Microstructural Evaluation and Influence of Welding Parameters on Electrode Plunge Depth in Resistance Spot Welded Dissimilar DP800HF/1200M Steel Joints
Year 2021,
Volume: 9 Issue: 2, 284 - 291, 28.05.2021
Melih Kekik
,
Fatih Özen
,
Erdinç İlhan
,
Salim Aslanlar
Abstract
Advanced high strength steels (AHSS) are newly developed steels that has versatile mechanical properties. These steels enables to design low weight cars with high safety standards. Also, weight reduction in vehicles plays a significant role for saving fossil fuels which is limited and causes carbon emissions. Dual phase (DP) and Martensitic steels are prominent in AHSS family because they are inexpensive and has vast application areas. DP steels are used for general purpose applications and Martensitic steels are used for reinforcement parts in vehicles. In this study, high formable grade Dual phase steel with 800 MPa tensile strength and Martensitic steel with 1200 MPa tensile strength were welded with resistance spot welding technique which is the most widely practiced joining method in the industry. Electrode indentation depths, its effect on tensile-shear loads and microstructural characterizations were investigated. According to the results, the lowest tensile shear loads were acquired between both between 0-0.2 mm and between 0.85-1mm electrode plunge depths. Medial electrode plunge depths showed high tensile shear loads. Some welding defects were encountered including secondary phase formations, shrinkage voids, intergranular shrinkage gaps and vertical cracks in the weld nugget. It is find out that the weld defects were formed due to cooling gradient while solidifying, electrode force, and improper weld parameters.
References
- V. Behm et al., “Investigations on laser beam welding dissimilar material combinations of austenitic high manganese (FeMn) and ferrite steels” Phys. Procedia, vol. 56, no. C, pp. 610–619, 2014, doi: 10.1016/j.phpro.2014.08.049.
- S. Populoh, M. H. Aguirre, O. C. Brunko, K. Galazka, Y. Lu, and A. Weidenkaff, “High figure of merit in (Ti,Zr,Hf)NiSn half-Heusler alloys,” Scr. Mater., vol. 66, no. 12, pp. 1073–1076, 2012, doi: 10.1016/j.scriptamat.2012.03.002.
- U. Özsaraç, V. Onar, F. Özen, Y. S. Aslanlar, and N. Akkaş, “Effect of welding time on tensile-shear load in resistance spot welded TRIP 800 and microalloyed steels,” Indian J. Chem. Technol., vol. 26, no. 4, pp. 355–357, 2019.
- N. Baluch, “Advanced High Strength Steel in Auto Industry : an Overview,” Eng. Technol. Appl. Sci. Res., vol. 4, no. 4, p. 686, 2014.
- T. Depover, F. Vercruysse, A. Elmahdy, P. Verleysen, and K. Verbeken, “International Journal of Impact Engineering Evaluation of the hydrogen embrittlement susceptibility in DP steel under static and dynamic tensile conditions,” Int. J. Impact Eng., vol. 123, no. March 2018, pp. 118–125, 2019, doi: 10.1016/j.ijimpeng.2018.10.002.
- J. Liao, J. A. Sousa, A. B. Lopes, X. Xue, F. Barlat, and A. B. Pereira, “Mechanical, microstructural behaviour and modelling of dual phase steels under complex deformation paths,” Int. J. Plast., vol. 93, pp. 269–290, 2017, doi: 10.1016/j.ijplas.2016.03.010.
- C. Landron, E. Maire, J. Adrien, H. Suhonen, P. Cloetens, and O. Bouaziz, “Non-destructive 3-D reconstruction of the martensitic phase in a dual-phase steel using synchrotron holotomography,” Scr. Mater., vol. 66, no. 12, pp. 1077–1080, 2012, doi: 10.1016/j.scriptamat.2012.03.003.
- S. Pandre, V. Mhatre, N. Kotkunde, and S. Kumar, “Materials Today : Proceedings Strain hardening behavior of DP 590 steel using dislocation density based Kock-Mecking model,” Mater. Today Proc., no. xxxx, 2020, doi: 10.1016/j.matpr.2020.02.810.
- V. H. L. Cortéz, F. A. R. Valdés, and L. T. Treviño, “Weldability of martensitic steel by resistance spot welding a neural network optimization in the automotive industry,” Mater. Manuf. Process., vol. 24, no. 12, pp. 1412–1417, 2009, doi: 10.1080/10426910903343916.
- J. Venezuela, Q. Zhou, Q. Liu, M. Zhang, and A. Atrens, “Influence of hydrogen on the mechanical and fracture properties of some martensitic advanced high strength steels in simulated service conditions,” Corros. Sci., vol. 111, pp. 602–624, 2016, doi: 10.1016/j.corsci.2016.05.040.
- J. Venezuela et al., “Further study of the hydrogen embrittlement of martensitic advanced high-strength steel in simulated auto service conditions,” Corros. Sci., vol. 135, no. January 2017, pp. 120–135, 2018, doi: 10.1016/j.corsci.2018.02.037.
- S. Eva, C. Bohumil, and H. Petr, “Dynamic Fracture Behavior of the Martensitic High Strength Steel after Spot Welding,” Mater. Today Proc., vol. 3, no. 4, pp. 1156–1160, 2016, doi: 10.1016/j.matpr.2016.03.014.
- M. Pouranvari and S. M. Mousavizadeh, “Failure mode of M130 Martensitic Resistance Spot Welds,” Mater. Tehnol., vol. 47, no. 6, pp. 771–776, 2013.
- M. Huang, Q. Zhang, L. Qi, L. Deng, and Y. Li, “Effect of external magnetic field on resistance spot welding of aluminum alloy AA6061-T6,” J. Manuf. Process., vol. 50, no. January, pp. 456–466, 2020, doi: 10.1016/j.jmapro.2020.01.005.
- K. Zhou and P. Yao, “Overview of recent advances of process analysis and quality control in resistance spot welding,” Mech. Syst. Signal Process., vol. 124, pp. 170–198, 2019, doi: 10.1016/j.ymssp.2019.01.041.
- F. Hayat, “Effect of aging treatment on the microstructure and mechanical properties of the similar and dissimilar 6061-T6/7075-T651 RSW joints,” Mater. Sci. Eng. A, vol. 556, pp. 834–843, 2012, doi: 10.1016/j.msea.2012.07.077.
- X. Liu, S. Lan, and J. Ni, “Experimental study of Electro-Plastic Effect on Advanced High Strength Steels,” Mater. Sci. Eng. A, vol. 582, pp. 211–218, 2013, doi: 10.1016/j.msea.2013.03.092.
- F. Badkoobeh, A. Nouri, H. Hassannejad, and H. Mostaan, “Microstructure and mechanical properties of resistance spot welded dual-phase steels with various silicon contents,” Mater. Sci. Eng. A, vol. 790, no. June, p. 139703, 2020, doi: 10.1016/j.msea.2020.139703.
- D. Bračun, I. Polajnar, and J. Diaci, “Indentation shape parameters as Indicators of spot weld quality,” Int. J. Mater. Prod. Technol., vol. 27, no. 3–4, pp. 247–257, 2006, doi: 10.1504/IJMPT.2006.011275.
- T. Khuenkaew and K. Kanlayasiri, “Selection of electrode tips for the resistance spot welding of dissimilar stainless steels,” MATEC Web Conf., vol. 192, pp. 1–4, 2018, doi: 10.1051/matecconf/201819201007.
- J. Wilzer, F. Lüdtke, S. Weber, and W. Theisen, “The influence of heat treatment and resulting microstructures on the thermophysical properties of martensitic steels,” J. Mater. Sci., vol. 48, no. 24, pp. 8483–8492, 2013, doi: 10.1007/s10853-013-7665-2.
- M. Pouranvari, S. Sobhani, and F. Goodarzi, “Resistance spot welding of MS1200 martensitic advanced high strength steel: Microstructure-properties relationship,” J. Manuf. Process., vol. 31, pp. 867–874, 2018, doi: 10.1016/j.jmapro.2018.01.009.
- H. Di, Q. Sun, X. Wang, and J. Li, “Microstructure and properties in dissimilar/similar weld joints between DP780 and DP980 steels processed by fiber laser welding,” J. Mater. Sci. Technol., vol. 33, no. 12, pp. 1561–1571, 2017, doi: 10.1016/j.jmst.2017.09.001.
- K. Bandyopadhyay, S. K. Panda, P. Saha, V. H. Baltazar-Hernandez, and Y. N. Zhou, “Microstructures and failure analyses of DP980 laser welded blanks in formability context,” Mater. Sci. Eng. A, vol. 652, pp. 250–263, 2016, doi: 10.1016/j.msea.2015.11.091.
- E. Schmidová, M. R. Sunil Kumar, M. Schmid, and F. Bozkurt, “Role of Nb in the failure of dual-phase steel in heterogeneous welds,” Eng. Fail. Anal., vol. 116, no. July, 2020, doi: 10.1016/j.engfailanal.2020.104708.
- B. Wang et al., “Investigation on fatigue fracture behaviors of spot welded Q&P980 steel,” Int. J. Fatigue, vol. 66, pp. 20–28, 2014, doi: 10.1016/j.ijfatigue.2014.03.004.
Year 2021,
Volume: 9 Issue: 2, 284 - 291, 28.05.2021
Melih Kekik
,
Fatih Özen
,
Erdinç İlhan
,
Salim Aslanlar
References
- V. Behm et al., “Investigations on laser beam welding dissimilar material combinations of austenitic high manganese (FeMn) and ferrite steels” Phys. Procedia, vol. 56, no. C, pp. 610–619, 2014, doi: 10.1016/j.phpro.2014.08.049.
- S. Populoh, M. H. Aguirre, O. C. Brunko, K. Galazka, Y. Lu, and A. Weidenkaff, “High figure of merit in (Ti,Zr,Hf)NiSn half-Heusler alloys,” Scr. Mater., vol. 66, no. 12, pp. 1073–1076, 2012, doi: 10.1016/j.scriptamat.2012.03.002.
- U. Özsaraç, V. Onar, F. Özen, Y. S. Aslanlar, and N. Akkaş, “Effect of welding time on tensile-shear load in resistance spot welded TRIP 800 and microalloyed steels,” Indian J. Chem. Technol., vol. 26, no. 4, pp. 355–357, 2019.
- N. Baluch, “Advanced High Strength Steel in Auto Industry : an Overview,” Eng. Technol. Appl. Sci. Res., vol. 4, no. 4, p. 686, 2014.
- T. Depover, F. Vercruysse, A. Elmahdy, P. Verleysen, and K. Verbeken, “International Journal of Impact Engineering Evaluation of the hydrogen embrittlement susceptibility in DP steel under static and dynamic tensile conditions,” Int. J. Impact Eng., vol. 123, no. March 2018, pp. 118–125, 2019, doi: 10.1016/j.ijimpeng.2018.10.002.
- J. Liao, J. A. Sousa, A. B. Lopes, X. Xue, F. Barlat, and A. B. Pereira, “Mechanical, microstructural behaviour and modelling of dual phase steels under complex deformation paths,” Int. J. Plast., vol. 93, pp. 269–290, 2017, doi: 10.1016/j.ijplas.2016.03.010.
- C. Landron, E. Maire, J. Adrien, H. Suhonen, P. Cloetens, and O. Bouaziz, “Non-destructive 3-D reconstruction of the martensitic phase in a dual-phase steel using synchrotron holotomography,” Scr. Mater., vol. 66, no. 12, pp. 1077–1080, 2012, doi: 10.1016/j.scriptamat.2012.03.003.
- S. Pandre, V. Mhatre, N. Kotkunde, and S. Kumar, “Materials Today : Proceedings Strain hardening behavior of DP 590 steel using dislocation density based Kock-Mecking model,” Mater. Today Proc., no. xxxx, 2020, doi: 10.1016/j.matpr.2020.02.810.
- V. H. L. Cortéz, F. A. R. Valdés, and L. T. Treviño, “Weldability of martensitic steel by resistance spot welding a neural network optimization in the automotive industry,” Mater. Manuf. Process., vol. 24, no. 12, pp. 1412–1417, 2009, doi: 10.1080/10426910903343916.
- J. Venezuela, Q. Zhou, Q. Liu, M. Zhang, and A. Atrens, “Influence of hydrogen on the mechanical and fracture properties of some martensitic advanced high strength steels in simulated service conditions,” Corros. Sci., vol. 111, pp. 602–624, 2016, doi: 10.1016/j.corsci.2016.05.040.
- J. Venezuela et al., “Further study of the hydrogen embrittlement of martensitic advanced high-strength steel in simulated auto service conditions,” Corros. Sci., vol. 135, no. January 2017, pp. 120–135, 2018, doi: 10.1016/j.corsci.2018.02.037.
- S. Eva, C. Bohumil, and H. Petr, “Dynamic Fracture Behavior of the Martensitic High Strength Steel after Spot Welding,” Mater. Today Proc., vol. 3, no. 4, pp. 1156–1160, 2016, doi: 10.1016/j.matpr.2016.03.014.
- M. Pouranvari and S. M. Mousavizadeh, “Failure mode of M130 Martensitic Resistance Spot Welds,” Mater. Tehnol., vol. 47, no. 6, pp. 771–776, 2013.
- M. Huang, Q. Zhang, L. Qi, L. Deng, and Y. Li, “Effect of external magnetic field on resistance spot welding of aluminum alloy AA6061-T6,” J. Manuf. Process., vol. 50, no. January, pp. 456–466, 2020, doi: 10.1016/j.jmapro.2020.01.005.
- K. Zhou and P. Yao, “Overview of recent advances of process analysis and quality control in resistance spot welding,” Mech. Syst. Signal Process., vol. 124, pp. 170–198, 2019, doi: 10.1016/j.ymssp.2019.01.041.
- F. Hayat, “Effect of aging treatment on the microstructure and mechanical properties of the similar and dissimilar 6061-T6/7075-T651 RSW joints,” Mater. Sci. Eng. A, vol. 556, pp. 834–843, 2012, doi: 10.1016/j.msea.2012.07.077.
- X. Liu, S. Lan, and J. Ni, “Experimental study of Electro-Plastic Effect on Advanced High Strength Steels,” Mater. Sci. Eng. A, vol. 582, pp. 211–218, 2013, doi: 10.1016/j.msea.2013.03.092.
- F. Badkoobeh, A. Nouri, H. Hassannejad, and H. Mostaan, “Microstructure and mechanical properties of resistance spot welded dual-phase steels with various silicon contents,” Mater. Sci. Eng. A, vol. 790, no. June, p. 139703, 2020, doi: 10.1016/j.msea.2020.139703.
- D. Bračun, I. Polajnar, and J. Diaci, “Indentation shape parameters as Indicators of spot weld quality,” Int. J. Mater. Prod. Technol., vol. 27, no. 3–4, pp. 247–257, 2006, doi: 10.1504/IJMPT.2006.011275.
- T. Khuenkaew and K. Kanlayasiri, “Selection of electrode tips for the resistance spot welding of dissimilar stainless steels,” MATEC Web Conf., vol. 192, pp. 1–4, 2018, doi: 10.1051/matecconf/201819201007.
- J. Wilzer, F. Lüdtke, S. Weber, and W. Theisen, “The influence of heat treatment and resulting microstructures on the thermophysical properties of martensitic steels,” J. Mater. Sci., vol. 48, no. 24, pp. 8483–8492, 2013, doi: 10.1007/s10853-013-7665-2.
- M. Pouranvari, S. Sobhani, and F. Goodarzi, “Resistance spot welding of MS1200 martensitic advanced high strength steel: Microstructure-properties relationship,” J. Manuf. Process., vol. 31, pp. 867–874, 2018, doi: 10.1016/j.jmapro.2018.01.009.
- H. Di, Q. Sun, X. Wang, and J. Li, “Microstructure and properties in dissimilar/similar weld joints between DP780 and DP980 steels processed by fiber laser welding,” J. Mater. Sci. Technol., vol. 33, no. 12, pp. 1561–1571, 2017, doi: 10.1016/j.jmst.2017.09.001.
- K. Bandyopadhyay, S. K. Panda, P. Saha, V. H. Baltazar-Hernandez, and Y. N. Zhou, “Microstructures and failure analyses of DP980 laser welded blanks in formability context,” Mater. Sci. Eng. A, vol. 652, pp. 250–263, 2016, doi: 10.1016/j.msea.2015.11.091.
- E. Schmidová, M. R. Sunil Kumar, M. Schmid, and F. Bozkurt, “Role of Nb in the failure of dual-phase steel in heterogeneous welds,” Eng. Fail. Anal., vol. 116, no. July, 2020, doi: 10.1016/j.engfailanal.2020.104708.
- B. Wang et al., “Investigation on fatigue fracture behaviors of spot welded Q&P980 steel,” Int. J. Fatigue, vol. 66, pp. 20–28, 2014, doi: 10.1016/j.ijfatigue.2014.03.004.