 0000-0003-1373-4639

Project Number 60065789
Publication Date September 30, 2020
Submission Date June 28, 2019
Published in Issue Year 2020 Volume: 8 Issue: 3

Cite

IEEE M. Tomac, “Effect of the Oscillator Length on the Characteristics of a Feedback Type Fluidic Oscillator”, APJES, vol. 8, no. 3, pp. 432–438, 2020, doi: 10.21541/apjes.583500.