Research Article
BibTex RIS Cite

Arayüzey Polimerizasyonu Metodu ile İnce Boşluklu Nanofiltrasyon (NF) Membran Üretimi ve Performans Değerlendirmesi

Year 2021, Volume: 9 Issue: 1, 92 - 102, 29.01.2021
https://doi.org/10.21541/apjes.777177

Abstract

İnce boşluklu (hollow fiber (HF)) ultrafiltrasyon (UF) membranların dış yüzeyi, arayüzey polimerizasyon metodu ile ince film kaplanarak, nanofiltrasyon (NF) membranlar üretilmiştir. Farklı monomerlerin ve bekletme sürelerinin membran performansı üzerindeki etkilerinin belirlenebilmesi için üretimde iki farklı monomer, (m-fenilen diamin (MPD) ve piperazin (PIP)) kullanılmış ve açil klorid monomeri için (trimezoil klorid (TMC)) farklı temas süreleri (2 dk, 1 dk ve 30 sn) uygulanmıştır. Üretilen membranların karakteristiği ve performansları SEM görüntüleri, saf su geçirgenlikleri, temas açısı, yüzey pürüzlülüğü, tuz tutunumu (MgSO4 ve NaCl) ve akı verileri incelenerek değerlendirilmiştir. Membranların SEM görüntüleri, tüm üretim koşullarında ince film tabakasının oluştuğunu göstermiştir. Yüzey pürüzlülüğü üzerinde MPD monomerinin, PIP monomerine göre daha etkili olduğu belirlenmiştir. En iyi geçirgenlik değeri TMC için uygulanan bekletme sürelerine bağlı olarak farklılık (PIP için TMC (2 dk), MPD için TMC (1 dk)) göstermiştir. Farklı amin monomerler kullanılarak üretilen membranlar dört farklı basınç altında (3, 6, 9, 12 bar) işletilmiştir. PIP monomeri ile üretilen membranlarda daha yüksek tuz akıları ve giderim verimleri elde edilmiştir. % 50 ve üzerinde MgSO4 giderimi, % 2 PIP, % 0.13 TMC (2 dk ve 1 dk), ve % 2 MPD, % 0.13 TMC (2 dk ve 30 sn) olan membranlarda izlenmiştir. NaCl gideriminde ise en yüksek verim (% 39.6), % 2 MPD, % 0.13 TMC (30 sn) ile üretilen membranlarda elde edilmiştir. Bulgulara göre giderilecek tuz cinsine bağlı olarak uygulanacak NF membranın farklılık gösterdiği sonucuna varılmıştır.

Supporting Institution

TÜBİTAK

Project Number

113 Y 359

Thanks

Bu çalışma 113Y359 no’lu TÜBİTAK destekli proje kapsamında gerçekleştirilmiştir. TÜBİTAK’a katkılarından dolayı teşekkür ederiz.

References

  • Raman, L. P., Cheryan, M. and Rajagopalan, N., 1994. Consider nanofiltration for membrane separations, Chemical Engineering Progress, 90: 68-74.
  • Dalwani, M., 2011. Thin film composite nanofiltration membranes for extreme conditions. Doktora Tezi, University of Twente, Hollanda, 169 .
  • Morgan, P.W., 1965. Condensation polymers: By interfacial and solution methods. In Polymer Reviews. Vol. 10. Wiley, New York, 19–64.
  • Cadotte, J.E., Cobian, K.E., Forester, R.H., Petersen, R.J.,1976. Continued evaluation of in-situ-formed condensation polymers for reverse osmosis membranes, NTIS Report No. PB-253193, 90.
  • Cadotte, J.E., Steuck, M.J., Petersen, R.J., 1978. Research on in-situ-formed condensation polymers for reverse osmosis membranes, NTIS Report No. PB- 288387.
  • Lau W.J. and Ismail A.F, 2011. Progress in interfacial polymerization technique on composite membrane preparation. 2nd International Conference on Environmental Engineering and Applications IPCBEE vol.17, Singapore.
  • Lee, K.P., Arnot, T.C., Mattia, D., 2011. A review of reverse osmosis membrane materials for desalination—Development to date and future potential. Journal of Membrane Science, 370: 1-2, 1-22.
  • Li, D., and Wang, H., 2010. Recent development in reverse osmosis desalination membranes. Journal of Materials Chemistry, 20, 4551–4566. DOI: 10.1039/b924553g.
  • Lau, W.J., Ismail, A.F., Misdan, N., Kassim, M.A., 2012. A recent progress in thin film composite membrane: A review. Desalination 287, 190–199. doi:10.1016/j.desal.2011.04.004.
  • Mohammad, A.W., Hilal, N., and Seman, M.N.A., 2005. Interfacially polymerized nanofiltration membranes: atomic force microscopy and salts rejection studies. Journal of Applied Polymer Science, Vol. 96, 605–612. DOI 10.1002/app.21157.
  • Jeong, B.-H., Hoek, E.M.V., Yan, Y., Subramani, A., Huang, X., Hurwitz, G., Ghosh, A.K., Jawor,. A., 2007. Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. Journal of Membrane Science, 294: 1–7.
  • Lau, W.J., and Ismail, A.F., 2009. Polymeric nanofiltration membrane for textile dyeing wastewater treatment: preparation, performance evaluation, transport modelling, and fouling controls — a review. Desalination, 245: 321–348.
  • Kong, C., Kanezashi, M., Yamomoto, T., Shintani, T., Tsuru, T., 2010. Controlled synthesis of high performance polyamide membrane with thin dense layer for water desalination. Journal of Membrane Science 362: 76–80.
  • Tomaschke, J. E. 2000. Interfacial Composite Membranes’’, Hydranautics Oceanside, CA, USA, Academic Press.
  • Xie, W., Geoffrey, M. G., Freeman, B. D., Lee, H. S., Byun, G., McGrath, J. E. 2012. Polyamide interfacial composite membranes prepared from m-phenylene diamine, trimesoyl chloride and a new disulfonated diamine. Journal of Membrane Science, 403– 404, 152–161.
  • Minhas, F.,T. Shahabuddin Memon, M.I. Bhanger, Nadeem, I., Mujahid, M. 2013. ’Solvent resistant thin film composite nanofiltration membrane:Characterization and permeation study, Applied Surface Science, 282, 887–897.
  • Lee, H.S., Im, S.J., Kim, J.H., Kim, H.J., Kim, J.P., Min, B.R., 2008. Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles, Desalination. 219, 48–56. doi:10.1016/j.desal.2007.06.003.
  • Wang, H., Zhang, Q., Zhang, S. 2011. Positively charged nanofiltration membrane formed by interfacial polymerization of 3,3’5,5’-biphenyl tetraacyl chloride and piperazine on a poly(acrylonitrile) (PAN) support. Journal of Membrane Science, 378, 243– 249.
  • Veríssimo, S., Peinemann, K. V., Bordado, J., 2005. Thin-film composite hollow fiber membranes: An optimized manufacturing method, Journal of Membrane Science,264, 48–55. doi:10.1016/j.memsci.2005.04.020.
  • Korikov, A.P., Kosaraju, P.B., Sirkar, K.K., 2006. Interfacially polymerized hydrophilic microporous thin film composite membranes on porous polypropylene hollow fibres and flat films. Journal of Membrane Science, 279: 588–600.
  • Yang, F., Zhang, S., Yang, D., Jian, X., 2007. Preparation and characterization of polypiperazine amide/PPESK hollow fiber composite nanofiltration membrane. Journal of Membrane Science, 301: 85–92.
  • Chou, S., Shi, L., Wang, R., Tang, C.Y., Qiu, C., Fane, A.G., 2010. Characteristics and potentialapplications of a novel forward osmosis hollow fiber membrane. Desalinatio, 261: 365–372.
  • Veríssimo, S., Peinemann, K.V., Bordado, J., 2005. New composite hollow fiber membrane for nanofiltration, Desalination. 184, 1–11. doi:10.1016/j.desal.2005.03.069.
  • Tadros, S.E., and Trehu, Y.M., 1990. Coating process for composite reverse osmosis membranes. U.S. Patent No 4980061.
  • Kumano, A., Ogura, H., Hayashi, T., 1998. Composite hollow fiber membrane and process for its production. U.S. Patent No 5783079.
  • Sengur-Tasdemir, R., Urper, G.M., Turken, T., Genceli, E.A., Tarabara, V.V. and Koyuncu, I., 2016. Combined effects of hollow fiber fabrication conditions and casting mixture composition on the properties of polysulfone ultrafiltration membranes. Separation Science and Technology, 51:12, 2070-2079.
  • Genceli, E.A., Sengur-Tasdemir, R., Urper, G.M., Gumrukcu, S., Guler-Gokce, Z., Dagli, U., Turken, T., Sarac, A.S. and Koyuncu, I., 2017. Effects of carboxylated multi-walled carbon nanotubes having different outer diameters on hollow fiber ultrafiltration membrane fabrication and characterization by electrochemical impedance spectroscopy. Polymer Bulletin, DOI 10.1007/s00289-017-2155-3.
  • Şengür, R. 2013. Fabrication and characterization of polyethersulfone (PES)/multiwalled carbon nanotube hollow fiber ultrafiltration membranes. İstanbul Teknik Üniversitesi Yüksek Lisans tezi, İstanbul.
  • Mollahosseini, A., and Rahimpour, A., 2014. Interfacially polymerized thin film nanofiltration membranes on TiO2 coated polysulfone substrate. Journal of Industrial and Engineering Chemistry, 20, 1261–1268 doi:10.1016/j.jiec.2013.07.002.
  • Cheng, Z.L., Li, X., Liu, Y. Da, Chung, T.S., 2016. Robust outer-selective thin-film composite polyethersulfone hollow fiber membranes with low reverse salt flux for renewable salinity-gradient energy generation, Journal of Membrane Science,506, 119–129. doi:10.1016/j.memsci.2015.12.060.
  • Ang, M.B.M.Y., Ji, Y.L., Huang, S.H., Tsai, H.A., Hung, W.S., Hu, C.C., Lee, K.R., Lai, J.Y., 2017. Incorporation of carboxylic monoamines into thin-film composite polyamide membranes to enhance nanofiltration performance, Journal of Membrane Science, 539, 52–64. doi:10.1016/j.memsci.2017.05.062.
  • Safarpour, M., Vatanpour, V., Khataee, A., Esmaeili, M., 2015. Development of a novel high flux and fouling-resistant thin film composite nanofiltration membrane by embedding reduced graphene oxide/TiO2. Separation and Purification Technology. 154, 96–107. doi:10.1016/j.seppur.2015.09.039.
  • Urper-Bayram, G.M., Sayinli, B., Bossa, N., Ngaboyamahina, E. , Sengur-Tasdemir, R., Ates-Genceli, E., Wiesner, M., Koyuncu, I., 2019. Thin film nanocomposite nanofiltration hollow fiber membrane fabrication and characterization by electrochemical impedance spectroscopy, Polymer Bulletin, doi:10.1007/s00289-019-02905-w.
  • Turken, T., Sengur-Tasdemir, R., Sayinli, B., Urper-Bayram, G.M., Ates-Genceli, E., Tarabara, V. V.,. Koyuncu, I., 2019. Reinforced thin-film composite nanofiltration membranes: Fabrication, characterization, and performance testing, Journal of Applied Polymer Science, 136 , 1–9. doi:10.1002/app.48001.
  • El-Aassar, A.H.M., 2012. Polyamide thin film composite membranes using interfacial polymerization: synthesis, characterization and reverse osmosis performance for water desalination, Australian Journal of Basic and Applied Sciences, 6, 382–391.
  • Mohammad, A.W., Teow, Y.H., Ang, W.L., Chung, Y.T., Oatley-Radcliffe, D.L., Hilal, N., 2015. Nanofiltration membranes review: Recent advances and future prospects, Desalination, 356, 226–254. doi:10.1016/j.desal.2014.10.043.
  • Ingole, P.G., Choi, W., Kim, K.-H. , Jo, H.-D., Choi, W.-K., Park, J.-S., Lee, H.-K., 2014. Preparation, characterization and performance evaluations of thin film composite hollow fiber membrane for energy generation, Desalination, 345,136–145.
  • Fang, W., Shi, L. Wang, R., 2014. Mixed polyamide-based composite nanofiltration hollow fiber membranes with improved low-pressure water softening capability Journal of Membrane Science, 468, 52–61.

Fabrication of Hollow Fiber Nanofiltration Membrane by Interfacial Polymerization Method and Performance Evaluation

Year 2021, Volume: 9 Issue: 1, 92 - 102, 29.01.2021
https://doi.org/10.21541/apjes.777177

Abstract

The outer surfaces of the hollow fiber (HF) ultrafiltration (UF) membranes were coated by the interface polymerization method and nanofiltration (NF) membranes were produced. For the determination of different monomers and contact time effects on the membrane performance, two different monomers, (m-phenylene diamine (MPD) and piperazine (PIP)) and different contact time (2 min, 1 min and 30 sec) to the acyl chloride monomer (trimezoyl chloride (TMC)) were applied in the fabrication of membrane. The characterization and performance evaluation of the produced membranes were investigated with SEM images, pure water permeability, contact angle, surface roughness, salt retention (MgSO4 and NaCl) and flux data. SEM images of the membranes showed that a thin film layer formed in all production conditions. It was determined that MPD monomer is more effective than PIP monomer on surface roughness. The best permeability value showed variation depending on the applied contact time for TMC. Produced membranes by using different amine monomers were operated under four different pressures (3, 6, 9, 12 bar). Higher salt fluxes and removal efficiencies for MgSO4 were obtained in membranes produced with PIP. 50% and above of MgSO4 removal was observed in membranes with 2% PIP, 0.13% TMC (2 min and 1 min), and 2% MPD, 0.13% TMC (2 min and 30 sec). The highest NaCl removal efficiency (39.6%) was obtained in membranes produced with 2% MPD, 0.13% TMC (30 sec). According to the findings, it was concluded that the NF membrane to be applied differs depending on the type of salt to be removed.

Project Number

113 Y 359

References

  • Raman, L. P., Cheryan, M. and Rajagopalan, N., 1994. Consider nanofiltration for membrane separations, Chemical Engineering Progress, 90: 68-74.
  • Dalwani, M., 2011. Thin film composite nanofiltration membranes for extreme conditions. Doktora Tezi, University of Twente, Hollanda, 169 .
  • Morgan, P.W., 1965. Condensation polymers: By interfacial and solution methods. In Polymer Reviews. Vol. 10. Wiley, New York, 19–64.
  • Cadotte, J.E., Cobian, K.E., Forester, R.H., Petersen, R.J.,1976. Continued evaluation of in-situ-formed condensation polymers for reverse osmosis membranes, NTIS Report No. PB-253193, 90.
  • Cadotte, J.E., Steuck, M.J., Petersen, R.J., 1978. Research on in-situ-formed condensation polymers for reverse osmosis membranes, NTIS Report No. PB- 288387.
  • Lau W.J. and Ismail A.F, 2011. Progress in interfacial polymerization technique on composite membrane preparation. 2nd International Conference on Environmental Engineering and Applications IPCBEE vol.17, Singapore.
  • Lee, K.P., Arnot, T.C., Mattia, D., 2011. A review of reverse osmosis membrane materials for desalination—Development to date and future potential. Journal of Membrane Science, 370: 1-2, 1-22.
  • Li, D., and Wang, H., 2010. Recent development in reverse osmosis desalination membranes. Journal of Materials Chemistry, 20, 4551–4566. DOI: 10.1039/b924553g.
  • Lau, W.J., Ismail, A.F., Misdan, N., Kassim, M.A., 2012. A recent progress in thin film composite membrane: A review. Desalination 287, 190–199. doi:10.1016/j.desal.2011.04.004.
  • Mohammad, A.W., Hilal, N., and Seman, M.N.A., 2005. Interfacially polymerized nanofiltration membranes: atomic force microscopy and salts rejection studies. Journal of Applied Polymer Science, Vol. 96, 605–612. DOI 10.1002/app.21157.
  • Jeong, B.-H., Hoek, E.M.V., Yan, Y., Subramani, A., Huang, X., Hurwitz, G., Ghosh, A.K., Jawor,. A., 2007. Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. Journal of Membrane Science, 294: 1–7.
  • Lau, W.J., and Ismail, A.F., 2009. Polymeric nanofiltration membrane for textile dyeing wastewater treatment: preparation, performance evaluation, transport modelling, and fouling controls — a review. Desalination, 245: 321–348.
  • Kong, C., Kanezashi, M., Yamomoto, T., Shintani, T., Tsuru, T., 2010. Controlled synthesis of high performance polyamide membrane with thin dense layer for water desalination. Journal of Membrane Science 362: 76–80.
  • Tomaschke, J. E. 2000. Interfacial Composite Membranes’’, Hydranautics Oceanside, CA, USA, Academic Press.
  • Xie, W., Geoffrey, M. G., Freeman, B. D., Lee, H. S., Byun, G., McGrath, J. E. 2012. Polyamide interfacial composite membranes prepared from m-phenylene diamine, trimesoyl chloride and a new disulfonated diamine. Journal of Membrane Science, 403– 404, 152–161.
  • Minhas, F.,T. Shahabuddin Memon, M.I. Bhanger, Nadeem, I., Mujahid, M. 2013. ’Solvent resistant thin film composite nanofiltration membrane:Characterization and permeation study, Applied Surface Science, 282, 887–897.
  • Lee, H.S., Im, S.J., Kim, J.H., Kim, H.J., Kim, J.P., Min, B.R., 2008. Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles, Desalination. 219, 48–56. doi:10.1016/j.desal.2007.06.003.
  • Wang, H., Zhang, Q., Zhang, S. 2011. Positively charged nanofiltration membrane formed by interfacial polymerization of 3,3’5,5’-biphenyl tetraacyl chloride and piperazine on a poly(acrylonitrile) (PAN) support. Journal of Membrane Science, 378, 243– 249.
  • Veríssimo, S., Peinemann, K. V., Bordado, J., 2005. Thin-film composite hollow fiber membranes: An optimized manufacturing method, Journal of Membrane Science,264, 48–55. doi:10.1016/j.memsci.2005.04.020.
  • Korikov, A.P., Kosaraju, P.B., Sirkar, K.K., 2006. Interfacially polymerized hydrophilic microporous thin film composite membranes on porous polypropylene hollow fibres and flat films. Journal of Membrane Science, 279: 588–600.
  • Yang, F., Zhang, S., Yang, D., Jian, X., 2007. Preparation and characterization of polypiperazine amide/PPESK hollow fiber composite nanofiltration membrane. Journal of Membrane Science, 301: 85–92.
  • Chou, S., Shi, L., Wang, R., Tang, C.Y., Qiu, C., Fane, A.G., 2010. Characteristics and potentialapplications of a novel forward osmosis hollow fiber membrane. Desalinatio, 261: 365–372.
  • Veríssimo, S., Peinemann, K.V., Bordado, J., 2005. New composite hollow fiber membrane for nanofiltration, Desalination. 184, 1–11. doi:10.1016/j.desal.2005.03.069.
  • Tadros, S.E., and Trehu, Y.M., 1990. Coating process for composite reverse osmosis membranes. U.S. Patent No 4980061.
  • Kumano, A., Ogura, H., Hayashi, T., 1998. Composite hollow fiber membrane and process for its production. U.S. Patent No 5783079.
  • Sengur-Tasdemir, R., Urper, G.M., Turken, T., Genceli, E.A., Tarabara, V.V. and Koyuncu, I., 2016. Combined effects of hollow fiber fabrication conditions and casting mixture composition on the properties of polysulfone ultrafiltration membranes. Separation Science and Technology, 51:12, 2070-2079.
  • Genceli, E.A., Sengur-Tasdemir, R., Urper, G.M., Gumrukcu, S., Guler-Gokce, Z., Dagli, U., Turken, T., Sarac, A.S. and Koyuncu, I., 2017. Effects of carboxylated multi-walled carbon nanotubes having different outer diameters on hollow fiber ultrafiltration membrane fabrication and characterization by electrochemical impedance spectroscopy. Polymer Bulletin, DOI 10.1007/s00289-017-2155-3.
  • Şengür, R. 2013. Fabrication and characterization of polyethersulfone (PES)/multiwalled carbon nanotube hollow fiber ultrafiltration membranes. İstanbul Teknik Üniversitesi Yüksek Lisans tezi, İstanbul.
  • Mollahosseini, A., and Rahimpour, A., 2014. Interfacially polymerized thin film nanofiltration membranes on TiO2 coated polysulfone substrate. Journal of Industrial and Engineering Chemistry, 20, 1261–1268 doi:10.1016/j.jiec.2013.07.002.
  • Cheng, Z.L., Li, X., Liu, Y. Da, Chung, T.S., 2016. Robust outer-selective thin-film composite polyethersulfone hollow fiber membranes with low reverse salt flux for renewable salinity-gradient energy generation, Journal of Membrane Science,506, 119–129. doi:10.1016/j.memsci.2015.12.060.
  • Ang, M.B.M.Y., Ji, Y.L., Huang, S.H., Tsai, H.A., Hung, W.S., Hu, C.C., Lee, K.R., Lai, J.Y., 2017. Incorporation of carboxylic monoamines into thin-film composite polyamide membranes to enhance nanofiltration performance, Journal of Membrane Science, 539, 52–64. doi:10.1016/j.memsci.2017.05.062.
  • Safarpour, M., Vatanpour, V., Khataee, A., Esmaeili, M., 2015. Development of a novel high flux and fouling-resistant thin film composite nanofiltration membrane by embedding reduced graphene oxide/TiO2. Separation and Purification Technology. 154, 96–107. doi:10.1016/j.seppur.2015.09.039.
  • Urper-Bayram, G.M., Sayinli, B., Bossa, N., Ngaboyamahina, E. , Sengur-Tasdemir, R., Ates-Genceli, E., Wiesner, M., Koyuncu, I., 2019. Thin film nanocomposite nanofiltration hollow fiber membrane fabrication and characterization by electrochemical impedance spectroscopy, Polymer Bulletin, doi:10.1007/s00289-019-02905-w.
  • Turken, T., Sengur-Tasdemir, R., Sayinli, B., Urper-Bayram, G.M., Ates-Genceli, E., Tarabara, V. V.,. Koyuncu, I., 2019. Reinforced thin-film composite nanofiltration membranes: Fabrication, characterization, and performance testing, Journal of Applied Polymer Science, 136 , 1–9. doi:10.1002/app.48001.
  • El-Aassar, A.H.M., 2012. Polyamide thin film composite membranes using interfacial polymerization: synthesis, characterization and reverse osmosis performance for water desalination, Australian Journal of Basic and Applied Sciences, 6, 382–391.
  • Mohammad, A.W., Teow, Y.H., Ang, W.L., Chung, Y.T., Oatley-Radcliffe, D.L., Hilal, N., 2015. Nanofiltration membranes review: Recent advances and future prospects, Desalination, 356, 226–254. doi:10.1016/j.desal.2014.10.043.
  • Ingole, P.G., Choi, W., Kim, K.-H. , Jo, H.-D., Choi, W.-K., Park, J.-S., Lee, H.-K., 2014. Preparation, characterization and performance evaluations of thin film composite hollow fiber membrane for energy generation, Desalination, 345,136–145.
  • Fang, W., Shi, L. Wang, R., 2014. Mixed polyamide-based composite nanofiltration hollow fiber membranes with improved low-pressure water softening capability Journal of Membrane Science, 468, 52–61.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Esra Genceli 0000-0003-3190-2202

Gülsüm Ürper 0000-0003-0313-6467

Reyhan Şengür 0000-0003-4103-9430

Türker Türken 0000-0003-0550-5975

İsmail Koyuncu 0000-0001-8354-1889

Project Number 113 Y 359
Publication Date January 29, 2021
Submission Date August 5, 2020
Published in Issue Year 2021 Volume: 9 Issue: 1

Cite

IEEE E. Genceli, G. Ürper, R. Şengür, T. Türken, and İ. Koyuncu, “Arayüzey Polimerizasyonu Metodu ile İnce Boşluklu Nanofiltrasyon (NF) Membran Üretimi ve Performans Değerlendirmesi”, APJES, vol. 9, no. 1, pp. 92–102, 2021, doi: 10.21541/apjes.777177.