Review
BibTex RIS Cite

Advancements in Human Pose Estimation: A Review of Key Studies and Findings till 2025

Year 2025, Volume: 13 Issue: 3, 94 - 107, 30.09.2025
https://doi.org/10.21541/apjess.1588025

Abstract

This paper presents an in-depth literature review that comprehensively covers the major developments, methods, architectures and datasets used in the field of human pose prediction up to 2025. The review covers a broad spectrum, starting with traditional methods, deep learning-based techniques, convolutional neural networks, graph-based approaches and more recently prominent transformer-based models. In addition to two-dimensional (2D) and three-dimensional (3D) human pose estimation methods, the paper analyses in detail the diversity of data sets, applications of Microsoft Kinect technology, real-time pose estimation systems and related architectural designs. Overall, the review of more than 120 papers shows that existing systems have made significant progress in terms of accuracy, computational efficiency and practical applications, but that there are still some challenges to overcome in complex scenarios such as multiple person detection, occlusion problems and outdoor environments. This in-depth analysis highlights current trends in the field, future research directions and potential applications.

References

  • Khan, Naimat Ullah, and Wanggen Wan. "A review of human pose estimation from single image." 2018 international conference on audio, language and image processing (ICALIP). IEEE, 2018.
  • Sen, Siddharth, Somya Maheshwari, and Ankit Kumar. "Review of Recent Developments in Human Pose Estimation." Proceedings of the International Conference on Innovative Computing & Communication (ICICC). 2021.
  • Munea, Tewodros Legesse, et al. "The progress of human pose estimation: A survey and taxonomy of models applied in 2D human pose estimation." IEEE Access 8 (2020): 133330-133348.
  • Chen, Haoming, et al. "2D Human pose estimation: A survey." Multimedia systems 29.5 (2023): 3115-3138.
  • Sarafianos, Nikolaos, et al. "3d human pose estimation: A review of the literature and analysis of covariates." Computer Vision and Image Understanding 152 (2016): 1-20.
  • Gong, Wenjuan, et al. "Human pose estimation from monocular images: A comprehensive survey." Sensors 16.12 (2016): 1966.
  • Liu, Zhao, et al. "A survey of human pose estimation: the body parts parsing based methods." Journal of Visual Communication and Image Representation 32 (2015): 10-19.
  • Kharb, Utkarsh, and Tanay Gautam. "Review and analysis of various human pose estimation models." Proceedings of the Advancement in Electronics & Communication Engineering (2022).
  • Toshev, Alexander, and Christian Szegedy. "Deeppose: Human pose estimation via deep neural networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2014.
  • Insafutdinov, Eldar, et al. "Deepercut: A deeper, stronger, and faster multi-person pose estimation model." Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VI 14. Springer International Publishing, 2016.
  • Newell, A., Yang, K., Deng, J. “Stacked Hourglass Networks for Human Pose Estimation”. In: European Conference on Computer Vision, 2016.
  • Wei, Shih-En, et al. "Convolutional pose machines." Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2016.
  • Zhu, Yi, et al. "Soft proposal networks for weakly supervised object localization." Proceedings of the IEEE international conference on computer vision. 2017.
  • Pavlakos, Georgios, et al. " Coarse-to-fine volumetric prediction for single-image 3D human pose." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
  • Xiao, Bin, Haiping Wu, and Yichen Wei. "Simple baselines for human pose estimation and tracking." Proceedings of the European conference on computer vision (ECCV). 2018.
  • Sun, Ke, et al. "Deep high-resolution representation learning for human pose estimation." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019.
  • Zhao, Yang, and Yong Dou. "Pose-forecasting aided human video prediction with graph convolutional networks." IEEE Access 8 (2020): 147256-147264.
  • Parsaeifard, Behnam, et al. "Learning decoupled representations for human pose forecasting." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.
  • Yen, Chia Chen, Tao Pin, and Hongmin Xu. "Bilateral pose transformer for human pose estimation." Proceedings of the 4th International Symposium on Signal Processing Systems. 2022.
  • Yin, He, Chang Lv, and Yeqin Shao. "3D Human Pose Estimation Based on Transformer." Journal of Physics: Conference Series. Vol. 2562. No. 1. IOP Publishing, 2023.
  • Yang, Y., Ramanan, D., "Articulated pose estimation with f lexible mixtures-of-parts", In CVPR, 2011. 2.
  • Chen, X., Yuille, A. L., "Articulated pose estimation by a graphical model with image dependent pairwise relations", In NIPS, 2014. 2.
  • Pishchulin, L., Andriluka, M., Gehler, P., Schiele, B., "Poselet conditioned pictorial structures", In CVPR, 2013.
  • Tompson, J., Goroshin, R., Jain, A., LeCun, Y., Bregler, C., "Efficient object localization using convolutional networks", In CVPR, 2015.
  • Wei, S. E., Ramakrishna, V., Kanade, T., Sheikh, Y., "Convolutional pose machines", In CVPR, 2016.
  • Sarafianosa, N., Boteanub, B., Lonescub, B., Kakadiarisa, L. A, "3D Human Pose Estimation: A Review of the Literature and Analysis of Covariates", Computer Vision and Image Understanding 152 (2016) 1–20.
  • Marinoiu, E. , Papava, D. , Sminchisescu, C., "Pictorial human spaces: how well do humans perceive a 3D articulated pose?", In Proc. IEEE International Confer- ence on Computer Vision, Sydney, Australia, 2013, pp. 1289–1296.
  • Yang, W., Ouyang, W., Wang, X., Ren, J., Li, H. and Wang, X, "3d human pose estimation in the wild by adversarial learning", Proceedings of the IEEE conference on computer vision and pattern recognition, 2018.
  • Wang, J., Tan, S., Zhen, X., Xu, S., Zheng, F., He, Z., Shao, L., "Deep 3D human pose estimation: A review", Computer Vision and Image Understanding, 210, 2021, 103225.
  • Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B., "2D Human Pose Estimation: New Benchmark and State of the Art Analysis", IEEE Conference on Computer Vision and Pattern Recognition, 2014.
  • Ouyang, W., Chu, X., Wang, X., "Multi-source Deep Learning for Human Pose Estimation", IEEE Conference on Computer Vision and Pattern Recognition, 2014.
  • Belagiannis V., Amin, S., Andriluka, M., Schiele, B., Navab, N., Ilic, S., "3D Pictorial Structures for Multiple Human Pose Estimation", IEEE Conference on Computer Vision and Pattern Recognition, 2014.
  • Pfister, T., James, C. and Andrew Zisserman, "Flowing convnets for human pose estimation in videos", Proceedings of the IEEE international conference on computer vision, 2015.
  • Chu, Xiao, et al. "Structured feature learning for pose estimation" Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
  • Wei, S., Ramakrishna, V., Kanade, T., Sheikh, Y., "Convolutional pose machines", Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2016.
  • Yang, W., Ouyang, W., Li, H., Wang, X., "End-to-End Learning of Deformable Mixture of Parts and Deep Convolutional Neural Networks for Human Pose Estimation", IEEE Conference on Computer Vision and Pattern Recognition, 2016.
  • Carreira, J., Agrawal, P., Fragkiadaki, K., Malik, J., "Human pose estimation with iterative error feedback", Proceedings of the IEEE conference on computer vision and pattern recognition, 2016.
  • Chao, Z., Simon, T., Wei, S., Sheikh, Y., "Realtime multi-person 2d pose estimation using part affinity fields", Proceedings of the IEEE conference on computer vision and pattern recognition, 2017.
  • Chu, X., Yang, W., Ouyang, W., Ma, C., Yuille, A. L., Wang, X., "Multi-context attention for human pose estimation", Proceedings of the IEEE conference on computer vision and pattern recognition, 2017.
  • Yang, W., Li, S., Ouyang, W., Li, H., Wang, X., "Learning feature pyramids for human pose estimation", proceedings of the IEEE international conference on computer vision, 2017.
  • Belagiannis, V., Zisserman, A., "Recurrent Human Pose Estimation", IEEE 12th International Conference on Automatic Face & Gesture Recognition, 2017.
  • Mehta, D., Sridhar, S., Sotnychenko, O., Rhodin, H., Shafiei, H., Seidel, H., Xu, W., Casas, D., Theobalt, C., "Vnect: Real-time 3d human pose estimation with a single rgb camera", Acm transactions on graphics (tog) 36.4 (2017): 1-14.
  • Guler, R. A., Neverova, N., Kokkinos, I., "Densepose: Dense human pose estimation in the wild", Proceedings of the IEEE conference on computer vision and pattern recognition, 2018.
  • Andriluka, M., Iqbal, U., Insafutdinov, E., Pishchulin, L., Milan, A., Gall, J., Schiele, B., "Posetrack: A benchmark for human pose estimation and tracking", Proceedings of the IEEE conference on computer vision and pattern recognition, 2018.
  • Xiao, B., Wu, H., Wei, Y., "Simple baselines for human pose estimation and tracking", Proceedings of the European conference on computer vision (ECCV), 2018.
  • Yang, W., Ouyang, W., Wang, X., Ren, J., Li, H., Wang, X., "3d human pose estimation in the wild by adversarial learning", Proceedings of the IEEE conference on computer vision and pattern recognition, 2018.
  • Hossain, M. R. I., Little, J. J., "Exploiting temporal information for 3d human pose estimation", Proceedings of the European conference on computer vision (ECCV), 2018.
  • Zhang, F., Zhu, X., Ye, M., "Fast human pose estimation", Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019.
  • Li, W., Wang, Z., Yin, B., Peng, Q., Du, Y., Xiao, T., Yu, G., Lu, H., Wei, Y., Sun, J., "Rethinking on multi-stage networks for human pose estimation", arXiv preprint arXiv:1901.00148 (2019).
  • Zhang, F., Zhu, X., Dai, H., Ye, M., Zhu, C., "Distribution-aware coordinate representation for human pose estimation", Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020.
  • Yuan, Y., Wei, S., Simon, T., Kitani, K., Saragih, J., "Simpoe: Simulated character control for 3d human pose estimation", Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021.
  • Liu, Z., Chen, H., Feng, R., Wu, S., Ji, S., Yang, B., Wang, X., "Deep dual consecutive network for human pose estimation", Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021.
  • Zheng, C., Zhu, S., Mendieta, M., Yang, T., Chen, C., Ding, Z., "3d human pose estimation with spatial and temporal transformers", Proceedings of the IEEE/CVF international conference on computer vision, 2021.
  • Li, W., Liu, H., Tang, H., Wang, P., Gool, L. V., "Mhformer: Multi-hypothesis transformer for 3d human pose estimation", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.
  • Xu, Y., Zhang, J., Zhang, Q., Tao, D., "ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation", 36th Conference on Neural Information Processing Systems (NeurIPS 2022), ISBN: 9781713871088.
  • Liu, H., Liu, T., Chen, Y., Zhang, Z., Li, Y. F., "EHPE: Skeleton Cues-based Gaussian Coordinate Encoding for Efficient Human Pose Estimation", IEEE Transactions on Multimedia, 2022, Electronic ISSN: 1941-0077.
  • Ingwersen, C., K., Mikkelstrup, C. M., Jensen, J. N., Hannemose, M. R., Dahl, A. B., "SportsPose-A Dynamic 3D sports pose dataset", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.
  • Gong, J., Foo, L. G., Fan, Z., Ke, Q., Rahmani, H., Liu, J., "DiffPose: Toward More Reliable 3D Pose Estimation", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 13041-13051.
  • Wu, C., Tan, G., Li, C., "HEViTPose: High-Efficiency Vision Transformer for Human Pose Estimation", arXiv preprint arXiv:2311.13615 (2023).
  • Zhou, Xiaolong, et al. "MDST: 2D Human Pose Estimation for SISO UWB Radar based on Micro-Doppler Signature via Cascade and Parallel Swin Transformer." IEEE Sensors Journal (2024).
  • Cai, Guoci, et al. "End-to-End 3D Human Pose Estimation Network with Multi-Layer Feature Fusion." IEEE Access (2024).
  • Zhang, Tong, et al. "Enhancement and optimisation of human pose estimation with multi-scale spatial attention and adversarial data augmentation." Information Fusion (2024): 102522.
  • Andriluka, M., Pishchulin, L., Gehler, P. and Schiele, B., “2D Human Pose Estimation: New Benchmark and State of the Art Analysis”, 2014. Accessed on: 17.12.2023.[Online].Available: https://paperswithcode.com/dataset/mpii
  • Yu, X., Zhou F. and Chandraker, M., “Deep Deformation Network for Object Landmark Localization”, 2016. Accessed on: 17.12.2023.[Online].Available: https://paperswithcode.com/dataset/lsp
  • Chen, T., Fang, C., Shen, X., Zhu, Y., Chen, Z. and Luo, J., “Anatomy-aware 3D Human Pose Estimation with Bone-based Pose Decomposition”, 2020. Accessed on: 17.12.2023. [Online]. Available: https://paperswithcode.com/dataset/mpi-inf-3dhp
  • Han, F., Reily, B., Hoff, W. and Zhang, H., “Space-Time Representation of People Based on 3D Skeletal Data: A Review”, 2017. Accessed on: 17.12.2023. [Online].Available: https://paperswithcode.com/dataset/human3-6m
  • Xiao, B., Wu, H. and Wei, Y., “Simple Baselines for Human Pose Estimation and Tracking”, 2018. Accessed on: 17.12.2023. [Online]. Available: https://paperswithcode.com/dataset/posetrack
  • Lin, T., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C. L. and Dollar, P., “Microsoft COCO: Common Objects in Context”, 2014. Accessed on: 17.12.2023. [Online]. Available: https://paperswithcode.com/dataset/coco
  • Güler, R. A., Neverova, N. and Kokkinos, I., “DensePose: Dense Human Pose Estimation In The Wild”, 2018. Accessed on: 17.12.2023. [Online]. Available: https://paperswithcode.com/dataset/densepose
  • Sapp, B. and Taskar, B., “MODEC: Multimodal Decomposable Models for Human Pose Estimation”, 2013. Accessed on: 17.12.2023. [Online]. Available: https://paperswithcode.com/dataset/flic
  • Rapczyński, Michał, et al. "A baseline for cross-database 3d human pose estimation." Sensors 21.11 (2021): 3769.
  • Zheng, Ce, et al. "Deep learning-based human pose estimation: A survey." ACM Computing Surveys 56.1 (2023): 1-37.
  • Jin, Sheng, et al. "Whole-body human pose estimation in the wild." Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IX 16. Springer International Publishing, 2020.
  • Wandt, Bastian, et al. "Canonpose: Self-supervised monocular 3d human pose estimation in the wild." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021.
  • Badiola-Bengoa, Aritz, and Amaia Mendez-Zorrilla. "A systematic review of the application of camera-based human pose estimation in the field of sport and physical exercise." Sensors 21.18 (2021): 5996.
  • Zhang, Z, "Microsoft Kinect Sensor and Its Effect", IEEE MultiMedia, Volume 19, Issue 2, 2011, pp 4–10.
  • Lun, R., Zhao, W., "A Survey Of Applications and Human Motion Recognition with Microsoft Kinect", International Journal of Pattern Recognition and Artificial Intelligence, 29(05):150330235202000, 2015.
  • Chow, J., Lichti, D., "Photogrammetric Bundle Adjustment With Self-Calibration of the PrimeSense 3D Camera Technology: Microsoft Kinect", IEEE Access, Volume: 1, Electronic ISSN: 2169-3536, 2013, pp. 465 – 474.
  • ElIaithy, R.A., Huang, J., Yeh, M., "Study on the Use of Microsoft Kinect for Robotics Applications", Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium, ISBN:978-1-4673-0387-3, 2012.
  • Ismail, N. H. B., Basah, S., "The applications of Microsoft Kinect for human motion capture and analysis : A review", 2nd International Conference on Biomedical Engineering (ICoBE), ISBN:978-1-4799-1749-5, 2015.
  • Chang, C. Y., Langel, B., Zhang, M., Koenig, S., Requejo, P., Somboon, N., Sawchuk, A. A., Rizzol, A. A., "Towards Pervasive Physical Rehabilitation Using Microsoft Kinect", 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, ISBN:978-1-936968-43-5, 2012.
  • Molyneaux, D., "KinectFusion rapid 3D reconstruction and interaction with Microsoft Kinect", International Conference on the Foundations of Digital Games, FDG '12, Raleigh, NC, USA, 2012.
  • Bueno, M., Díaz-Vilariño, L., Martínez-Sánchez, J., González-Jorge, H., Lorenzo, H., Arias, P., "Metrological evaluation of KinectFusion and its comparison with Microsoft Kinect sensor", Measurement 73, 2015, pp. 137–145.
  • Romeo, L., Marani, R., Malosio, M., Perri, A. G., D’Orazio, T., "Performance Analysis of Body Tracking with the Microsoft Azure Kinect", 29th Mediterranean Conference on Control and Automation (MED), ISBN:978-1-6654-4660-0, 2021.
  • Kapgate, S., Sahu, P., Das, M., Gupta, D., "Human Following Robot using Kinect in Embedded Platform", 1st International Conference on the Paradigm Shifts in Communication, Embedded Systems, Machine Learning and Signal Processing (PCEMS), ISBN:978-1-6654-5905-1, 2022.
  • Wagh, P., Patil, S., Shrivastav, R., Bachhav, S., "Virtual Yoga System Using Kinect Sensor. International Research Journal of Modernization in Engineering Technology and Science", Volume:04, Issue:04, April-2022.
  • Açış, B., Güney, S., "Classification of human movements by using Kinect sensor", Biomedical Signal Processing and Control, Volume 81, March 2023, 104417.
  • Azhar, M., Ullah, S., Raees, M., Rahman, K. U., Rehman, I. U., "A real-time multi view gait-based automatic gender classification system using kinect sensor", Multimedia Tools and Applications, 2023, 82:11993–12016.
  • Jha, Panchanand, et al. "Human–machine interaction and implementation on the upper extremities of a humanoid robot." Discover Applied Sciences 6.4 (2024): 152.
  • Reuther, Corentin, et al. "Engineering User Interfaces for Tailored and Monitored Movement Rehabilitation Programs." Companion Proceedings of the 16th ACM SIGCHI Symposium on Engineering Interactive Computing Systems. 2024.
  • Bao, Q, Liu, W., Hong, J. H., Duan, L., Mei, T., "Pose-native Network Architecture Search for Multi-person Human Pose Estimation", MM '20: Proceedings of the 28th ACM International Conference on Multimedia, 2020, pp. 592–600.
  • Rogez, G., Weinzaepfel, P., Schmid, C., "LCR-Net++: Multi-person 2D and 3D Pose Detection in Natural Images", arXiv:1803.00455, 2018.
  • Ning, G., Pei, J., Huang, H., "LightTrack: A Generic Framework for Online Top-Down Human Pose Tracking", 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2020, ISBN:978-1-7281-9360-1.
  • Dyce, William, et al. "Tabu search for human pose recognition." Three-Dimensional Image Processing, Measurement (3DIPM), and Applications 2014. Vol. 9013. SPIE, 2014.
  • Oleinikov, Georgii, et al. "Task-based control of articulated human pose detection for openvl." IEEE Winter Conference on Applications of Computer Vision. IEEE, 2014.
  • Dimitrijevic, Miodrag, Vincent Lepetit, and Pascal Fua. "Human body pose detection using Bayesian spatio-temporal templates." Computer vision and image understanding 104.2-3 (2006): 127-139.
  • Buys, Koen, et al. "An adaptable system for RGB-D based human body detection and pose estimation." Journal of visual communication and image representation 25.1 (2014): 39-52.
  • Cao, Zhe, et al. "Realtime multi-person 2d pose estimation using part affinity fields." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
  • Jeny, Afsana Ahsan, Masum Shah Junayed, and Md Baharul Islam. "PoseTED: A Novel Regression-Based Technique for Recognizing Multiple Pose Instances." International Symposium on Visual Computing. Cham: Springer International Publishing, 2021.
  • Narayanan, S. Sankara, et al. "Yoga pose detection using deep learning techniques." Proceedings of the International Conference on Innovative Computing & Communication (ICICC). 2021.
  • Gadhiya, Ravindra, and Nilesh Kalani. "Analysis of deep learning based pose estimation techniques for locating landmarks on human body parts." 2021 International Conference on Circuits, Controls and Communications (CCUBE). IEEE, 2021.
  • Grover, Anant, Deepak Arora, and Anuj Grover. "Human pose estimation using deep learning techniques." Proceedings of the 4th International Conference on Information Management & Machine Intelligence. 2022.
  • Niu, Yue, et al. "Convpose: A modern pure convnet for human pose estimation." Neurocomputing 544 (2023): 126301.
  • Du, Songlin, Zhiwen Zhang, and Takeshi Ikenaga. "AnatPose: Bidirectionally learning anatomy-aware heatmaps for human pose estimation." Pattern Recognition (2024): 110654.
  • Bazarevsky, V. "BlazePose: On-device Real-time Body Pose tracking." arXiv preprint arXiv:2006.10204 (2020).
  • Lugaresi, Camillo, et al. "Mediapipe: A framework for building perception pipelines." arXiv preprint arXiv:1906.08172 (2019).
  • Tawar, R., Jagtap, S., Hirve, D., Gundgal, T., Kale, N., "Real-Time Yoga Pose Detection", International Research Journal of Modernization in Engineering Technology and Science, Volume:04/Issue:05/May-2022.
  • Desmarais, Yann, et al. "A review of 3D human pose estimation algorithms for markerless motion capture." Computer Vision and Image Understanding 212 (2021): 103275.
  • Liu, Wu, et al. "Recent advances of monocular 2d and 3d human pose estimation: A deep learning perspective." ACM Computing Surveys 55.4 (2022): 1-41.
  • Huang, Zhangjin, and Rashid Khan. "A review of 3D human body pose estimation and mesh recovery." Digital Signal Processing 128 (2022): 103628.
  • Chen, Yucheng, Yingli Tian, and Mingyi He. "Monocular human pose estimation: A survey of deep learning-based methods." Computer vision and image understanding 192 (2020): 102897.
  • Yan, Jielu, et al. "Recent advances in 3D human pose estimation: From optimization to implementation and beyond." International Journal of Pattern Recognition and Artificial Intelligence 36.02 (2022): 2255003.
  • Gupta, Prince. “Review on Human Pose Estimation using AI Fitness Tracker.” International Journal Of Scientific Research In Engineering And Management, (2024).
  • Song, Xuzhe. "Researches Advanced in Human Pose Estimation Based on Deep Learning." Journal of Physics: Conference Series. Vol. 2404. No. 1. IOP Publishing, 2022.
  • Knap, Pawel. "Human modelling and pose estimation overview." arXiv preprint arXiv:2406.19290 (2024).
  • Singh, Priyanshu, et al. "Evaluating the Robustness of Human Pose Estimation Models: A Comparative Analysis." 2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO). IEEE, 2024.
  • Sengar, Sandeep Singh, Abhishek Kumar, and Owen Singh. "Efficient Human Pose Estimation: Leveraging Advanced Techniques with MediaPipe." arXiv preprint arXiv:2406.15649 (2024).
  • Wahid, Wasim, et al. "Advanced Human Pose Estimation and Event Classification using Context-Aware Features and XGBoost Classifier." IEEE Access (2024).
  • Elshami, Nada E., Ahmad Salah, and Heba Mohsen. "A Comparative Study of Recent 2D Human Pose Estimation Methods." 2024 6th International Conference on Computing and Informatics (ICCI). IEEE, 2024.
  • Chen, Wenhao. “A Review on Human Pose Estimation Based on Deep Learning” Applied and Computational Engineering 80(1):67-73, 2024.
There are 120 citations in total.

Details

Primary Language English
Subjects Machine Vision , Machine Learning Algorithms, Classification Algorithms
Journal Section Reviews
Authors

Uğur Özbalkan 0000-0003-0440-5390

Özgür Can Turna 0000-0001-5195-8727

Early Pub Date September 30, 2025
Publication Date September 30, 2025
Submission Date November 20, 2024
Acceptance Date June 28, 2025
Published in Issue Year 2025 Volume: 13 Issue: 3

Cite

IEEE U. Özbalkan and Ö. C. Turna, “Advancements in Human Pose Estimation: A Review of Key Studies and Findings till 2025”, APJESS, vol. 13, no. 3, pp. 94–107, 2025, doi: 10.21541/apjess.1588025.

Academic Platform Journal of Engineering and Smart Systems