Research Article
BibTex RIS Cite

LATERİT KATKILI BETONUN BASINÇ DAYANIMI GELİŞİMİ VE SU EMME ORANI ÜZERİNDE KÜR ORTAMININ ETKİSİ

Year 2025, Volume: 7 Issue: 1, 114 - 131, 30.06.2025
https://doi.org/10.57165/artgrid.1485767

Abstract

Bu çalışma, laterit kullanılarak kısmen veya tamamen geleneksel kumun yerine geçen sürdürülebilir bir malzeme olan laterit katkılı betonun basınç dayanımı ve su emme oranı üzerindeki farklı kür yöntemlerinin etkisini araştırmaktadır. 1 ila 28 gün arasındaki kür sürelerinde, laterit katkılı beton numuneleri suya daldırma, aralıklı sulama, ıslak bezle örtme, plastik örtüyle kaplama ve hava ile kürleme gibi farklı kür koşulları altında test edilmiştir. Sonuçlar, belirgin bir eğilim göstermektedir: Daha yüksek oranda laterit içeren betonların basınç dayanımı azalırken, su emme oranı (sorptivite) artmaktadır. Özellikle, 28 gün sonunda en yüksek basınç dayanımı (31.68 N/mm²) ve en düşük sorptivite değeri (0.0201 mm/√s) sürekli suya daldırma yöntemiyle elde edilmiştir. Bunu sırasıyla aralıklı sulama, ıslak bezle örtme, plastik örtüyle kaplama ve en düşük performansı sergileyen hava ile kürleme takip etmiştir. Çalışma, kür yöntemlerinin laterit katkılı betonun performansında belirleyici bir rol oynadığını vurgulamakta ve basınç dayanımı ile sorptivite arasında ters bir ilişki olduğunu ortaya koymaktadır. Ayrıca, kür süresi uzadıkça basınç dayanımının arttığı ve sorptivitenin azaldığı görülmektedir; bu durum, etkin kür uygulamalarının uzun vadeli önemini gözler önüne sermektedir. Elde edilen bulgular, doğru kür stratejilerinin seçilmesinin laterit katkılı beton yapıların dayanıklılığını ve performansını artırmak açısından büyük önem taşıdığını ortaya koymakta; böylece sürdürülebilir inşaat uygulamalarına katkı sunmaktadır.

Project Number

No external funding was received for this research.

References

  • Abdel-Hay, A. S. (2017). Properties of recycled concrete aggregate under different curing conditions. HBRC Journal, 13(3), 271–276. https://doi.org/10.1016/j.hbrcj.2015.07.001
  • Abdurahman, A., Parviz, S., & Faiz. (1996). Effects of curing conditions and age on chloride permeability of fly ash mortar. ACI Materials Journal, 93(1). https://doi.org/10.14359/9800
  • Akinkurolere, O. O. (2021). Water absorption, sorptivity and permeability properties of concrete containing chemical and mineral admixtures. LAUTECH Journal of Civil and Environmental Studies, 6(2). https://doi.org/10.36108/laujoces/1202.60.0201
  • Alexander, M. G., Ballim, Y., & Stanish, K. (2008). A framework for use of durability indexes in performance-based design and specifications for reinforced concrete structures. Materials and Structures, 41, 921–936.
  • Aluko, O., Awolusi, T., & Adesina, A. (2020). Influence of curing media and mixing solution on the compressive strength of laterized concrete. Silicon, 12(10), 2425–2432. https://doi.org/10.1007/s12633-019-00343-x
  • Ambrose, E. E., Ekpo, D. U., Umoren, I. M., & Ekwere, U. S. (2018). Compressive strength and workability of laterized quarry sand concrete. Nigerian Journal of Technology, 37(3), 605. https://doi.org/10.4314/njt.v37i3.7
  • ASTM. (2013). Standard test method for measurement of rate of absorption of water by hydraulic-cement concretes, (ASTM C1585). ASTM International.
  • Atiş, C. D., Özcan, F., Kılıç, A., Karahan, O., Bilim, C., & Severcan, M. H. (2005). Influence of dry and wet curing conditions on compressive strength of silica fume concrete. Building and Environment, 40(12), 1678–1683. https://doi.org/10.1016/j.buildenv.2004.12.005
  • Awolusi, T. F., Sojobi, A. O., & Afolayan, J. O. (2017). SDA and laterite applications in concrete: Prospects and effects of elevated temperature. Cogent Engineering, 4(1), 1387954. https://doi.org/10.1080/23311916.2017.1387954
  • Awolusi, T. F., Oguntayo, D. O., Babalola, O. E., Oke, O. L., & Akinkurolere, O. O. (2021). Investigation of micronized laterite sandcrete block compressive strength. Case Studies in Construction Materials, 14, e00530. https://doi.org/10.1016/j.cscm.2021.e00530
  • Awoyera, P. O., Akinmusuru, J. O., Dawson, A. R., Ndambuki, J. M., & Thom, N. H. (2018). Microstructural characteristics, porosity and strength development in ceramic-laterized concrete. Cement and Concrete Composites, 86, 224–237. https://doi.org/10.1016/j.cemconcomp.2017.11.017
  • Balakrishna, M. N., Mohamad, M., Evans, R., & Rahman, M. M. (2020). Water absorption capacity of concrete cubes with sorptivity coefficient. Journal of Civil Engineering, 48(1), 17–27.
  • British Standard Institution. (2011). Cement composition, specification and conformity criteria for common cements, (BS EN 197-1:2007). British Standards Institution.
  • British Standards Institution. (2002). Mixing water for concrete. Specification for sampling, testing and assessing the suitability of water, including water recovered from processes in the concrete industry, as mixing water for concrete (BS EN 1008:2002). British Standards Institution.
  • BS. (2009). Testing hardened concrete: Making and curing specimens for strength test, (BS EN 12390-2). British Standard Institution.
  • Chand, M. S. R., Giri, P. S. N. R., Kumar, G. R., & Kumar, P. R. (2015). Paraffin wax as an internal curing agent in ordinary concrete. Magazine of Concrete Research, 67(2), 82–88. https://doi.org/10.1680/macr.14.00192
  • Du, H., Gao, H. J., & Pang, S. D. (2016). Improvement in concrete resistance against water and chloride ingress by adding graphene nanoplatelet. Cement and Concrete Research, 83, 114–123. https://doi.org/10.1016/j.cemconres.2016.02.005
  • Esam, E., Amr, A. A. E. H., & Rania, A. F. I. (2014). Comparative study on strength, permeability and sorptivity of concrete and their relation with concrete durability. International Journal of Engineering and Innovative Technology, 4(4), 132–139.
  • Federowicz, K., Kaszyńska, M., Zieliński, A., & Hoffmann, M. (2020). Effect of curing methods on shrinkage development in 3d-printed concrete. Materials, 13(11), 2590. https://doi.org/10.3390/ma13112590
  • Folagbade, S. O. (2020). Effect of carbonation on the permeation properties of laterized concrete. American Journal of Engineering Research, 9(7), 93–102.
  • Gabriel-Wettey, F. K. N., Appiadu-Boakye, K., & Anewuoh, F. (2021). Impact of curing methods on the porosity and compressive strength of concrete. Journal of Engineering Research and Reports, 18–30. https://doi.org/10.9734/jerr/2021/v20i917371
  • Garba, I., Sulaiman, T. A., Kaura, J. M., & Abdullahi, M. (2024). Optimization and predictive models on strengths and durability of reinforced laterized concrete. Covenant journal of engineering technology. https://journals.covenantuniversity.edu.ng/index.php/cjet/article/view/4002
  • Gogineni, A., Panday, I. K., Kumar, P., & Paswan, R. Kr. (2024). Predicting compressive strength of concrete with fly ash and admixture using XGBoost: A comparative study of machine learning algorithms. Asian Journal of Civil Engineering, 25(1), 685–698. https://doi.org/10.1007/s42107-023-00804-0
  • Hall, C. (1989). Water sorptivity of mortars and concretes: A review. Magazine of Concrete Research, 41(147). https://doi.org/10.1680/macr.1989.41.147.51
  • Kamaruzaman, N. W., & Muthusamy, K. (2013). Effect of curing regime on compressive strength of concrete containing malaysian laterite aggregate. Advanced Materials Research, 626, 839–843. https://doi.org/10.4028/www.scientific.net/AMR.626.839
  • Kim, T.-K., Choi, S.-J., Choi, J.-H., & Kim, J.-H. J. (2019). Prediction of chloride penetration depth rate and diffusion coefficient rate of concrete from curing condition variations due to climate change effect. International Journal of Concrete Structures and Materials, 13(1), 15. https://doi.org/10.1186/s40069-019-0333-4
  • Kubissa, W., Wilińska, I., & Jaskulski, R. (2022). Study on the effect of VMA admixture for concrete cured under different conditions on air permeability and sorptivity. Construction and Building Materials, 346, 128350. https://doi.org/10.1016/j.conbuildmat.2022.128350
  • Kumar, P., & Pratap, B. (2024). Feature engineering for predicting compressive strength of high-strength concrete with machine learning models. Asian Journal of Civil Engineering, 25(1), 723–736. https://doi.org/10.1007/s42107-023-00807-x
  • Li, J., Chen, Z., & Chen, W. (2020). Axial load-bearing capacities of pre-cast self-insulation walls made by foam concrete. Structures, 27, 1951–1961. https://doi.org/10.1016/j.istruc.2020.08.001
  • Maroliya, M. K. (2012). Estimation of water sorptivity as durability index for ultra high strength reactive powder concrete. International Journal of Engineering Research and Development, 4(3), 53–56.
  • Mehta, P. K., & Monteiro, P. J. M. (2014). Concrete: Microstructure, Properties and Materials. McGraw-Hill, NewYork, NY, USA.
  • Moore, A. J., Bakera, A. T., & Alexander, M. G. (2021). A critical review of the water sorptivity index (WSI) parameter for potential durability assessment: Can WSI be considered in isolation of porosity? Journal of the South African Institution of Civil Engineering, 63(2), 27–34.
  • Odeyemi, S., Abdulwahab, R., Anifowose, M. A., & Atoyebi, O. D. (2021). Effect of curing methods on the compressive strengths of palm kernel shell concrete. Civil Engineering and Architecture. https://doi.org/10.13189/cea.2021.090716
  • Oni, O., & Arum, C. (2023). Workability and compressive strength of concrete containing binary cement, mixed fines, and superplasticizer. Facta Universitatis - Series: Architecture and Civil Engineering, 21(2), 299–314. https://doi.org/10.2298/FUACE220818017O
  • Onipe, M. O., & Fologbade, S. O. (2017). Void content and sorptivity of laterized concrete. Advances in Built Environment Research, 147–156.
  • Osei, D. Y., Mustapha, Z., & Zebilila, M. (2020). Compressive strength of concrete using different curing methods. Journal of Social and Development Sciences. https://doi.org/10.22610/jsds.v10i3(s).2983
  • Pan, J.-L., Shen, J.-X., Zhong, Z.-L., Xia, Y., Li, X.-D., & Zhang, Y.-Q. (2024). Damage evolution and failure mechanism of masonry walls under in-plane cyclic loading. Engineering Failure Analysis, 161, 108240. https://doi.org/10.1016/j.engfailanal.2024.108240
  • Potdar, N. M., Abraham, S. M., & Kakade, V. (2023). Assessment of efficacy of curing practices in concrete. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.04.025
  • Rachel, P. P. (2019). Experimental investigation on strength and durability of concrete using high volume flyash, GGBS and M-Sand. International Journal for Research in Applied Science and Engineering Technology, 7(3), 396–403. https://doi.org/10.22214/ijraset.2019.3069
  • Rehman, S. K. U., Imtiaz, L., Aslam, F., Khan, M. K., Haseeb, M., Javed, M. F., Alyousef, R., & Alabduljabbar, H. (2020). Experimental investigation of NaOH and KOH mixture in SCBA-based geopolymer cement composite. Materials, 13(15), 3437. https://doi.org/10.3390/ma13153437
  • Rucker-Gramm, P., & Beddoe, R. E. (2010). Effect of moisture content of concrete on water uptake. Cement and Concrete Research, 40(1), 102–108. https://doi.org/10.1016/j.cemconres.2009.09.001
  • Spijkerman, Z., Boshoff, W. P., & Smit, M. S. (2022). Effectiveness of concrete curing compounds in extreme windy and dry conditions. MATEC Web of Conferences, 364, 05006. https://doi.org/10.1051/matecconf/202236405006
  • Tanyildizi, M. (2022). The effect of cement replacement with eggshell powder on the sorptivity index of concrete. Bitlis Eren University Journal of Science and Technology, 12(1), 36–42. https://doi.org/10.17678/beuscitech.1077465
  • Udeme, H. I., Ufan, C. O., & Abraham, U. E. (2022). Comparative study of cube and cylinder crushing strengths of laterized concrete. International Journal of Multidisciplinary Research and Analysis, 7(2), 543–552. https://doi.org/10.47191/ijmra/v7-i02-16
  • Ukpata, J. O., Ewa, D. E., Success, N. G., Alaneme, G. U., Otu, O. N., & Olaiya, B. C. (2024). Effects of aggregate sizes on the performance of laterized concrete. Scientific Reports, 14(1), 448. https://doi.org/10.1038/s41598-023-50998-1
  • Wang, H., Guo, B., Guo, Y., Jiang, R., Zhao, F., & Wang, B. (2023). Effects of curing methods on the permeability and mechanism of cover concrete. Journal of Building Material Science, 5(1), Article 1. https://doi.org/10.30564/jbms.v5i1.5484
  • Wang, L., & Li, S. (2014). Capillary absorption of concrete after mechanical loading. Magazine of Concrete Research, 66(8), 420–431. https://doi.org/10.1680/macr.13.00331
  • Wedatalla, A. M. O., Yang, J., & Ahmed, A. A. M. (2019). Curing effects on high-strength concrete properties. Advances in Civil Engineering. https://doi.org/10.1155/2019/1683292
  • Yang, L., Liu, G., Gao, D., & Zhang, C. (2021). Experimental study on water absorption of unsaturated concrete: W/c ratio, coarse aggregate and saturation degree. Construction and Building Materials, 272, 121945. https://doi.org/10.1016/j.conbuildmat.2020.121945
  • Zhang, S. P., & Zong, L. (2014). Evaluation of relationship between water absorption and durability of concrete materials. Advances in Materials Science and Engineering, 2014, 650373. https://doi.org/10.1155/2014/650373
  • Zhou, J. (2023). Visualization of green building landscape space environment design based on image processing and artificial intelligence algorithm. Scite.Ai. https://doi.org/10.21203/rs.3.rs-2550309/v1
  • Zhuang, S., Wang, Q., & Zhang, M. (2022). Water absorption behaviour of concrete: Novel experimental findings and model characterization. Journal of Building Engineering, 53, 104602. https://doi.org/10.1016/j.jobe.2022.104602

INFLUENCE OF CURING MEDIA ON THE COMPRESSIVE STRENGTH DEVELOPMENT AND ABSORPTION RATE OF LATERIZED CONCRETE

Year 2025, Volume: 7 Issue: 1, 114 - 131, 30.06.2025
https://doi.org/10.57165/artgrid.1485767

Abstract

The study investigates the impact of different curing techniques on the compressive strength and absorption rate of laterised concrete, a sustainable material integrating laterite as a partial or full substitute for conventional sand. Over curing durations spanning 1 to 28 days, compressive strength and sorptivity of laterised concrete specimens were evaluated under varied curing conditions: water immersion, intermittent sprinkling, wet rug covering, plastic sheet covering, and air-drying. Results indicate a consistent trend: higher laterite content correlates with decreased compressive strength yet increased sorptivity. Notably, water immersion consistently yielded the highest compressive strength (31.68 N/mm²) and lowest sorptivity (0.0201 mm/√s) after 28 days, followed by intermittent sprinkling, wet rug, plastic sheet coverings, and air-drying, with the latter exhibiting the poorest performance. The study underscores the pivotal role of curing methods, revealing an inverse relationship between compressive strength and sorptivity. Moreover, as the curing duration extends, compressive strength improves while sorptivity diminishes, emphasising the enduring efficacy of curing. These insights accentuate the significance of selecting suitable curing strategies to enhance laterised concrete structures' performance and durability, thereby advancing sustainable construction practices.

Ethical Statement

Ethical Approval This article does not contain any studies with human participants or animals performed by any of the authors. Conflict of Interest The authors declare that they have no conflict of interest. Funding This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors personally funded this research.

Project Number

No external funding was received for this research.

References

  • Abdel-Hay, A. S. (2017). Properties of recycled concrete aggregate under different curing conditions. HBRC Journal, 13(3), 271–276. https://doi.org/10.1016/j.hbrcj.2015.07.001
  • Abdurahman, A., Parviz, S., & Faiz. (1996). Effects of curing conditions and age on chloride permeability of fly ash mortar. ACI Materials Journal, 93(1). https://doi.org/10.14359/9800
  • Akinkurolere, O. O. (2021). Water absorption, sorptivity and permeability properties of concrete containing chemical and mineral admixtures. LAUTECH Journal of Civil and Environmental Studies, 6(2). https://doi.org/10.36108/laujoces/1202.60.0201
  • Alexander, M. G., Ballim, Y., & Stanish, K. (2008). A framework for use of durability indexes in performance-based design and specifications for reinforced concrete structures. Materials and Structures, 41, 921–936.
  • Aluko, O., Awolusi, T., & Adesina, A. (2020). Influence of curing media and mixing solution on the compressive strength of laterized concrete. Silicon, 12(10), 2425–2432. https://doi.org/10.1007/s12633-019-00343-x
  • Ambrose, E. E., Ekpo, D. U., Umoren, I. M., & Ekwere, U. S. (2018). Compressive strength and workability of laterized quarry sand concrete. Nigerian Journal of Technology, 37(3), 605. https://doi.org/10.4314/njt.v37i3.7
  • ASTM. (2013). Standard test method for measurement of rate of absorption of water by hydraulic-cement concretes, (ASTM C1585). ASTM International.
  • Atiş, C. D., Özcan, F., Kılıç, A., Karahan, O., Bilim, C., & Severcan, M. H. (2005). Influence of dry and wet curing conditions on compressive strength of silica fume concrete. Building and Environment, 40(12), 1678–1683. https://doi.org/10.1016/j.buildenv.2004.12.005
  • Awolusi, T. F., Sojobi, A. O., & Afolayan, J. O. (2017). SDA and laterite applications in concrete: Prospects and effects of elevated temperature. Cogent Engineering, 4(1), 1387954. https://doi.org/10.1080/23311916.2017.1387954
  • Awolusi, T. F., Oguntayo, D. O., Babalola, O. E., Oke, O. L., & Akinkurolere, O. O. (2021). Investigation of micronized laterite sandcrete block compressive strength. Case Studies in Construction Materials, 14, e00530. https://doi.org/10.1016/j.cscm.2021.e00530
  • Awoyera, P. O., Akinmusuru, J. O., Dawson, A. R., Ndambuki, J. M., & Thom, N. H. (2018). Microstructural characteristics, porosity and strength development in ceramic-laterized concrete. Cement and Concrete Composites, 86, 224–237. https://doi.org/10.1016/j.cemconcomp.2017.11.017
  • Balakrishna, M. N., Mohamad, M., Evans, R., & Rahman, M. M. (2020). Water absorption capacity of concrete cubes with sorptivity coefficient. Journal of Civil Engineering, 48(1), 17–27.
  • British Standard Institution. (2011). Cement composition, specification and conformity criteria for common cements, (BS EN 197-1:2007). British Standards Institution.
  • British Standards Institution. (2002). Mixing water for concrete. Specification for sampling, testing and assessing the suitability of water, including water recovered from processes in the concrete industry, as mixing water for concrete (BS EN 1008:2002). British Standards Institution.
  • BS. (2009). Testing hardened concrete: Making and curing specimens for strength test, (BS EN 12390-2). British Standard Institution.
  • Chand, M. S. R., Giri, P. S. N. R., Kumar, G. R., & Kumar, P. R. (2015). Paraffin wax as an internal curing agent in ordinary concrete. Magazine of Concrete Research, 67(2), 82–88. https://doi.org/10.1680/macr.14.00192
  • Du, H., Gao, H. J., & Pang, S. D. (2016). Improvement in concrete resistance against water and chloride ingress by adding graphene nanoplatelet. Cement and Concrete Research, 83, 114–123. https://doi.org/10.1016/j.cemconres.2016.02.005
  • Esam, E., Amr, A. A. E. H., & Rania, A. F. I. (2014). Comparative study on strength, permeability and sorptivity of concrete and their relation with concrete durability. International Journal of Engineering and Innovative Technology, 4(4), 132–139.
  • Federowicz, K., Kaszyńska, M., Zieliński, A., & Hoffmann, M. (2020). Effect of curing methods on shrinkage development in 3d-printed concrete. Materials, 13(11), 2590. https://doi.org/10.3390/ma13112590
  • Folagbade, S. O. (2020). Effect of carbonation on the permeation properties of laterized concrete. American Journal of Engineering Research, 9(7), 93–102.
  • Gabriel-Wettey, F. K. N., Appiadu-Boakye, K., & Anewuoh, F. (2021). Impact of curing methods on the porosity and compressive strength of concrete. Journal of Engineering Research and Reports, 18–30. https://doi.org/10.9734/jerr/2021/v20i917371
  • Garba, I., Sulaiman, T. A., Kaura, J. M., & Abdullahi, M. (2024). Optimization and predictive models on strengths and durability of reinforced laterized concrete. Covenant journal of engineering technology. https://journals.covenantuniversity.edu.ng/index.php/cjet/article/view/4002
  • Gogineni, A., Panday, I. K., Kumar, P., & Paswan, R. Kr. (2024). Predicting compressive strength of concrete with fly ash and admixture using XGBoost: A comparative study of machine learning algorithms. Asian Journal of Civil Engineering, 25(1), 685–698. https://doi.org/10.1007/s42107-023-00804-0
  • Hall, C. (1989). Water sorptivity of mortars and concretes: A review. Magazine of Concrete Research, 41(147). https://doi.org/10.1680/macr.1989.41.147.51
  • Kamaruzaman, N. W., & Muthusamy, K. (2013). Effect of curing regime on compressive strength of concrete containing malaysian laterite aggregate. Advanced Materials Research, 626, 839–843. https://doi.org/10.4028/www.scientific.net/AMR.626.839
  • Kim, T.-K., Choi, S.-J., Choi, J.-H., & Kim, J.-H. J. (2019). Prediction of chloride penetration depth rate and diffusion coefficient rate of concrete from curing condition variations due to climate change effect. International Journal of Concrete Structures and Materials, 13(1), 15. https://doi.org/10.1186/s40069-019-0333-4
  • Kubissa, W., Wilińska, I., & Jaskulski, R. (2022). Study on the effect of VMA admixture for concrete cured under different conditions on air permeability and sorptivity. Construction and Building Materials, 346, 128350. https://doi.org/10.1016/j.conbuildmat.2022.128350
  • Kumar, P., & Pratap, B. (2024). Feature engineering for predicting compressive strength of high-strength concrete with machine learning models. Asian Journal of Civil Engineering, 25(1), 723–736. https://doi.org/10.1007/s42107-023-00807-x
  • Li, J., Chen, Z., & Chen, W. (2020). Axial load-bearing capacities of pre-cast self-insulation walls made by foam concrete. Structures, 27, 1951–1961. https://doi.org/10.1016/j.istruc.2020.08.001
  • Maroliya, M. K. (2012). Estimation of water sorptivity as durability index for ultra high strength reactive powder concrete. International Journal of Engineering Research and Development, 4(3), 53–56.
  • Mehta, P. K., & Monteiro, P. J. M. (2014). Concrete: Microstructure, Properties and Materials. McGraw-Hill, NewYork, NY, USA.
  • Moore, A. J., Bakera, A. T., & Alexander, M. G. (2021). A critical review of the water sorptivity index (WSI) parameter for potential durability assessment: Can WSI be considered in isolation of porosity? Journal of the South African Institution of Civil Engineering, 63(2), 27–34.
  • Odeyemi, S., Abdulwahab, R., Anifowose, M. A., & Atoyebi, O. D. (2021). Effect of curing methods on the compressive strengths of palm kernel shell concrete. Civil Engineering and Architecture. https://doi.org/10.13189/cea.2021.090716
  • Oni, O., & Arum, C. (2023). Workability and compressive strength of concrete containing binary cement, mixed fines, and superplasticizer. Facta Universitatis - Series: Architecture and Civil Engineering, 21(2), 299–314. https://doi.org/10.2298/FUACE220818017O
  • Onipe, M. O., & Fologbade, S. O. (2017). Void content and sorptivity of laterized concrete. Advances in Built Environment Research, 147–156.
  • Osei, D. Y., Mustapha, Z., & Zebilila, M. (2020). Compressive strength of concrete using different curing methods. Journal of Social and Development Sciences. https://doi.org/10.22610/jsds.v10i3(s).2983
  • Pan, J.-L., Shen, J.-X., Zhong, Z.-L., Xia, Y., Li, X.-D., & Zhang, Y.-Q. (2024). Damage evolution and failure mechanism of masonry walls under in-plane cyclic loading. Engineering Failure Analysis, 161, 108240. https://doi.org/10.1016/j.engfailanal.2024.108240
  • Potdar, N. M., Abraham, S. M., & Kakade, V. (2023). Assessment of efficacy of curing practices in concrete. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.04.025
  • Rachel, P. P. (2019). Experimental investigation on strength and durability of concrete using high volume flyash, GGBS and M-Sand. International Journal for Research in Applied Science and Engineering Technology, 7(3), 396–403. https://doi.org/10.22214/ijraset.2019.3069
  • Rehman, S. K. U., Imtiaz, L., Aslam, F., Khan, M. K., Haseeb, M., Javed, M. F., Alyousef, R., & Alabduljabbar, H. (2020). Experimental investigation of NaOH and KOH mixture in SCBA-based geopolymer cement composite. Materials, 13(15), 3437. https://doi.org/10.3390/ma13153437
  • Rucker-Gramm, P., & Beddoe, R. E. (2010). Effect of moisture content of concrete on water uptake. Cement and Concrete Research, 40(1), 102–108. https://doi.org/10.1016/j.cemconres.2009.09.001
  • Spijkerman, Z., Boshoff, W. P., & Smit, M. S. (2022). Effectiveness of concrete curing compounds in extreme windy and dry conditions. MATEC Web of Conferences, 364, 05006. https://doi.org/10.1051/matecconf/202236405006
  • Tanyildizi, M. (2022). The effect of cement replacement with eggshell powder on the sorptivity index of concrete. Bitlis Eren University Journal of Science and Technology, 12(1), 36–42. https://doi.org/10.17678/beuscitech.1077465
  • Udeme, H. I., Ufan, C. O., & Abraham, U. E. (2022). Comparative study of cube and cylinder crushing strengths of laterized concrete. International Journal of Multidisciplinary Research and Analysis, 7(2), 543–552. https://doi.org/10.47191/ijmra/v7-i02-16
  • Ukpata, J. O., Ewa, D. E., Success, N. G., Alaneme, G. U., Otu, O. N., & Olaiya, B. C. (2024). Effects of aggregate sizes on the performance of laterized concrete. Scientific Reports, 14(1), 448. https://doi.org/10.1038/s41598-023-50998-1
  • Wang, H., Guo, B., Guo, Y., Jiang, R., Zhao, F., & Wang, B. (2023). Effects of curing methods on the permeability and mechanism of cover concrete. Journal of Building Material Science, 5(1), Article 1. https://doi.org/10.30564/jbms.v5i1.5484
  • Wang, L., & Li, S. (2014). Capillary absorption of concrete after mechanical loading. Magazine of Concrete Research, 66(8), 420–431. https://doi.org/10.1680/macr.13.00331
  • Wedatalla, A. M. O., Yang, J., & Ahmed, A. A. M. (2019). Curing effects on high-strength concrete properties. Advances in Civil Engineering. https://doi.org/10.1155/2019/1683292
  • Yang, L., Liu, G., Gao, D., & Zhang, C. (2021). Experimental study on water absorption of unsaturated concrete: W/c ratio, coarse aggregate and saturation degree. Construction and Building Materials, 272, 121945. https://doi.org/10.1016/j.conbuildmat.2020.121945
  • Zhang, S. P., & Zong, L. (2014). Evaluation of relationship between water absorption and durability of concrete materials. Advances in Materials Science and Engineering, 2014, 650373. https://doi.org/10.1155/2014/650373
  • Zhou, J. (2023). Visualization of green building landscape space environment design based on image processing and artificial intelligence algorithm. Scite.Ai. https://doi.org/10.21203/rs.3.rs-2550309/v1
  • Zhuang, S., Wang, Q., & Zhang, M. (2022). Water absorption behaviour of concrete: Novel experimental findings and model characterization. Journal of Building Engineering, 53, 104602. https://doi.org/10.1016/j.jobe.2022.104602
There are 52 citations in total.

Details

Primary Language English
Subjects Materials and Technology in Architecture
Journal Section Research Article
Authors

Mark Onipe 0009-0001-3267-2026

Project Number No external funding was received for this research.
Publication Date June 30, 2025
Submission Date May 17, 2024
Acceptance Date April 24, 2025
Published in Issue Year 2025 Volume: 7 Issue: 1

Cite

APA Onipe, M. (2025). INFLUENCE OF CURING MEDIA ON THE COMPRESSIVE STRENGTH DEVELOPMENT AND ABSORPTION RATE OF LATERIZED CONCRETE. ArtGRID - Journal of Architecture Engineering and Fine Arts, 7(1), 114-131. https://doi.org/10.57165/artgrid.1485767