Review
BibTex RIS Cite

Toxicity of nanoparticles on insects: A Review

Year 2018, Volume: 1 Issue: 2, 49 - 61, 31.12.2018

Abstract

The rapid development of nanomaterials in various fields of science results in being in need of understanding their toxic effects on development and physiology of non-target organisms and environment. Increased production and widespread use of these nanomaterials led to their release into the environment; nevertheless, the knowledge of their behaviour in organisms is scarce. Due to their physical and chemical characteristics, nanoparticles could be more toxic for the organisms than ion forms. Besides, they may enhance the enzymatic antioxidant defence systems, DNA damage, membrane permeability, cell death and also lead to genotoxicity and neurotoxicity in the organisms. Nanoparticles are also growing application in the field of pest management of insects. Therefore, it is necessary to evaluate the adverse effects of nanoparticles on insect species. Hence, in this study, it is summarized the current knowledge about the toxic effects of nanoparticles against insects. 

References

  • Tiede, K., Hassellöv, M., Breitbarth, E., Chaudhry, Q., Boxall, A.B.A. (2009). Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. Journal of Chromatography A. 1216(3): 503–509.
  • Guzman, K.A.D., Taylor, M.R. Banfield, J.F. (2006). Environmental risks of nanotechnology: national nanotechnology initiative funding, 2000–2004. Environmental Science and Technology. 40: 1401–1407.
  • Nowack, B., Bucheli, T.D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution. 150: 5–22.
  • Roco, M.C. (2005) Environmentally responsible development of nanotechnology. Environmental Science and Technology. 39: 106A–112A.
  • Debnath, N., Das, S., Seth, D., Chandra, R., Bhattacharya, S.C., Goswami, A., 2011. Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). Journal of Pesticide Science. 84, 99–105.
  • Buzea, C., Blandino, I.P. Robbie, K. (2007). Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases. 2(4): MR17–MR172.
  • Ju–Nam, Y. Lead, J.R. (2008). Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications. Science of the Total Environment. 400: 396–414.
  • Handy, R.D., Kammer, F., Lead, J.R., Hassellöv, M., Owen, R., Crane, M. (2008a). The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology. 17: 287–314.
  • Bhatt, I., Tripathi, B.N. (2011). Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere. 82(3): 308–317.
  • Klaine, S.J., Alvarez, P.J.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S.; McLaughlin, M. J., Lead, J. R. (2008). Nanomaterials in the environment: behavior, fate, bioavailability and effects. Environmental Toxicology and Chemistry. 27(9): 1825–1851
  • Oberdörster. E. (2004). Manufactured Nanomaterials (Fullerenes, C60) Induce Oxidative Stress in the Brain of Juvenile Largemouth Bass. Environmental Health Perspectives. 112(10): 1058–1062
  • Smith, C.J., Shaw, B.J., Handy, R.D. (2007). Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): Respiratory toxicity, organ pathologies, and other physiological effects. Aquatic Toxicology. 82: 94–109.
  • Buffet, P.E., Tankoua, O.F., Pan, J.F., Berhanu, D., Herrenknecht, C., Poirier, L., Amiard– Triquet, C., Amiard, J.C., Bérard, J.B., Risso, C., Guibbolini, M., Roméo, M., Reip, P., Valsami–Jones, E., Mouneyrac, C. (2011). Behavioural and biochemical responses of two marine invertebrates Scrobicularia plana and Hediste diversicolor to copper oxide nanoparticles. Chemosphere. 84: 166–174.
  • Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H.C., Kahru, A. (2008). Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere. 71: 1308–1316.
  • Ringwood, A.H., McCarthy, M., Bates, T.C., Carroll, D.L. (2010). The effects of silver nanoparticles on oyster embryos. Marine Environmental Research. 69(1): 549–551.
  • Masala, O., Seshadri, R. (2004). Synthesis routes for large volumes of nanoparticles. Annual Review of Materials Research. 34: 41–81.
  • Aitken, R.J., Chaudhry, M.Q., Boxall, A.B.A., Hull, M. (2006). Manufacture and use of nanomaterials: current status in the UK and global trends. Occupational Medicine. 56: 300– 306.
  • Paur, H.–R., Cassee, F.R., Teeguarden, J., Fissan, H., Diabate, S., Aufderheide, M., Kreyling, W.G., Hänninen, O., Kasper, G., Riediker, M., Rothen–Rutishauser, B., Schmid, O. (2011). In–vitro cell exposure studies for the assessment of nanoparticle toxicity in the lung—A dialog between aerosol science and biology. Journal of Aerosol Science. 42: 668–692.
  • Canesi, L., Ciacci, C., Fabbri, R., Marcomini, A., Pojana, G., Gallo, G. (2012). Bivalve molluscs as a unique target group for nanoparticle toxicity. Marine Environmental Research. 76: 16–21.
  • Griffitt, R.J., Luo, J., Gao, J. Bonzongo, J.C., Barber, D.S. (2008). Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environmental Toxicology and Chemistry. 27(9): 1972–1978.
  • Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramírez, J.T., Yacaman, J.M. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology. 16:2346–2353.
  • Geiser, M., Rothen-Rutishauser, B., Kapp, N., Schürch, S., Kreyling, W., Schulz, H., Semmler, M., Im Hof, V., Heyder, J., Gehr, P. (2005). Ultrafine Particles Cross Cellular Membranes Nonphagocytic mechanism in lungs and in Cultured Cells. Environmental Health Perspective. 113(11): 1555-1560.
  • Moore, M.N. (2006). Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environmental International. 32: 967–976.
  • Moore, M.N., Readman, J.A.J., Readman, J.W., Lowe, D.M., Frickers, P.E., Beesley, A. (2009). Lysosomal cytotoxicity of carbon nanoparticles in cells of the molluscan immune system: an in vitro study. Nanotoxicology. 3(1): 40–45.
  • Unfried, K., Albrecht, C., Klotz, L., Mikecz, A.V., Grether–Beck, S., Schins, R.P.F. (2007). Cellular responses to nanoparticles: target structures and mechanisms. Nanotoxicology. 1(1): 52–71.
  • Handy, R.D., Owen, R., Valsami–Jones, E. (2008b). The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology. 17: 315–325.
  • Scown, T.M., Aerle, R.V., Tyler, C.R. (2010). Review: do engineered nanoparticles pose a significant threat to the aquatic environment? Critical Reviews in Toxicology. 40(7): 653– 670.
  • Gomes T., Araújo, O., Pereira, R., Ana C. Cravo, A.A., Bebianno, M.J. (2013). Genotoxicity of copper oxide and silver nanoparticles in the mussel Mytilus galloprovincialis Marine Environmental Research. 84: 51-59
  • Ahamed, M., Siddiqui, M.A., Akhtar, M.J., Ahmad, I., Pant, A.B. (2010). Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochemical and Biophysical Research Communications. 396: 578–583.
  • Ivask, A., Bondarenko, O., Jepihhina, N., Kahru, A. (2010). Profiling of the reactive oxygen species–related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals. Analytical and Bioanalytical Chemistry. 398: 701–716.
  • Yeo, M.K., Pak, S.W. (2008). Exposing zebrafish to silver nanoparticles during caudal fin regeneration disrupts caudal fin growth and p53 signaling. Molecular and Cellular Toxicology. 4(4): 311–317.
  • Rai, M., Kon, K., Ingle, A., Duran, N., Galdiero, S., Galdiero, M. (2014) Broadspectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Applied Microbiology and Biotechnology. 98:1951–1961
  • Jiang, X., Miclăuş, T., Wang, L., Foldbjerg, R., Sutherland, D.S., Autrup, H., Chen, C., Beer, C. (2015) Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity. Nanotoxicology 9:181–189
  • Benelli, G. (2016) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitology Research. 115:23–34
  • Benelli, G. (2018) Mode of action of nanoparticles against insects Environmental Science and Pollution Research 25:12329–12341
  • Petersen, E.J., Nelson, B.C. (2010). Mechanisms and measurements of nanomaterial–induced oxidative damage to DNA. Analytical and Bioanalytical Chemistry. 398: 613–650.
  • Nair, P.M.G., Choi, J. (2011) Identification, characterization and expression profiles of Chironomus riparius glutathione S-transferase (GST) genes in response to cadmium and silver nanoparticles exposure. Aquatic Toxicology. 101(3):550–560
  • Nair, P.M.G., Choi, J. (2012) Modulation in the mRNA expression of ecdysone receptor gene in aquatic midge, Chironomus riparius upon exposure to nonylphenol and silver nanoparticles. Environmental Toxicology and Pharmacology. 33:98–106
  • Foldbjerg, R., Jiang, X., Miclăus, T., Chunying, C., Autrup, H., Beer, C. (2015) Silver nanoparticles—wolves in sheep’s clothing? Toxicological Research. 4: 563–575
  • Mao, B.H., Chen, Z.Y., Wang, Y.J., Yan, S.J. (2018) Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Scientific Reports. 8(1):2445
  • Yasur, J., Usha-Rani, P. (2015) Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere 124:92–102
  • Dziewięcka, M., Karpeta-Kaczmarek, J., Augustyniak, M., Majchrzycki, Ł., Augustyniak-Jabłokow, M.A. (2016) Evaluation of in vivo graphene oxide toxicity for Acheta domesticus in relation to nanomaterial purity and time passed from the exposure. Journal of Hazardous Materials. 305:30–40
  • Ryter, S.W., Kim, H.P., Hoetzel, A., Park, J.W., Nakahira, K., Wang, X., Choi, A.M. (2007). Mechanism of cell death in oxidative stress. Antioxidant Redox Signal 9, 49–89.
  • Ahamed, M., Karns, M., Goodson, M., Rowe, J., Hussain, S., Schlager, J., Hong, Y. (2008). DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicology and Applied Pharmacology. 233, 404–410.
  • Li, G.Y., Osborne, N.N. (2008). Oxidative-induced apoptosis to an immortalized ganglion cell line is caspase independent but involves the activation of poly (ADP-ribose) polymerase and apoptosis-inducing factor. Brain Research. 188, 35–43.
  • Donaldson, K., Poland, C.A., Schins, R.P.F. (2010). Possible genotoxic mechanisms of nanoparticles: Criteria for improved test strategies. Nanotoxicology. 4(4): 414–420.
  • Gonzalez, L., Lison, D., Kirsch–Volders, M. (2008). Genotoxicity of engineered nanomaterials: A critical review. Nanotoxicology. 2(4): 252–273.
  • Singh, N., Manshian, B., Jenkins, G.J.S., Griffiths, S.M., Williams, P.M., Maffeis, T.G.G., Wrigh, C.J., Doak, S.H. (2009). Nano Genotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials. 30: 3891–3914.
  • Gagné, F., Auclair, J., Turcotte, P., Fournier, M., Gagnona, C., Sauvé, S., Blaise, C. (2008). Ecotoxicity of CdTe quantum dots to freshwater mussels: Impacts on immune system, oxidative stress and genotoxicity. Aquatic Toxicology. 86: 333–340.
  • Chae, Y.J., Pham, C.H., Lee, J., Bae, E., Yi, J., Gu, M.B. (2009). Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquatic toxicology. 94(4): 320–327.
  • Choi, J.E., Kim, S., Ahn, J.H., Youn, P., Kang, J.S., Park, K., Yi, J., Ryu, D.Y. (2010). Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquatic Toxicology. 100: 151–159.
  • Kádar, E., Tarran, G.A., Jha, A.N., Al–Subiai, S.N. (2011). Stabilization of engineered zero– valent nanoiron with Na–acrylic copolymer enhances spermiotoxicity. Environmental Science and Technology. 45: 3245–3251.
  • Gomes, T.,, Araújo, O., Pereira, R., Almeida, A.C., Cravo, A., Bebianno, M.J. (2012). Genotoxicity of copper oxide and silver nanoparticles in the mussel Mytilus galloprovincialis. Marine Environmental Research. 84:51-59.
  • Hu, Y.L., Gao, J.Q. (2010). Potential neurotoxicity of nanoparticles. International Journal of Pharmaceutics. 394: 115–121.
  • Long, T.C., Saleh, N., Tilton, R.D., Lowry, G.V., Veronesi, B. (2006). Titanium Dioxide (P25) Produces Reactive Oxygen Species in Immortalized Brain Microglia (BV2): Implications for Nanoparticle Neurotoxicity. Environmental Science and Technology. 40(14): 4346–4352.
  • Wang, Z., Zhao, J., Li, F., Gao, D., Xing, B. (2009). Adsoprtion and inhibition of acetylcholinesterase by different nanoparticles. Chemosphere. 77(1): 67–73.
  • Cajaraville, M.P., Bebianno, M.J., Blasco, J., Porte, C., Sarasquete, C., Viarengo, A. (2000). The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula: a practical approach. The Science of the Total Environment. 247: 295–311.
  • Regoli, F., Principato, G. (1995). Glutathione, glutathione–dependent and antioxidant enzymes in mussel, Mytilus galloprovincialis, exposed to metals under field and laboratory conditions: implications for the use of biochemical biomarkers. Aquatic Toxicology. 31: 143– 164.
  • Wang, J., Chen, C., Liu, Y., Jiao, F., Li, W., Lao, F., Li, Y., Li, B., Ge, C., Zhou, G., Gao, Y., Zhao, Y., Chai, Z. (2008). Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicological Letters. 183: 72–80.
  • Yixi, X., Yang, W., Chen, X., Xiao, J. (2014). Inhibition of flavonoids on acetylcholine esterase: binding and structure–activity relationship. Food & Function. 5: 2582.
  • Milivojevic, T., Glavan, G., Bozic, J., Sepcic, K., Mesaric, T. (2015) Neurotoxic potential of ingested ZnO nanomaterials on bees. Chemosphere 120:547-554.
  • Gomes, T., Pinheiro, J.P., Cancio, I., Pereira, C.G., Cardoso, C., Bebianno, M.J. (2011). Effects of copper nanoparticles exposure in the mussel Mytilus galloprovincialis. Environmental Science and Technology. 45 (21), 9356-9362.
  • Banumathi, B., Vaseeharan, B., Ishwarya, R., Govindarajan, M., Alharbi, N.S., Kadaikunnan, S., Khaled, J.M., Benelli, G. (2017) Toxicity of herbal extracts used in ethno-veterinary medicine and green encapsulated ZnO nanoparticles against Aedes aegypti and microbial pathogens. Parasitological Research. 116:1637–1651
  • Mommaerts, V., Jodko, K., Thomassen, L.C., Martens, J.A., Kirsch-Volders, M., Smagghe, G. (2012) Assessment of side-effects by LudoxTMA silica nanoparticles following a dietary exposure on the bumblebee Bombus terrestris. Nanotoxicology 6:554–561
  • Kalimuthu, K., Panneerselvam, C., Chou, C., Tseng, L.C., Murugan, K., Tsai, K.H., Alarfaj, A.A., Higuchi, A., Canale, A., Hwang, J.S., Benelli, G. (2017) Control of dengue and Zika virus vector Aedes aegypti using the predatory copepod Megacyclops formosanus: synergy with Hedychium coronarium-synthesized silver nanoparticles and related histological changes in targeted mosquitoes. Process Safety and Environmental Protection. 109:82–96
  • Sundararajan, B., Kumari, B.R. (2017). Novel synthesis of gold nanoparticles using Artemisia vulgaris L. leaf extract and their efficacy of larvicidal activity against dengue fever vector Aedes aegypti L. Journal of Trace Elements in Medicine and Biology. 43, 187-196
  • Fröhlich, E., Kueznik, T., Samberger, C., Roblegg, E., Wrighton, C., Pieber, T.R. (2010) Size-dependent effects of nanoparticles on the activity of cytochrome P450 isoenzymes. Toxicological Applied Pharmacology. 242: 326–332
  • Armstrong, N., Ramamoorthy, M., Lyon, D., Jones, K., Duttaroy, A. (2013) Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLoS One 8(1): e53186.
  • Bharani, R.A., Namasivayam, S.K.R. (2017). Biogenic silver nanoparticles mediated stress on developmental period and gut physiology of major lepidopteran pest Spodoptera litura (Fab.) (Lepidoptera: Noctuidae)—An eco-friendly approach of insect pest control. Journal of Environmental Chemical Engineering. 5(1): 453-467
  • Fouad, H., Hongjie, L., Hosni, D., Wei, J., Abbas, G, Ga’al, H., Jianchu, M. (2018) Controlling Aedes albopictus and Culex pipiens pallens using silver nanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode of action. Artif Cells Nanomed Biotechnology 46:558–567.
  • Ga'al, H., Fouad, H., Tian, J., Hu, Y., Abbas, G., Mo, J. (2018). Synthesis, characterization and efficacy of silver nanoparticles against Aedes albopictus larvae and pupae. Pesticide Biochemistry and Physiology. 144:49-56
  • Li, F., Gu, Z., Wang, B., Xie, Y., Ma, L., Xu, K., Ni, M., Zhang, H., Shen, W., Li, B. (2014) Effects of the biosynthesis and signaling pathway of ecdysterone on silkworm (Bombyx mori) following exposure to titanium dioxide nanoparticles. Journal of Chemical Ecology. 40:913–922
  • Li, F., Gu, Z., Wang, B., Xie, Y., Ma, L., Xu, K., Ni, M., Zhang, H., Shen, W., Li, B. (2014) Effects of the biosynthesis and signaling pathway of ecdysterone on silkworm (Bombyx mori) following exposure to titanium dioxide nanoparticles. Journal of Chemical Ecology. 40:913–922
  • Ávalos, A., Haza, A.I., Drosopoulou, E., Mavragani-Tsipidou, P., Morales, P. (2015) In vivo genotoxicity assessment of silver nanoparticles of different sizes by the Somatic Mutation and Recombination Test (SMART) on Drosophila. Food and Chemical Toxicology. 85:114–119

Nanopartiküllerin böcekler üzerine toksik etkileri: Derleme

Year 2018, Volume: 1 Issue: 2, 49 - 61, 31.12.2018

Abstract

Bilimde birçok alanda nanomateryallerin kullanımının hızlı bir şekilde artması sonucu bu partiküllerin hedef olmayan organizmaların gelişim ve fizyolojileri ile çevre üzerine toksik etkilerinin belirlenmesi büyük önem taşımaktadır. Nanomateryallerin üretimi ve yaygın kullanımları, çevreye salınımlarını artırmasına rağmen, canlı organizmalardaki davranışları tam olarak bilinmemektedir. Nanopartiküller fiziksel ve kimyasal özelliklerinden dolayı, canlı organizmalarda iyon formlarına göre daha toksik olabilmektedirler. Bunun yanı sıra, enzimatik antioksidan savunma sistemleri üzerinde olumsuz etkilere, DNA hasarına, membran geçirgenliğine, hücre ölümüne neden olmakla birlikte, genotoksik ve nörotoksik etkileri de bulunmaktadır. Son yıllarda, nanopartiküller tarımsal alanlarda zararlılarla mücadelede de kullanılmaya başlanmıştır. Bu yüzden nanopartiküllerin böcekler üzerine olumsuz etkilerinin belirlenmesi büyük önem taşımaktadır. Bu amaç kapsamında, nanopartiküllerin böcekler üzerine toksik etkileri hakkında güncel bilgiler özetlenmiştir.

References

  • Tiede, K., Hassellöv, M., Breitbarth, E., Chaudhry, Q., Boxall, A.B.A. (2009). Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. Journal of Chromatography A. 1216(3): 503–509.
  • Guzman, K.A.D., Taylor, M.R. Banfield, J.F. (2006). Environmental risks of nanotechnology: national nanotechnology initiative funding, 2000–2004. Environmental Science and Technology. 40: 1401–1407.
  • Nowack, B., Bucheli, T.D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution. 150: 5–22.
  • Roco, M.C. (2005) Environmentally responsible development of nanotechnology. Environmental Science and Technology. 39: 106A–112A.
  • Debnath, N., Das, S., Seth, D., Chandra, R., Bhattacharya, S.C., Goswami, A., 2011. Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). Journal of Pesticide Science. 84, 99–105.
  • Buzea, C., Blandino, I.P. Robbie, K. (2007). Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases. 2(4): MR17–MR172.
  • Ju–Nam, Y. Lead, J.R. (2008). Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications. Science of the Total Environment. 400: 396–414.
  • Handy, R.D., Kammer, F., Lead, J.R., Hassellöv, M., Owen, R., Crane, M. (2008a). The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology. 17: 287–314.
  • Bhatt, I., Tripathi, B.N. (2011). Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere. 82(3): 308–317.
  • Klaine, S.J., Alvarez, P.J.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S.; McLaughlin, M. J., Lead, J. R. (2008). Nanomaterials in the environment: behavior, fate, bioavailability and effects. Environmental Toxicology and Chemistry. 27(9): 1825–1851
  • Oberdörster. E. (2004). Manufactured Nanomaterials (Fullerenes, C60) Induce Oxidative Stress in the Brain of Juvenile Largemouth Bass. Environmental Health Perspectives. 112(10): 1058–1062
  • Smith, C.J., Shaw, B.J., Handy, R.D. (2007). Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): Respiratory toxicity, organ pathologies, and other physiological effects. Aquatic Toxicology. 82: 94–109.
  • Buffet, P.E., Tankoua, O.F., Pan, J.F., Berhanu, D., Herrenknecht, C., Poirier, L., Amiard– Triquet, C., Amiard, J.C., Bérard, J.B., Risso, C., Guibbolini, M., Roméo, M., Reip, P., Valsami–Jones, E., Mouneyrac, C. (2011). Behavioural and biochemical responses of two marine invertebrates Scrobicularia plana and Hediste diversicolor to copper oxide nanoparticles. Chemosphere. 84: 166–174.
  • Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H.C., Kahru, A. (2008). Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere. 71: 1308–1316.
  • Ringwood, A.H., McCarthy, M., Bates, T.C., Carroll, D.L. (2010). The effects of silver nanoparticles on oyster embryos. Marine Environmental Research. 69(1): 549–551.
  • Masala, O., Seshadri, R. (2004). Synthesis routes for large volumes of nanoparticles. Annual Review of Materials Research. 34: 41–81.
  • Aitken, R.J., Chaudhry, M.Q., Boxall, A.B.A., Hull, M. (2006). Manufacture and use of nanomaterials: current status in the UK and global trends. Occupational Medicine. 56: 300– 306.
  • Paur, H.–R., Cassee, F.R., Teeguarden, J., Fissan, H., Diabate, S., Aufderheide, M., Kreyling, W.G., Hänninen, O., Kasper, G., Riediker, M., Rothen–Rutishauser, B., Schmid, O. (2011). In–vitro cell exposure studies for the assessment of nanoparticle toxicity in the lung—A dialog between aerosol science and biology. Journal of Aerosol Science. 42: 668–692.
  • Canesi, L., Ciacci, C., Fabbri, R., Marcomini, A., Pojana, G., Gallo, G. (2012). Bivalve molluscs as a unique target group for nanoparticle toxicity. Marine Environmental Research. 76: 16–21.
  • Griffitt, R.J., Luo, J., Gao, J. Bonzongo, J.C., Barber, D.S. (2008). Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environmental Toxicology and Chemistry. 27(9): 1972–1978.
  • Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramírez, J.T., Yacaman, J.M. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology. 16:2346–2353.
  • Geiser, M., Rothen-Rutishauser, B., Kapp, N., Schürch, S., Kreyling, W., Schulz, H., Semmler, M., Im Hof, V., Heyder, J., Gehr, P. (2005). Ultrafine Particles Cross Cellular Membranes Nonphagocytic mechanism in lungs and in Cultured Cells. Environmental Health Perspective. 113(11): 1555-1560.
  • Moore, M.N. (2006). Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environmental International. 32: 967–976.
  • Moore, M.N., Readman, J.A.J., Readman, J.W., Lowe, D.M., Frickers, P.E., Beesley, A. (2009). Lysosomal cytotoxicity of carbon nanoparticles in cells of the molluscan immune system: an in vitro study. Nanotoxicology. 3(1): 40–45.
  • Unfried, K., Albrecht, C., Klotz, L., Mikecz, A.V., Grether–Beck, S., Schins, R.P.F. (2007). Cellular responses to nanoparticles: target structures and mechanisms. Nanotoxicology. 1(1): 52–71.
  • Handy, R.D., Owen, R., Valsami–Jones, E. (2008b). The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology. 17: 315–325.
  • Scown, T.M., Aerle, R.V., Tyler, C.R. (2010). Review: do engineered nanoparticles pose a significant threat to the aquatic environment? Critical Reviews in Toxicology. 40(7): 653– 670.
  • Gomes T., Araújo, O., Pereira, R., Ana C. Cravo, A.A., Bebianno, M.J. (2013). Genotoxicity of copper oxide and silver nanoparticles in the mussel Mytilus galloprovincialis Marine Environmental Research. 84: 51-59
  • Ahamed, M., Siddiqui, M.A., Akhtar, M.J., Ahmad, I., Pant, A.B. (2010). Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochemical and Biophysical Research Communications. 396: 578–583.
  • Ivask, A., Bondarenko, O., Jepihhina, N., Kahru, A. (2010). Profiling of the reactive oxygen species–related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals. Analytical and Bioanalytical Chemistry. 398: 701–716.
  • Yeo, M.K., Pak, S.W. (2008). Exposing zebrafish to silver nanoparticles during caudal fin regeneration disrupts caudal fin growth and p53 signaling. Molecular and Cellular Toxicology. 4(4): 311–317.
  • Rai, M., Kon, K., Ingle, A., Duran, N., Galdiero, S., Galdiero, M. (2014) Broadspectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Applied Microbiology and Biotechnology. 98:1951–1961
  • Jiang, X., Miclăuş, T., Wang, L., Foldbjerg, R., Sutherland, D.S., Autrup, H., Chen, C., Beer, C. (2015) Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity. Nanotoxicology 9:181–189
  • Benelli, G. (2016) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitology Research. 115:23–34
  • Benelli, G. (2018) Mode of action of nanoparticles against insects Environmental Science and Pollution Research 25:12329–12341
  • Petersen, E.J., Nelson, B.C. (2010). Mechanisms and measurements of nanomaterial–induced oxidative damage to DNA. Analytical and Bioanalytical Chemistry. 398: 613–650.
  • Nair, P.M.G., Choi, J. (2011) Identification, characterization and expression profiles of Chironomus riparius glutathione S-transferase (GST) genes in response to cadmium and silver nanoparticles exposure. Aquatic Toxicology. 101(3):550–560
  • Nair, P.M.G., Choi, J. (2012) Modulation in the mRNA expression of ecdysone receptor gene in aquatic midge, Chironomus riparius upon exposure to nonylphenol and silver nanoparticles. Environmental Toxicology and Pharmacology. 33:98–106
  • Foldbjerg, R., Jiang, X., Miclăus, T., Chunying, C., Autrup, H., Beer, C. (2015) Silver nanoparticles—wolves in sheep’s clothing? Toxicological Research. 4: 563–575
  • Mao, B.H., Chen, Z.Y., Wang, Y.J., Yan, S.J. (2018) Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Scientific Reports. 8(1):2445
  • Yasur, J., Usha-Rani, P. (2015) Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere 124:92–102
  • Dziewięcka, M., Karpeta-Kaczmarek, J., Augustyniak, M., Majchrzycki, Ł., Augustyniak-Jabłokow, M.A. (2016) Evaluation of in vivo graphene oxide toxicity for Acheta domesticus in relation to nanomaterial purity and time passed from the exposure. Journal of Hazardous Materials. 305:30–40
  • Ryter, S.W., Kim, H.P., Hoetzel, A., Park, J.W., Nakahira, K., Wang, X., Choi, A.M. (2007). Mechanism of cell death in oxidative stress. Antioxidant Redox Signal 9, 49–89.
  • Ahamed, M., Karns, M., Goodson, M., Rowe, J., Hussain, S., Schlager, J., Hong, Y. (2008). DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicology and Applied Pharmacology. 233, 404–410.
  • Li, G.Y., Osborne, N.N. (2008). Oxidative-induced apoptosis to an immortalized ganglion cell line is caspase independent but involves the activation of poly (ADP-ribose) polymerase and apoptosis-inducing factor. Brain Research. 188, 35–43.
  • Donaldson, K., Poland, C.A., Schins, R.P.F. (2010). Possible genotoxic mechanisms of nanoparticles: Criteria for improved test strategies. Nanotoxicology. 4(4): 414–420.
  • Gonzalez, L., Lison, D., Kirsch–Volders, M. (2008). Genotoxicity of engineered nanomaterials: A critical review. Nanotoxicology. 2(4): 252–273.
  • Singh, N., Manshian, B., Jenkins, G.J.S., Griffiths, S.M., Williams, P.M., Maffeis, T.G.G., Wrigh, C.J., Doak, S.H. (2009). Nano Genotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials. 30: 3891–3914.
  • Gagné, F., Auclair, J., Turcotte, P., Fournier, M., Gagnona, C., Sauvé, S., Blaise, C. (2008). Ecotoxicity of CdTe quantum dots to freshwater mussels: Impacts on immune system, oxidative stress and genotoxicity. Aquatic Toxicology. 86: 333–340.
  • Chae, Y.J., Pham, C.H., Lee, J., Bae, E., Yi, J., Gu, M.B. (2009). Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquatic toxicology. 94(4): 320–327.
  • Choi, J.E., Kim, S., Ahn, J.H., Youn, P., Kang, J.S., Park, K., Yi, J., Ryu, D.Y. (2010). Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquatic Toxicology. 100: 151–159.
  • Kádar, E., Tarran, G.A., Jha, A.N., Al–Subiai, S.N. (2011). Stabilization of engineered zero– valent nanoiron with Na–acrylic copolymer enhances spermiotoxicity. Environmental Science and Technology. 45: 3245–3251.
  • Gomes, T.,, Araújo, O., Pereira, R., Almeida, A.C., Cravo, A., Bebianno, M.J. (2012). Genotoxicity of copper oxide and silver nanoparticles in the mussel Mytilus galloprovincialis. Marine Environmental Research. 84:51-59.
  • Hu, Y.L., Gao, J.Q. (2010). Potential neurotoxicity of nanoparticles. International Journal of Pharmaceutics. 394: 115–121.
  • Long, T.C., Saleh, N., Tilton, R.D., Lowry, G.V., Veronesi, B. (2006). Titanium Dioxide (P25) Produces Reactive Oxygen Species in Immortalized Brain Microglia (BV2): Implications for Nanoparticle Neurotoxicity. Environmental Science and Technology. 40(14): 4346–4352.
  • Wang, Z., Zhao, J., Li, F., Gao, D., Xing, B. (2009). Adsoprtion and inhibition of acetylcholinesterase by different nanoparticles. Chemosphere. 77(1): 67–73.
  • Cajaraville, M.P., Bebianno, M.J., Blasco, J., Porte, C., Sarasquete, C., Viarengo, A. (2000). The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula: a practical approach. The Science of the Total Environment. 247: 295–311.
  • Regoli, F., Principato, G. (1995). Glutathione, glutathione–dependent and antioxidant enzymes in mussel, Mytilus galloprovincialis, exposed to metals under field and laboratory conditions: implications for the use of biochemical biomarkers. Aquatic Toxicology. 31: 143– 164.
  • Wang, J., Chen, C., Liu, Y., Jiao, F., Li, W., Lao, F., Li, Y., Li, B., Ge, C., Zhou, G., Gao, Y., Zhao, Y., Chai, Z. (2008). Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicological Letters. 183: 72–80.
  • Yixi, X., Yang, W., Chen, X., Xiao, J. (2014). Inhibition of flavonoids on acetylcholine esterase: binding and structure–activity relationship. Food & Function. 5: 2582.
  • Milivojevic, T., Glavan, G., Bozic, J., Sepcic, K., Mesaric, T. (2015) Neurotoxic potential of ingested ZnO nanomaterials on bees. Chemosphere 120:547-554.
  • Gomes, T., Pinheiro, J.P., Cancio, I., Pereira, C.G., Cardoso, C., Bebianno, M.J. (2011). Effects of copper nanoparticles exposure in the mussel Mytilus galloprovincialis. Environmental Science and Technology. 45 (21), 9356-9362.
  • Banumathi, B., Vaseeharan, B., Ishwarya, R., Govindarajan, M., Alharbi, N.S., Kadaikunnan, S., Khaled, J.M., Benelli, G. (2017) Toxicity of herbal extracts used in ethno-veterinary medicine and green encapsulated ZnO nanoparticles against Aedes aegypti and microbial pathogens. Parasitological Research. 116:1637–1651
  • Mommaerts, V., Jodko, K., Thomassen, L.C., Martens, J.A., Kirsch-Volders, M., Smagghe, G. (2012) Assessment of side-effects by LudoxTMA silica nanoparticles following a dietary exposure on the bumblebee Bombus terrestris. Nanotoxicology 6:554–561
  • Kalimuthu, K., Panneerselvam, C., Chou, C., Tseng, L.C., Murugan, K., Tsai, K.H., Alarfaj, A.A., Higuchi, A., Canale, A., Hwang, J.S., Benelli, G. (2017) Control of dengue and Zika virus vector Aedes aegypti using the predatory copepod Megacyclops formosanus: synergy with Hedychium coronarium-synthesized silver nanoparticles and related histological changes in targeted mosquitoes. Process Safety and Environmental Protection. 109:82–96
  • Sundararajan, B., Kumari, B.R. (2017). Novel synthesis of gold nanoparticles using Artemisia vulgaris L. leaf extract and their efficacy of larvicidal activity against dengue fever vector Aedes aegypti L. Journal of Trace Elements in Medicine and Biology. 43, 187-196
  • Fröhlich, E., Kueznik, T., Samberger, C., Roblegg, E., Wrighton, C., Pieber, T.R. (2010) Size-dependent effects of nanoparticles on the activity of cytochrome P450 isoenzymes. Toxicological Applied Pharmacology. 242: 326–332
  • Armstrong, N., Ramamoorthy, M., Lyon, D., Jones, K., Duttaroy, A. (2013) Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLoS One 8(1): e53186.
  • Bharani, R.A., Namasivayam, S.K.R. (2017). Biogenic silver nanoparticles mediated stress on developmental period and gut physiology of major lepidopteran pest Spodoptera litura (Fab.) (Lepidoptera: Noctuidae)—An eco-friendly approach of insect pest control. Journal of Environmental Chemical Engineering. 5(1): 453-467
  • Fouad, H., Hongjie, L., Hosni, D., Wei, J., Abbas, G, Ga’al, H., Jianchu, M. (2018) Controlling Aedes albopictus and Culex pipiens pallens using silver nanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode of action. Artif Cells Nanomed Biotechnology 46:558–567.
  • Ga'al, H., Fouad, H., Tian, J., Hu, Y., Abbas, G., Mo, J. (2018). Synthesis, characterization and efficacy of silver nanoparticles against Aedes albopictus larvae and pupae. Pesticide Biochemistry and Physiology. 144:49-56
  • Li, F., Gu, Z., Wang, B., Xie, Y., Ma, L., Xu, K., Ni, M., Zhang, H., Shen, W., Li, B. (2014) Effects of the biosynthesis and signaling pathway of ecdysterone on silkworm (Bombyx mori) following exposure to titanium dioxide nanoparticles. Journal of Chemical Ecology. 40:913–922
  • Li, F., Gu, Z., Wang, B., Xie, Y., Ma, L., Xu, K., Ni, M., Zhang, H., Shen, W., Li, B. (2014) Effects of the biosynthesis and signaling pathway of ecdysterone on silkworm (Bombyx mori) following exposure to titanium dioxide nanoparticles. Journal of Chemical Ecology. 40:913–922
  • Ávalos, A., Haza, A.I., Drosopoulou, E., Mavragani-Tsipidou, P., Morales, P. (2015) In vivo genotoxicity assessment of silver nanoparticles of different sizes by the Somatic Mutation and Recombination Test (SMART) on Drosophila. Food and Chemical Toxicology. 85:114–119
There are 74 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Benay Sezer Tunçsoy

Publication Date December 31, 2018
Published in Issue Year 2018 Volume: 1 Issue: 2

Cite

APA Sezer Tunçsoy, B. (2018). Toxicity of nanoparticles on insects: A Review. Artıbilim: Adana Bilim Ve Teknoloji Üniversitesi Fen Bilimleri Dergisi, 1(2), 49-61.
AMA Sezer Tunçsoy B. Toxicity of nanoparticles on insects: A Review. Artıbilim: Adana Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi. December 2018;1(2):49-61.
Chicago Sezer Tunçsoy, Benay. “Toxicity of Nanoparticles on Insects: A Review”. Artıbilim: Adana Bilim Ve Teknoloji Üniversitesi Fen Bilimleri Dergisi 1, no. 2 (December 2018): 49-61.
EndNote Sezer Tunçsoy B (December 1, 2018) Toxicity of nanoparticles on insects: A Review. Artıbilim: Adana Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi 1 2 49–61.
IEEE B. Sezer Tunçsoy, “Toxicity of nanoparticles on insects: A Review”, Artıbilim: Adana Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi, vol. 1, no. 2, pp. 49–61, 2018.
ISNAD Sezer Tunçsoy, Benay. “Toxicity of Nanoparticles on Insects: A Review”. Artıbilim: Adana Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi 1/2 (December 2018), 49-61.
JAMA Sezer Tunçsoy B. Toxicity of nanoparticles on insects: A Review. Artıbilim: Adana Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi. 2018;1:49–61.
MLA Sezer Tunçsoy, Benay. “Toxicity of Nanoparticles on Insects: A Review”. Artıbilim: Adana Bilim Ve Teknoloji Üniversitesi Fen Bilimleri Dergisi, vol. 1, no. 2, 2018, pp. 49-61.
Vancouver Sezer Tunçsoy B. Toxicity of nanoparticles on insects: A Review. Artıbilim: Adana Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi. 2018;1(2):49-61.