Research Article
PDF Zotero Mendeley EndNote BibTex Cite

Year 2021, Volume 2, Issue 2, 85 - 95, 29.12.2021
https://doi.org/10.52114/apjhad.1037706

Abstract

References

  • Referans1 T. B. Panagiotakos and M. N. Fardis, “Deformations of reinforced concrete members at yielding and ultimate,” ACI Structural Journal, vol. 98, no. 2, pp. 135–148, 2001.
  • Referans2 Baker and A. L. L., “The ultimate load theory applied to the design of reinforced & prestressed concrete frames,” Concrete Publications Ltd. London., 1956.
  • Referans3 Sawyer and H. A., “Design of concrete frames for two failure stages,” ACI Structural Journal, pp. 405–437, 1964.
  • Referans4 Corley and W. G., “Rotational capacity of reinforced concrete beams,” Journal of the Structural Division, vol. 92, no. 5, pp. 121–146.
  • Referans5 A. H. Mattock, “Discussion of Rotation Capacity of Reinforced Concrete Beams.,” Journal of the Structural Division, vol. 93, no. 2, pp. 519–522, 1967.
  • Referans6 T. Paulay and M. J. N. Priestley, Seismic Design of Reinforced Concrete and Masonry Buildings. Wiley, 1992.
  • Referans7 A. E. Naaman et al., “Reinforced and Prestressed Concrete Using HPFRCC Matrices,” High Performance Fiber Reinforced Cement 825 Composites 2, pp. 291–347, 1996.
  • Referans8 M. P. Berry and M. O. Eberhard, “Performance Modeling Strategies for Modern Reinforced Concrete Bridge Columns,” Seattle, 2007.
  • Referans9 H. Tariq, E. A. Jampole, and M. J. Bandelt, “Fiber-hinge modeling of engineered cementitious composite flexural members under large deformations,” Engineering Structures, vol. 182, pp. 62–78, 2019.
  • Referans10 A. M. R. R. W. Gregory G. Deierlein, «Nonlinear Structural Analysis For Seismic Design,» 2010.
  • Referans11 «PEER Structural Performance Database,» 2003. [Çevrimiçi]. Available: https://nisee.berkeley.edu/spd/index.html.
  • Referans12 O. B. a. S. A. Sheikh, «Confinement Steel Requirements For High Strength Concrete Columns,» Elsevier Science, 1996.
  • Referans13 A. B. Matamoros, Study of Drift Limits For High-Strength Concrete Columns, 1994.
  • Referans14 T. O. a. T. Nishioka, «An Experimental Study on Energy Absorption Capacity of Columns in Reinforced Concrete Structures,» Structural Engineering, October 1984.
  • Referans15 M. S. a. M. Grira, «Confinement of Reinforced Concrete Columns With Welded Reinforcement Grids,» ACI Structural Journal, February 1999.
  • Referans16 M. S. a. G. Ozcebe, «Response of Reinforced Concrete Columns to Simulated Seismic Loading,» ACI Structural Journal, February 1989.
  • Referans17 J. Tanaka, Effect of Lateral Confining Reinforcement on the Ductile Behavior of Reinforcement Concrete Columns, 1990.
  • Referans18 J. P. A. R. P. Armando Calabrese, «Numerical Issues in Distributed Inelasticity Modeling of RC Frame Elements for Seismic Analysis,» Journal of Earthquake Engineering , 24 Mar 2010.
  • Referans19 «The Open System for Earthquake Engineering Simulation,» 2006. [Çevrimiçi]. Available: https://opensees.berkeley.edu/.

Fiber Based Modeling Strategies of RC Columns

Year 2021, Volume 2, Issue 2, 85 - 95, 29.12.2021
https://doi.org/10.52114/apjhad.1037706

Abstract

Although experimental studies have proven as the most effective method, its high cost has provoked researchers to seek alternative approaches. The increase in computational power in the 21st century provides the opportunity to numerically model experimental studies with various programs. This study examines the comparison of force-based element and displacement-based element in columns using nonlinear fiber elements. Within the scope of the study, OpenSees program is employed for columns selected from the PEER (Structural Performance Database) site. Physical regularization technique is applied to the elements while considering the plastic hinge length of the columns. The aim is to compare the employment of the FB element and DB elements in RC columns in terms of number of elements and integration points, to simulate the global behavior of the columns numerically, and to optimize the parameters that affect the results.

References

  • Referans1 T. B. Panagiotakos and M. N. Fardis, “Deformations of reinforced concrete members at yielding and ultimate,” ACI Structural Journal, vol. 98, no. 2, pp. 135–148, 2001.
  • Referans2 Baker and A. L. L., “The ultimate load theory applied to the design of reinforced & prestressed concrete frames,” Concrete Publications Ltd. London., 1956.
  • Referans3 Sawyer and H. A., “Design of concrete frames for two failure stages,” ACI Structural Journal, pp. 405–437, 1964.
  • Referans4 Corley and W. G., “Rotational capacity of reinforced concrete beams,” Journal of the Structural Division, vol. 92, no. 5, pp. 121–146.
  • Referans5 A. H. Mattock, “Discussion of Rotation Capacity of Reinforced Concrete Beams.,” Journal of the Structural Division, vol. 93, no. 2, pp. 519–522, 1967.
  • Referans6 T. Paulay and M. J. N. Priestley, Seismic Design of Reinforced Concrete and Masonry Buildings. Wiley, 1992.
  • Referans7 A. E. Naaman et al., “Reinforced and Prestressed Concrete Using HPFRCC Matrices,” High Performance Fiber Reinforced Cement 825 Composites 2, pp. 291–347, 1996.
  • Referans8 M. P. Berry and M. O. Eberhard, “Performance Modeling Strategies for Modern Reinforced Concrete Bridge Columns,” Seattle, 2007.
  • Referans9 H. Tariq, E. A. Jampole, and M. J. Bandelt, “Fiber-hinge modeling of engineered cementitious composite flexural members under large deformations,” Engineering Structures, vol. 182, pp. 62–78, 2019.
  • Referans10 A. M. R. R. W. Gregory G. Deierlein, «Nonlinear Structural Analysis For Seismic Design,» 2010.
  • Referans11 «PEER Structural Performance Database,» 2003. [Çevrimiçi]. Available: https://nisee.berkeley.edu/spd/index.html.
  • Referans12 O. B. a. S. A. Sheikh, «Confinement Steel Requirements For High Strength Concrete Columns,» Elsevier Science, 1996.
  • Referans13 A. B. Matamoros, Study of Drift Limits For High-Strength Concrete Columns, 1994.
  • Referans14 T. O. a. T. Nishioka, «An Experimental Study on Energy Absorption Capacity of Columns in Reinforced Concrete Structures,» Structural Engineering, October 1984.
  • Referans15 M. S. a. M. Grira, «Confinement of Reinforced Concrete Columns With Welded Reinforcement Grids,» ACI Structural Journal, February 1999.
  • Referans16 M. S. a. G. Ozcebe, «Response of Reinforced Concrete Columns to Simulated Seismic Loading,» ACI Structural Journal, February 1989.
  • Referans17 J. Tanaka, Effect of Lateral Confining Reinforcement on the Ductile Behavior of Reinforcement Concrete Columns, 1990.
  • Referans18 J. P. A. R. P. Armando Calabrese, «Numerical Issues in Distributed Inelasticity Modeling of RC Frame Elements for Seismic Analysis,» Journal of Earthquake Engineering , 24 Mar 2010.
  • Referans19 «The Open System for Earthquake Engineering Simulation,» 2006. [Çevrimiçi]. Available: https://opensees.berkeley.edu/.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Research Articles
Authors

Fazıl Abdulkadir ÇAĞLAR (Primary Author)
BOLU ABANT İZZET BAYSAL ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ, İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ
0000-0002-0499-831X
Türkiye


Tuba TATAR
SAKARYA ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ, İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ, İNŞAAT MÜHENDİSLİĞİ PR.
0000-0002-9766-0624
Türkiye

Publication Date December 29, 2021
Application Date December 16, 2021
Acceptance Date December 28, 2021
Published in Issue Year 2021, Volume 2, Issue 2

Cite

IEEE F. A. Çağlar and T. Tatar , "Fiber Based Modeling Strategies of RC Columns", Academic Platform Journal of Natural Hazards and Disaster Management, vol. 2, no. 2, pp. 85-95, Dec. 2021, doi:10.52114/apjhad.1037706
Academic Platform Journal of Natural Hazards and Disaster Management (APJHAD)