With the addition of a particle electrode to the two-dimensional electrooxidation process using Pt coated titanium electrodes, the decolorization of reactive blue 221, one of the reactive dyes that are frequently used in the textile industry, has been studied. Experimental matrix was determined according to Box Behnken Design and evaluated with ANOVA results and surface plots. The selected independent variables were selected as color concentration, current density and time. Accordingly, it has been determined that the optimum condition 20 mA/cm2 of current density, 20.5min of reaction time for the sample containing 60.6 mg/L color concentration. In addition, a separate study was carried out to determine the accuracy of the model with the experimental results, and it was compared with the adsorption and 2D electrooxidation process. Accordingly, it was obtained that the activated carbon in the 3D process, other than adsorption, acts as a carbocatalyst. The results of the study were evaluated according to Langmuir and Freundlich isotherms, pseudo-first-order and pseudo-second-order kinetic models, and it was found to be compatible with Langmuir and pseudo-second-order kinetic model. Maximum adsorption capacity was calculated as 5.93 mg/g from Langmuir isotherm.
Particle Electrode Three-dimensional electrode Electrochemical processes Electrooxidation Decolorization
-
-
-
With the addition of a particle electrode to the two-dimensional electrooxidation process using Pt coated titanium electrodes, the decolorization of reactive blue 221, one of the reactive dyes that are frequently used in the textile industry, has been studied. Experimental matrix was determined according to Box Behnken Design and evaluated with ANOVA results and surface plots. The selected independent variables were selected as color concentration, current density and time. Accordingly, it has been determined that the optimum condition 20 mA/cm2 of current density, 20.5min of reaction time for the sample containing 60.6 mg/L color concentration. In addition, a separate study was carried out to determine the accuracy of the model with the experimental results, and it was compared with the adsorption and 2D electrooxidation process. Accordingly, it was obtained that the activated carbon in the 3D process, other than adsorption, acts as a carbocatalyst. The results of the study were evaluated according to Langmuir and Freundlich isotherms, pseudo-first-order and pseudo-second-order kinetic models, and it was found to be compatible with Langmuir and pseudo-second-order kinetic model. Maximum adsorption capacity was calculated as 5.93 mg/g from Langmuir isotherm.
Particle electrode three-dimensional electrode electrochemical processes Electrooxidation decolorization
-
Primary Language | Turkish |
---|---|
Subjects | Engineering |
Journal Section | Articles |
Authors | |
Project Number | - |
Publication Date | January 29, 2021 |
Submission Date | August 20, 2020 |
Published in Issue | Year 2021 Volume: 9 Issue: 1 |