Research Article
PDF Mendeley EndNote BibTex Cite

Year 2022, Volume 10, Issue 1, 19 - 29, 01.01.2022
https://doi.org/10.21541/apjess.1060748

Abstract

References

  • S. Y. Wu, S. M. Zhou, and L. Xiao, “The determination and matching analysis of pinch point temperature difference in evaporator and condenser of organic rankine cycle for mixed working fluid,” Int. J. Green Energy, vol. 13, no. 5, pp. 470–480, 2016, doi: 10.1080/15435075.2014.966371.
  • H. Yu, X. Feng, and Y. Wang, “A new pinch based method for simultaneous selection of working fluid and operating conditions in an ORC (Organic Rankine Cycle) recovering waste heat,” Energy, vol. 90, pp. 36–46, 2015, doi: 10.1016/j.energy.2015.02.059.
  • X. Liu, Y. Zhang, and J. Shen, “System performance optimization of ORC-based geo-plant with R245fa under different geothermal water inlet temperatures,” Geothermics, vol. 66, pp. 134–142, 2017, doi: 10.1016/j.geothermics.2016.12.004.
  • Ö. Kaşka, O. Bor, and N. Tokgöz, “Energy and exergy analysis of an organic rankine-brayton combined cycle,” J. Fac. Eng. Archit. Gazi Univ., vol. 33, no. 4, pp. 1201–1213, 2018, doi: 10.17341/gazimmfd.416420.
  • J. Sun, Q. Liu, and Y. Duan, “Effects of evaporator pinch point temperature difference on thermo-economic performance of geothermal organic Rankine cycle systems,” Geothermics, vol. 75, no. February, pp. 249–258, 2018, doi: 10.1016/j.geothermics.2018.06.001.
  • A. H. Bademlioglu, R. Yamankaradeniz, and O. Kaynakli, “Exergy analysis of the organic rankine cycle based on the pinch point temperature difference,” J. Therm. Eng., vol. 5, no. 3, pp. 157–165, 2019, doi: 10.18186/THERMAL.540149.
  • J. Wang, M. Diao, and K. Yue, “Optimization on pinch point temperature difference of ORC system based on AHP-Entropy method,” Energy, vol. 141, pp. 97–107, 2017, doi: 10.1016/j.energy.2017.09.052.
  • J. Sarkar, “Generalized pinch point design method of subcritical-supercritical organic Rankine cycle for maximum heat recovery,” Energy, vol. 143, pp. 141–150, 2018, doi: 10.1016/j.energy.2017.10.057.
  • M. Jankowski, A. Borsukiewicz, K. Szopik-Depczyńska, and G. Ioppolo, “Determination of an optimal pinch point temperature difference interval in ORC power plant using multi-objective approach,” J. Clean. Prod., vol. 217, pp. 798–807, 2019, doi: 10.1016/j.jclepro.2019.01.250.
  • M. Imran, B. S. Park, H. J. Kim, D. H. Lee, M. Usman, and M. Heo, “Thermo-economic optimization of Regenerative Organic Rankine Cycle for waste heat recovery applications,” Energy Convers. Manag., vol. 87, pp. 107–118, 2014, doi: 10.1016/j.enconman.2014.06.091.
  • S. Bian, T. Wu, and J. F. Yang, “Parametric optimization of organic rankine cycle by genetic algorithm,” Appl. Mech. Mater., vol. 672–674, pp. 741–745, 2014, doi: 10.4028/www.scientific.net/AMM.672-674.741.
  • R. Long, Y. J. Bao, X. M. Huang, and W. Liu, “Exergy analysis and working fluid selection of organic Rankine cycle for low grade waste heat recovery,” Energy, vol. 73, pp. 475–483, 2014, doi: 10.1016/j.energy.2014.06.040.
  • C. G. Gutiérrez-Arriaga, F. Abdelhady, H. S. Bamufleh, M. Serna-González, M. M. El-Halwagi, and J. M. Ponce-Ortega, “Industrial waste heat recovery and cogeneration involving organic Rankine cycles,” Clean Technol. Environ. Policy, vol. 17, no. 3, pp. 767–779, 2015, doi: 10.1007/s10098-014-0833-5.
  • Z. Han, Y. Yu, and Y. Ye, “Selection of working fluids for solar thermal power generation with organic rankine cycles system based on genetic algorithm,” ICMREE 2013 - Proc. 2013 Int. Conf. Mater. Renew. Energy Environ., vol. 1, pp. 102–106, 2013, doi: 10.1109/ICMREE.2013.6893624.
  • L. Pierobon, M. Rokni, U. Larsen, and F. Haglind, “Thermodynamic analysis of an integrated gasification solid oxide fuel cell plant combined with an organic Rankine cycle,” Renew. Energy, vol. 60, pp. 226–234, 2013, doi: 10.1016/j.renene.2013.05.021.
  • R. Agromayor and L. O. Nord, “Fluid selection and thermodynamic optimization of organic Rankine cycles for waste heat recovery applications,” Energy Procedia, vol. 129, pp. 527–534, 2017, doi: 10.1016/j.egypro.2017.09.180.
  • J. G. Andreasen, U. Larsen, T. Knudsen, L. Pierobon, and F. Haglind, “Selection and optimization of pure and mixed working fluids for low grade heat utilization using organic rankine cycles,” Energy, vol. 73, pp. 204–213, 2014, doi: 10.1016/j.energy.2014.06.012.
  • D. Fiaschi, A. Lifshitz, G. Manfrida, and D. Tempesti, “An innovative ORC power plant layout for heat and power generation from medium- to low-temperature geothermal resources,” Energy Convers. Manag., vol. 88, pp. 883–893, 2014, doi: 10.1016/j.enconman.2014.08.058.
  • Z. Kai, Z. Mi, W. Yabo, S. Zhili, L. Shengchun, and N. Jinghong, “Parametric Optimization of Low Temperature ORC System,” Energy Procedia, vol. 75, pp. 1596–1602, 2015, doi: 10.1016/j.egypro.2015.07.374.
  • G. Li, "Organic Rankine cycle performance evaluation and thermoeconomic assessment with various applications part I: Energy and exergy performance evaluation," Renewable and Sustainable Energy Reviews, 53, pp. 477-499, 2016, doi: 10.1016/j.rser.2015.08.066.
  • J. M. Calm and G. C. Hourahan, “Refrigerant data update,” HPAC Heating, Piping, AirConditioning Eng., vol. 79, no. 1, pp. 50–64, 2007.
  • T. Ho, S. S. Mao, and R. Greif, “Comparison of the Organic Flash Cycle (OFC) to other advanced vapor cycles for intermediate and high temperature waste heat reclamation and solar thermal energy,” Energy, vol. 42, no. 1, pp. 213–223, 2012, doi: 10.1016/j.energy.2012.03.067.

Determination of Optimum Pinch Point Temperature Difference Depending on Heat Source Temperature and Organic Fluid with Genetic Algorithm

Year 2022, Volume 10, Issue 1, 19 - 29, 01.01.2022
https://doi.org/10.21541/apjess.1060748

Abstract

In this study, the effect of evaporator pinch point temperature difference (∆TPP,e) value in Organic Rankine Cycle (ORC) on system performance was determined. Under different applications of ORC, optimum ∆TPP,e value has been determined in ORC systems designed with different heat source temperatures. By changing the ∆TPP,e value, the heat input provided to the system, the mass flow of organic fluid, the evaporation pressure and the enthalpy drop in the turbine are affected. In thermodynamic optimization, the objective function is determined as turbine power maximization. Genetic algorithm optimization technique is used. Within the scope of low and high temperature ORC applications, the optimum ∆TPP,e value of different organic fluids under 10 different heat source temperatures (Low, 90-130 °C; High, 250-290 °C) has been determined. Low temperature organic fluids have been selected from dry, isentropic, wet and new-generation categories. High temperature organic fluids have been selected from the alkane, aromatic hydrocarbon, and siloxane categories. The effect of ∆TPP,e on fluids of different categories was determined for low and high temperature ORCs. It has been determined that taking the ∆TPP,e value constant regardless of the heat source temperature and organic fluid causes performance loss in ORC.

References

  • S. Y. Wu, S. M. Zhou, and L. Xiao, “The determination and matching analysis of pinch point temperature difference in evaporator and condenser of organic rankine cycle for mixed working fluid,” Int. J. Green Energy, vol. 13, no. 5, pp. 470–480, 2016, doi: 10.1080/15435075.2014.966371.
  • H. Yu, X. Feng, and Y. Wang, “A new pinch based method for simultaneous selection of working fluid and operating conditions in an ORC (Organic Rankine Cycle) recovering waste heat,” Energy, vol. 90, pp. 36–46, 2015, doi: 10.1016/j.energy.2015.02.059.
  • X. Liu, Y. Zhang, and J. Shen, “System performance optimization of ORC-based geo-plant with R245fa under different geothermal water inlet temperatures,” Geothermics, vol. 66, pp. 134–142, 2017, doi: 10.1016/j.geothermics.2016.12.004.
  • Ö. Kaşka, O. Bor, and N. Tokgöz, “Energy and exergy analysis of an organic rankine-brayton combined cycle,” J. Fac. Eng. Archit. Gazi Univ., vol. 33, no. 4, pp. 1201–1213, 2018, doi: 10.17341/gazimmfd.416420.
  • J. Sun, Q. Liu, and Y. Duan, “Effects of evaporator pinch point temperature difference on thermo-economic performance of geothermal organic Rankine cycle systems,” Geothermics, vol. 75, no. February, pp. 249–258, 2018, doi: 10.1016/j.geothermics.2018.06.001.
  • A. H. Bademlioglu, R. Yamankaradeniz, and O. Kaynakli, “Exergy analysis of the organic rankine cycle based on the pinch point temperature difference,” J. Therm. Eng., vol. 5, no. 3, pp. 157–165, 2019, doi: 10.18186/THERMAL.540149.
  • J. Wang, M. Diao, and K. Yue, “Optimization on pinch point temperature difference of ORC system based on AHP-Entropy method,” Energy, vol. 141, pp. 97–107, 2017, doi: 10.1016/j.energy.2017.09.052.
  • J. Sarkar, “Generalized pinch point design method of subcritical-supercritical organic Rankine cycle for maximum heat recovery,” Energy, vol. 143, pp. 141–150, 2018, doi: 10.1016/j.energy.2017.10.057.
  • M. Jankowski, A. Borsukiewicz, K. Szopik-Depczyńska, and G. Ioppolo, “Determination of an optimal pinch point temperature difference interval in ORC power plant using multi-objective approach,” J. Clean. Prod., vol. 217, pp. 798–807, 2019, doi: 10.1016/j.jclepro.2019.01.250.
  • M. Imran, B. S. Park, H. J. Kim, D. H. Lee, M. Usman, and M. Heo, “Thermo-economic optimization of Regenerative Organic Rankine Cycle for waste heat recovery applications,” Energy Convers. Manag., vol. 87, pp. 107–118, 2014, doi: 10.1016/j.enconman.2014.06.091.
  • S. Bian, T. Wu, and J. F. Yang, “Parametric optimization of organic rankine cycle by genetic algorithm,” Appl. Mech. Mater., vol. 672–674, pp. 741–745, 2014, doi: 10.4028/www.scientific.net/AMM.672-674.741.
  • R. Long, Y. J. Bao, X. M. Huang, and W. Liu, “Exergy analysis and working fluid selection of organic Rankine cycle for low grade waste heat recovery,” Energy, vol. 73, pp. 475–483, 2014, doi: 10.1016/j.energy.2014.06.040.
  • C. G. Gutiérrez-Arriaga, F. Abdelhady, H. S. Bamufleh, M. Serna-González, M. M. El-Halwagi, and J. M. Ponce-Ortega, “Industrial waste heat recovery and cogeneration involving organic Rankine cycles,” Clean Technol. Environ. Policy, vol. 17, no. 3, pp. 767–779, 2015, doi: 10.1007/s10098-014-0833-5.
  • Z. Han, Y. Yu, and Y. Ye, “Selection of working fluids for solar thermal power generation with organic rankine cycles system based on genetic algorithm,” ICMREE 2013 - Proc. 2013 Int. Conf. Mater. Renew. Energy Environ., vol. 1, pp. 102–106, 2013, doi: 10.1109/ICMREE.2013.6893624.
  • L. Pierobon, M. Rokni, U. Larsen, and F. Haglind, “Thermodynamic analysis of an integrated gasification solid oxide fuel cell plant combined with an organic Rankine cycle,” Renew. Energy, vol. 60, pp. 226–234, 2013, doi: 10.1016/j.renene.2013.05.021.
  • R. Agromayor and L. O. Nord, “Fluid selection and thermodynamic optimization of organic Rankine cycles for waste heat recovery applications,” Energy Procedia, vol. 129, pp. 527–534, 2017, doi: 10.1016/j.egypro.2017.09.180.
  • J. G. Andreasen, U. Larsen, T. Knudsen, L. Pierobon, and F. Haglind, “Selection and optimization of pure and mixed working fluids for low grade heat utilization using organic rankine cycles,” Energy, vol. 73, pp. 204–213, 2014, doi: 10.1016/j.energy.2014.06.012.
  • D. Fiaschi, A. Lifshitz, G. Manfrida, and D. Tempesti, “An innovative ORC power plant layout for heat and power generation from medium- to low-temperature geothermal resources,” Energy Convers. Manag., vol. 88, pp. 883–893, 2014, doi: 10.1016/j.enconman.2014.08.058.
  • Z. Kai, Z. Mi, W. Yabo, S. Zhili, L. Shengchun, and N. Jinghong, “Parametric Optimization of Low Temperature ORC System,” Energy Procedia, vol. 75, pp. 1596–1602, 2015, doi: 10.1016/j.egypro.2015.07.374.
  • G. Li, "Organic Rankine cycle performance evaluation and thermoeconomic assessment with various applications part I: Energy and exergy performance evaluation," Renewable and Sustainable Energy Reviews, 53, pp. 477-499, 2016, doi: 10.1016/j.rser.2015.08.066.
  • J. M. Calm and G. C. Hourahan, “Refrigerant data update,” HPAC Heating, Piping, AirConditioning Eng., vol. 79, no. 1, pp. 50–64, 2007.
  • T. Ho, S. S. Mao, and R. Greif, “Comparison of the Organic Flash Cycle (OFC) to other advanced vapor cycles for intermediate and high temperature waste heat reclamation and solar thermal energy,” Energy, vol. 42, no. 1, pp. 213–223, 2012, doi: 10.1016/j.energy.2012.03.067.

Details

Primary Language English
Subjects Computer Science, Artifical Intelligence
Published Date January 2022
Journal Section Research Articles
Authors

Sadık ATA (Primary Author)
KTO Karatay University, Faculty of Engineering and Natural Sciences, Department of Mechanical Engineering
0000-0002-6791-593X
Türkiye


Ali KAHRAMAN This is me
Necmettin Erbakan University, Faculty of Engineering, Department of Mechanical Engineering,
0000-0002-5598-5017
Türkiye


Remzi ŞAHİN This is me
KTO Karatay University, Faculty of Engineering and Natural Sciences, Department of Mechanical Engineering
0000-0001-7656-7538
Türkiye

Early Pub Date January 20, 2022
Publication Date January 1, 2022
Application Date August 6, 2021
Acceptance Date October 18, 2021
Published in Issue Year 2022, Volume 10, Issue 1

Cite

IEEE S. Ata , A. Kahraman and R. Şahin , "Determination of Optimum Pinch Point Temperature Difference Depending on Heat Source Temperature and Organic Fluid with Genetic Algorithm", Academic Platform Journal of Engineering and Smart Systems, vol. 10, no. 1, pp. 19-29, Jan. 2022, doi:10.21541/apjess.1060748

Academic Platform Journal of Engineering and Smart Systems