With the increase in the need for electrical energy, production amount planning is of great importance in order not to experience restrictions in terms of use, to meet the required electricity production, and to evaluate the excess production efficiently. In this study, a generation forecasting model was created with the fuzzy logic method to determine the electricity generation strategy. The created model is aimed to determine the electrical energy that needs to be produced daily by using the previous day's production amount, temperature, and season data. Three separate sets of data were used to test the fuzzy logic model built using information from the General Directorate of Meteorology (GDM) and Energy Markets Operations Inc. (EMOI). Fuzzy Logic was used to predict the data and the accuracy rates were found to be high. An improvement was observed when the accuracy rates were compared with the accuracy rates obtained in the Multiple Linear Regression Model. The accuracy rates of the model were initially examined using the Fuzzy Logic approach on weekdays and weekends, followed by a seasonal analysis and an assessment of the model's performance. As a result of the analysis, it was observed that the model worked with high accuracy in the autumn season and on weekend days.
Primary Language | English |
---|---|
Subjects | Algorithms and Calculation Theory |
Journal Section | Research Articles |
Authors | |
Publication Date | January 31, 2024 |
Submission Date | July 13, 2023 |
Published in Issue | Year 2024 Volume: 12 Issue: 1 |
Academic Platform Journal of Engineering and Smart Systems