Review
BibTex RIS Cite

Moleküler Baskılanmış Polimerlerin Yeşil Yönleri ve Çevresel Uygulamaları

Year 2022, Volume: 5 Issue: 1, 60 - 73, 30.06.2022
https://doi.org/10.55198/artibilimfen.1127690

Abstract

Yeşil kimya, kimyasal proseslerde çevreye, doğaya ve bütün canlı varlıklara karşı yol açan zararların minimuma düşürülmesini ve hatta tamamen ortadan kaldırılmasını amaçlayan araştırmaların gerçekleştirildiği, son zamanlarda araştırmacılardan büyük ilgi gören önemli alanlardan biridir. Moleküler baskılanmış polimerler ise, karmaşık bir matrikste (biyolojik, çevresel ve gıda numuneleri gibi) bile hedef bileşiğe karşı yüksek afinite ve seçicilik sergileyen, yüksek düzeyde çapraz bağlı, özel dizayn edilmiş sentetik malzemelerdir. Bu polimerler yeşil kimya temelleri dikkate alınarak çevre dostu malzemeler olarak farklı uygulama alanlarına sahiptir. Bu çalışmada, moleküler baskılanmış polimerlerin çevre dostu yönleri ön plana çıkarılarak, bazı kirliliklerin çevresel numunelerden etkin bir şekilde uzaklaştırılması üzerine gerçekleştirilen araştırmalara yer verilmiştir.

References

  • [1] Kupai, J. Razali, M. Büyüktiryaki, S. Keçili, R. Szekely, G.(2017). Long-term stability and reusability of molecularly imprinted polymers, Polymer Chemistry, , 8, 666-673.
  • [2] Martín-Esteban, A. (2016). Recent molecularly imprinted polymer-based sample preparation techniques in environmental analysis, Trends Environ. Anal. Chem. 9, 8–14.
  • [3] Keçili, R. Denizli, A. (2021) Chapter 2 - Molecular Imprinting-Based Smart Nanosensors for Pharmaceutical Applications, Editor(s): Adil Denizli, Molecular Imprinting for Nanosensors and Other Sensing Applications, Elsevier, 19-43.
  • [4] Keçili, R. Hussain, C. M. (2018) Recent progress of ımprinted nanomaterials in analytical chemistry, Int J Anal Chem, Article ID 8503853.
  • [5] Sellergren, B.(2001) Ed. Molecularly Imprinted Polymers: Man-Made Mimics of Antibodies and Their Application in Analytical Chemistry: Techniques and Instrumentation in Analytical Chemistry; Elsevier
  • [6] Hussain, CM, Kecili, R. (2019) Modern Environmental Analysis Techniques for Pollutants, Elsevier
  • [7] Anastas, P. T.; Warner, J. C. (1998) Green Chemistry: Theory and Practice, Oxford University Press: Oxford University Press
  • [8] Wulff, G. and Sarhan, A. (1972). The Use of Polymers with Enzyme-Analogous Structures for the Resolution of Racemates. Angewandte Chemie International Edition, 11, 341-344.
  • [9] Shen, X., Xu, C., Ye, L. (2013) Molecularly Imprinted Polymers for Clean Water: Analysis and Purification. Ind. Eng. Chem. Res. 52, 13890−13899.
  • [10] Meier, M. A. R. Metzger J. O., Schubert, U. S. (2007). Plant oil renewable resources as green alternatives in polymer science, Chem. Soc. Rev., 36, 1788-1802.
  • [11] Molina-Gutiérrez, S. Ladmiral, V. Bongiovanni, R. Caillol, S. Lacroix-Desmazes, P. (2019). Radical polymerization of biobased monomers in aqueous dispersed media, Green Chem., 21, 36-53.
  • [12] Riaz, A. Verma, D. Zeb, H. Lee, J. H. Kim, J. C. Kwak, S. K. Kim, J. (2018). Solvothermal liquefaction of alkali lignin to obtain a high yield of aromatic monomers while suppressing solvent consumption, Green Chem., 20, 4957-4974
  • [13] Lu, W. Ness, J. E. Xie, W. Zhang, X. Minshull, J. Gross, R. A. (2010). Biosynthesis of monomers for plastics from renewable oils, J. Am. Chem. Soc. 132, 15451-15455.
  • [14]. Cruz-Aguilar, A Herrera-González, A. M. Vázquez-García1, R. A. Navarro-Rodríguez, D. Coreño, J. (2013). Synthesis of acrylic and allylic bifunctional crosslinking monomers derived from PET waste, IOP Conf. Ser.: Mater. Sci. Eng. 45, 012007
  • [15] Jaswal, S. Gaur, B. (2015). Green methacrylated lignin model compounds as reactive monomers with low VOC emission for thermosetting resins, Green Process Synth, 4, 191-202.
  • [16] Lima, M. S.. Costa, C. S. M. F Coelho, J. F. J. Fonseca, A. C. Serra, A. C. (2018). A simple strategy toward the substitution of styrene by sobrerol-based monomers in unsaturated polyester resins, Green Chem., 20, 4880-489.
  • [17] Yao, B. Kolla, P. Koodali, R. Balaranjan, S. Shrestha, S. Smirnova, A. (2017). Laccase–natural mediator systems for “green”synthesis of phenolic monomers from alkali lignin, Sustain Energ Fuels. , 1, 1573–1579
  • [18] Hayama, R. Koyama, T. Matsushita, T. Hatano, K. Matsuoka, K. (2018). Preparation of functional monomers as precursors of bioprobes from a common styrene derivative and polymer synthesis, Molecules, 23, 2875.
  • [19] Papacchini1 A., Telaretti Leggieri, M. R. Zucchini, L. Ortenzi, M. A. Ridi, F. Giomi, D. Salvini, A. (2018) Modified α,α’-trehalose and D-glucose: green monomers for the synthesis of vinyl copolymers, R. Soc. Open sci., 5, 171313.
  • [20] Yuan, Y. Liang, S. Yan, H. Ma, Z. Liu, Y. (2015). Ionic liquid-molecularly imprinted polymers for pipettetip solid-phase extraction of (Z)-3-(chloromethylene)-6-flourothiochroman-4-one in urine, J. Chromatogr. A, 1408, 49-55.
  • [21] Wang, Y. Han, M. Liu, G. Hou, X. Huang, Y. Wu, K. Li, C. (2015). Molecularly imprinted electrochemical sensing interface based on in-situ-polymerization of amino-functionalized ionic liquid for specific recognition of bovine serum albumin, Biosens. Bioelectron. 74, 792-798.
  • [22] Qiao, F. Gao, M. Yan, H. (2016). Molecularly imprinted ionic liquid magnetic microspheres for the rapid isolation of organochlorine pesticides in environmental water, J. Sep. Sci. 39, 1310-1315
  • [23] Marcelo, G. Ferreira I. C., Viveiros, R. Casimiro, T. (2018). Development of itaconic acid-based molecular imprinted polymers using supercritical fluid technology for pH-triggered drug delivery, Int. J. Pharm., 542, 125–131.
  • [24] Yuan, S. Deng, Q. Fang, G. Wu, J. Li, W. Wang, S. (2014). Protein imprinted ionic liquid polymer on the surface of multiwall carbon nanotubes with high binding capacity for lysozyme, J. Chromatogr. B, 960, 239-246.
  • [25] Xu, W. Dai, Q. Wang, Y. Hu, X. Xu, P. Ni, R. Meng J., (2018). Creating magnetic ionic liquid-molecularly imprinted polymers for selective extraction of lysozyme, RSC Adv., , 8, 21850-21856
  • [26] Zhang, X. Zhang, N. Du, C. Guan, P. Gao, X. Wang, C. Du Y., Ding, S. Hu, X. (2017). Preparation of magnetic epitope imprinted polymer microspheres using cyclodextrin-based ionic liquids as functional monomer for highly selective and effective enrichment of cytochrome c, Chem. Eng. J. 317, 988-998
  • [27] Zhu, X. Zeng, Y. Zhang, Z. Yang, Y. Zhai, Y. Wang, H. Liu, L. Hu, J. Li, L. (2018). A new composite of graphene and molecularly imprinted polymer based on ionic liquids as functional monomer and cross-linker for electrochemical sensing 6-benzylaminopurine, Biosen. Bioelectron., 108, 38-45.
  • [28] Xiang, H. Peng, M. Li, H. Peng, S. Shi, S. (2017). High-capacity hollow porous dummy molecular imprinted polymers using ionic liquid as functional monomer for selective recognition of salicylic acid, J. Pharm. Biomed. Anal. 133, 75-81.
  • [29] Chen, L. Huang, X. (2017). Preparation and application of a poly (ionic liquid)-based molecularly imprinted polymer for multiple monolithic fiber solid-phase microextraction of phenolic acids in fruit juice and beer samples, Analyst, 142, 4039-4047.
  • [30] Cseri, L. Razali, M. Pogany P., Szekely, G. (2018). Organic solvents in sustainable synthesis and engineering, Chapter 3.15, Green Chemistry, Editors: B. Török, T. Dransfield, Elsevier
  • [31] Wang, M. Chang, X. Wu, X. Yan, H. Qiao, F. (2016). Water-compatible dummy molecularly imprinted resin prepared in aqueous solution for green miniaturized solid-phase extraction of plant growth regulators, J. Chromatogr. A, 1458, 9-17.
  • [32] He, C. Long, Y. Pan, J. Li, K. Liu, F. (2008) Molecularly imprinted silica prepared with immiscible ionic liquid as solvent and porogen for selective recognition of testosterone, Talanta, 74, 1126-1131.
  • [33] Rebocho, S. Cordas, C.M. Viveiros, R. Casimiro, T. (2018). Development of a ferrocenyl-based MIP in supercritical carbon dioxide: Towards an electrochemical sensor for bisphenol A, J Supercrit Fluid. 135, 98-104.
  • [34] Viveiros, R. Karim, K.. Piletsky, S.A Heggie, W. Casimiro, T. (2017). Development of a molecularly imprinted polymer for a pharmaceutical impurity in supercritical CO2: Rational design using computational approach, J Clean Prod., 168, 1025-1031
  • [35] Ye, L. Yoshimatsu, K. Kolodziej, D. Da Cruz Francisco, J. Dey, E. S. (2006) Preparation of molecularly imprinted polymers in supercritical carbon dioxide, J. Appl. Polym. Sci. 102, 2863–2867.
  • [36] da Silva, M. S. Viveiros, R..Coelho, M. B Aguiar-Ricardo, A. Casimiro, T. (2012) Supercritical CO2-assistedpreparationofaPMMAcomposite membrane for bisphenol A recognition in aqueous environment, Chem. Eng. Sci., , 68, 94-100.
  • [37] Ferreira, J. P. Viveiros, R. Lourenço, A. Soares da Silva, M. Rosatella, A. Casimiro T., Afonso, C.A. M. (2014) Integrated desulfurization of diesel by combination of metal-free oxidation and product removal by molecularly imprinted polymers, RSC Adv., 4, 54948-54952.
  • [38] Lourenço, A. Viveiros, R. Mouro, A. Lima, J. C. Bonifacio, V. D. B. Casimiro, T. (2014) Supercritical CO2-assisted synthesis of an ultrasensitive amphibious quantum dot molecularly imprinted sensor, RSC Adv., 4, 63338-63341.
  • [39] Lee, J-C. Kim, C-R.. Byun, H-S (2014). Synthesis and adsorption properties of carbamazepine imprinted polymer by dispersion polymerization in supercritical carbon dioxide, Korean J. Chem. Eng., 31(12), 2266-2273.
  • [40] Leclaire, J. Heldebrant, D. J. (2018). A call to (green) arms: a rallying cry for green chemistry and engineering for CO2 capture, utilisation and storage, Green Chem., 20, 5058-5081.
  • [41] He, H. Zhuang, L. Chen S., Liua H., Li, Q. (2016) Structure design of a hyperbranched polyamine adsorbent for CO2 adsorption, Green Chem., 18, 5859-5869.
  • [42] Azimi, A. Javanbakht, M. (2014). Computational prediction and experimental selectivity coefficients for hydroxyzine and cetirizine molecularly imprinted polymer based potentiometric sensors, Anal. Chim. Acta, 812, 184-190.
  • [43] Ahmadi, F. Rezaei, H. Tahvilian, R. (2012). Computational-aided design of molecularly imprinted polymer for selective extraction of methadone from plasma and saliva and determination by gas chromatography, J. Chromatogr. A, 1270, 9-19.
  • [44] Karimian, N. Gholivand, M.B. Taherkhani, F. (2015). Computational design and development of a novel voltammetric sensor for minoxidil detection based on electropolymerized molecularly imprinted polymer, J. Electroanal. Chem. 740, 45-52.
  • [45] Madikizela, L.M. Mdluli, P.S. Chimuka, L. (2016). Experimental and theoretical study of molecular interactions between 2-vinyl pyridine and acidic pharmaceuticals used as multi-template molecules in molecularly imprinted polymer, React. Funct. Polym. 103, 33-43.
  • [46] Huang, Y., Li, Y., Luo, Q., Huang, X. (2021). One-pot strategy as a green and rapid method to fabricate magnetic molecularly imprinted nanoparticles for selective capture of sulfonylurea herbicides. ACS Appl. Mater. Interfaces 13, 37280−37288.
  • [47] Guo, L. Deng, Q. Fang, G. Gao, W. Wang, S. (2011). Preparation and evaluation of molecularly imprinted ionic liquids polymer as sorbent for on-line solid-phase extraction of chlorsulfuron in environmental water samples, J. Chromatogr. A, 1218, 6271-6277.
  • [48] Zhang, Y., Liu, R., Hu, Y., Li, G. (2009). Microwave heating in preparation of magnetic molecularly imprinted polymer beads for trace triazines analysis in complicated samples, Anal. Chem. 81, 967–976
  • [49] da Silva, M.S. Viveiros, R. Coelho, M.B. Aguiar-Ricardo, A. Casimiro, T. (2012). Supercritical CO2-assisted preparation of a PMMA composite membrane for bisphenol A recognition in aqueous environment, Chem Eng Sci. 68, 94–100.
  • [50] Shen, W. Xu, G. Wei, F. Yang, J. Cai, Z. Hu, Q. (2013). Preparation and application of imprinted polymer for tetrabromobisphenol A using tetrachlorobisphenol A as the dummy template, Anal. Methods, 5, 5208-5214.
  • [51]Xing, W., Wu, Y., Li, C., Lu, J., Lin, X., Yu, C. (2020) Biomass activated carbon/SiO2‑based imprinted membranes for selective separation of atrazine: A synergistic integration system, ACS Sustainable Chem. Eng. 2020, 8, 5636−5647.
Year 2022, Volume: 5 Issue: 1, 60 - 73, 30.06.2022
https://doi.org/10.55198/artibilimfen.1127690

Abstract

References

  • [1] Kupai, J. Razali, M. Büyüktiryaki, S. Keçili, R. Szekely, G.(2017). Long-term stability and reusability of molecularly imprinted polymers, Polymer Chemistry, , 8, 666-673.
  • [2] Martín-Esteban, A. (2016). Recent molecularly imprinted polymer-based sample preparation techniques in environmental analysis, Trends Environ. Anal. Chem. 9, 8–14.
  • [3] Keçili, R. Denizli, A. (2021) Chapter 2 - Molecular Imprinting-Based Smart Nanosensors for Pharmaceutical Applications, Editor(s): Adil Denizli, Molecular Imprinting for Nanosensors and Other Sensing Applications, Elsevier, 19-43.
  • [4] Keçili, R. Hussain, C. M. (2018) Recent progress of ımprinted nanomaterials in analytical chemistry, Int J Anal Chem, Article ID 8503853.
  • [5] Sellergren, B.(2001) Ed. Molecularly Imprinted Polymers: Man-Made Mimics of Antibodies and Their Application in Analytical Chemistry: Techniques and Instrumentation in Analytical Chemistry; Elsevier
  • [6] Hussain, CM, Kecili, R. (2019) Modern Environmental Analysis Techniques for Pollutants, Elsevier
  • [7] Anastas, P. T.; Warner, J. C. (1998) Green Chemistry: Theory and Practice, Oxford University Press: Oxford University Press
  • [8] Wulff, G. and Sarhan, A. (1972). The Use of Polymers with Enzyme-Analogous Structures for the Resolution of Racemates. Angewandte Chemie International Edition, 11, 341-344.
  • [9] Shen, X., Xu, C., Ye, L. (2013) Molecularly Imprinted Polymers for Clean Water: Analysis and Purification. Ind. Eng. Chem. Res. 52, 13890−13899.
  • [10] Meier, M. A. R. Metzger J. O., Schubert, U. S. (2007). Plant oil renewable resources as green alternatives in polymer science, Chem. Soc. Rev., 36, 1788-1802.
  • [11] Molina-Gutiérrez, S. Ladmiral, V. Bongiovanni, R. Caillol, S. Lacroix-Desmazes, P. (2019). Radical polymerization of biobased monomers in aqueous dispersed media, Green Chem., 21, 36-53.
  • [12] Riaz, A. Verma, D. Zeb, H. Lee, J. H. Kim, J. C. Kwak, S. K. Kim, J. (2018). Solvothermal liquefaction of alkali lignin to obtain a high yield of aromatic monomers while suppressing solvent consumption, Green Chem., 20, 4957-4974
  • [13] Lu, W. Ness, J. E. Xie, W. Zhang, X. Minshull, J. Gross, R. A. (2010). Biosynthesis of monomers for plastics from renewable oils, J. Am. Chem. Soc. 132, 15451-15455.
  • [14]. Cruz-Aguilar, A Herrera-González, A. M. Vázquez-García1, R. A. Navarro-Rodríguez, D. Coreño, J. (2013). Synthesis of acrylic and allylic bifunctional crosslinking monomers derived from PET waste, IOP Conf. Ser.: Mater. Sci. Eng. 45, 012007
  • [15] Jaswal, S. Gaur, B. (2015). Green methacrylated lignin model compounds as reactive monomers with low VOC emission for thermosetting resins, Green Process Synth, 4, 191-202.
  • [16] Lima, M. S.. Costa, C. S. M. F Coelho, J. F. J. Fonseca, A. C. Serra, A. C. (2018). A simple strategy toward the substitution of styrene by sobrerol-based monomers in unsaturated polyester resins, Green Chem., 20, 4880-489.
  • [17] Yao, B. Kolla, P. Koodali, R. Balaranjan, S. Shrestha, S. Smirnova, A. (2017). Laccase–natural mediator systems for “green”synthesis of phenolic monomers from alkali lignin, Sustain Energ Fuels. , 1, 1573–1579
  • [18] Hayama, R. Koyama, T. Matsushita, T. Hatano, K. Matsuoka, K. (2018). Preparation of functional monomers as precursors of bioprobes from a common styrene derivative and polymer synthesis, Molecules, 23, 2875.
  • [19] Papacchini1 A., Telaretti Leggieri, M. R. Zucchini, L. Ortenzi, M. A. Ridi, F. Giomi, D. Salvini, A. (2018) Modified α,α’-trehalose and D-glucose: green monomers for the synthesis of vinyl copolymers, R. Soc. Open sci., 5, 171313.
  • [20] Yuan, Y. Liang, S. Yan, H. Ma, Z. Liu, Y. (2015). Ionic liquid-molecularly imprinted polymers for pipettetip solid-phase extraction of (Z)-3-(chloromethylene)-6-flourothiochroman-4-one in urine, J. Chromatogr. A, 1408, 49-55.
  • [21] Wang, Y. Han, M. Liu, G. Hou, X. Huang, Y. Wu, K. Li, C. (2015). Molecularly imprinted electrochemical sensing interface based on in-situ-polymerization of amino-functionalized ionic liquid for specific recognition of bovine serum albumin, Biosens. Bioelectron. 74, 792-798.
  • [22] Qiao, F. Gao, M. Yan, H. (2016). Molecularly imprinted ionic liquid magnetic microspheres for the rapid isolation of organochlorine pesticides in environmental water, J. Sep. Sci. 39, 1310-1315
  • [23] Marcelo, G. Ferreira I. C., Viveiros, R. Casimiro, T. (2018). Development of itaconic acid-based molecular imprinted polymers using supercritical fluid technology for pH-triggered drug delivery, Int. J. Pharm., 542, 125–131.
  • [24] Yuan, S. Deng, Q. Fang, G. Wu, J. Li, W. Wang, S. (2014). Protein imprinted ionic liquid polymer on the surface of multiwall carbon nanotubes with high binding capacity for lysozyme, J. Chromatogr. B, 960, 239-246.
  • [25] Xu, W. Dai, Q. Wang, Y. Hu, X. Xu, P. Ni, R. Meng J., (2018). Creating magnetic ionic liquid-molecularly imprinted polymers for selective extraction of lysozyme, RSC Adv., , 8, 21850-21856
  • [26] Zhang, X. Zhang, N. Du, C. Guan, P. Gao, X. Wang, C. Du Y., Ding, S. Hu, X. (2017). Preparation of magnetic epitope imprinted polymer microspheres using cyclodextrin-based ionic liquids as functional monomer for highly selective and effective enrichment of cytochrome c, Chem. Eng. J. 317, 988-998
  • [27] Zhu, X. Zeng, Y. Zhang, Z. Yang, Y. Zhai, Y. Wang, H. Liu, L. Hu, J. Li, L. (2018). A new composite of graphene and molecularly imprinted polymer based on ionic liquids as functional monomer and cross-linker for electrochemical sensing 6-benzylaminopurine, Biosen. Bioelectron., 108, 38-45.
  • [28] Xiang, H. Peng, M. Li, H. Peng, S. Shi, S. (2017). High-capacity hollow porous dummy molecular imprinted polymers using ionic liquid as functional monomer for selective recognition of salicylic acid, J. Pharm. Biomed. Anal. 133, 75-81.
  • [29] Chen, L. Huang, X. (2017). Preparation and application of a poly (ionic liquid)-based molecularly imprinted polymer for multiple monolithic fiber solid-phase microextraction of phenolic acids in fruit juice and beer samples, Analyst, 142, 4039-4047.
  • [30] Cseri, L. Razali, M. Pogany P., Szekely, G. (2018). Organic solvents in sustainable synthesis and engineering, Chapter 3.15, Green Chemistry, Editors: B. Török, T. Dransfield, Elsevier
  • [31] Wang, M. Chang, X. Wu, X. Yan, H. Qiao, F. (2016). Water-compatible dummy molecularly imprinted resin prepared in aqueous solution for green miniaturized solid-phase extraction of plant growth regulators, J. Chromatogr. A, 1458, 9-17.
  • [32] He, C. Long, Y. Pan, J. Li, K. Liu, F. (2008) Molecularly imprinted silica prepared with immiscible ionic liquid as solvent and porogen for selective recognition of testosterone, Talanta, 74, 1126-1131.
  • [33] Rebocho, S. Cordas, C.M. Viveiros, R. Casimiro, T. (2018). Development of a ferrocenyl-based MIP in supercritical carbon dioxide: Towards an electrochemical sensor for bisphenol A, J Supercrit Fluid. 135, 98-104.
  • [34] Viveiros, R. Karim, K.. Piletsky, S.A Heggie, W. Casimiro, T. (2017). Development of a molecularly imprinted polymer for a pharmaceutical impurity in supercritical CO2: Rational design using computational approach, J Clean Prod., 168, 1025-1031
  • [35] Ye, L. Yoshimatsu, K. Kolodziej, D. Da Cruz Francisco, J. Dey, E. S. (2006) Preparation of molecularly imprinted polymers in supercritical carbon dioxide, J. Appl. Polym. Sci. 102, 2863–2867.
  • [36] da Silva, M. S. Viveiros, R..Coelho, M. B Aguiar-Ricardo, A. Casimiro, T. (2012) Supercritical CO2-assistedpreparationofaPMMAcomposite membrane for bisphenol A recognition in aqueous environment, Chem. Eng. Sci., , 68, 94-100.
  • [37] Ferreira, J. P. Viveiros, R. Lourenço, A. Soares da Silva, M. Rosatella, A. Casimiro T., Afonso, C.A. M. (2014) Integrated desulfurization of diesel by combination of metal-free oxidation and product removal by molecularly imprinted polymers, RSC Adv., 4, 54948-54952.
  • [38] Lourenço, A. Viveiros, R. Mouro, A. Lima, J. C. Bonifacio, V. D. B. Casimiro, T. (2014) Supercritical CO2-assisted synthesis of an ultrasensitive amphibious quantum dot molecularly imprinted sensor, RSC Adv., 4, 63338-63341.
  • [39] Lee, J-C. Kim, C-R.. Byun, H-S (2014). Synthesis and adsorption properties of carbamazepine imprinted polymer by dispersion polymerization in supercritical carbon dioxide, Korean J. Chem. Eng., 31(12), 2266-2273.
  • [40] Leclaire, J. Heldebrant, D. J. (2018). A call to (green) arms: a rallying cry for green chemistry and engineering for CO2 capture, utilisation and storage, Green Chem., 20, 5058-5081.
  • [41] He, H. Zhuang, L. Chen S., Liua H., Li, Q. (2016) Structure design of a hyperbranched polyamine adsorbent for CO2 adsorption, Green Chem., 18, 5859-5869.
  • [42] Azimi, A. Javanbakht, M. (2014). Computational prediction and experimental selectivity coefficients for hydroxyzine and cetirizine molecularly imprinted polymer based potentiometric sensors, Anal. Chim. Acta, 812, 184-190.
  • [43] Ahmadi, F. Rezaei, H. Tahvilian, R. (2012). Computational-aided design of molecularly imprinted polymer for selective extraction of methadone from plasma and saliva and determination by gas chromatography, J. Chromatogr. A, 1270, 9-19.
  • [44] Karimian, N. Gholivand, M.B. Taherkhani, F. (2015). Computational design and development of a novel voltammetric sensor for minoxidil detection based on electropolymerized molecularly imprinted polymer, J. Electroanal. Chem. 740, 45-52.
  • [45] Madikizela, L.M. Mdluli, P.S. Chimuka, L. (2016). Experimental and theoretical study of molecular interactions between 2-vinyl pyridine and acidic pharmaceuticals used as multi-template molecules in molecularly imprinted polymer, React. Funct. Polym. 103, 33-43.
  • [46] Huang, Y., Li, Y., Luo, Q., Huang, X. (2021). One-pot strategy as a green and rapid method to fabricate magnetic molecularly imprinted nanoparticles for selective capture of sulfonylurea herbicides. ACS Appl. Mater. Interfaces 13, 37280−37288.
  • [47] Guo, L. Deng, Q. Fang, G. Gao, W. Wang, S. (2011). Preparation and evaluation of molecularly imprinted ionic liquids polymer as sorbent for on-line solid-phase extraction of chlorsulfuron in environmental water samples, J. Chromatogr. A, 1218, 6271-6277.
  • [48] Zhang, Y., Liu, R., Hu, Y., Li, G. (2009). Microwave heating in preparation of magnetic molecularly imprinted polymer beads for trace triazines analysis in complicated samples, Anal. Chem. 81, 967–976
  • [49] da Silva, M.S. Viveiros, R. Coelho, M.B. Aguiar-Ricardo, A. Casimiro, T. (2012). Supercritical CO2-assisted preparation of a PMMA composite membrane for bisphenol A recognition in aqueous environment, Chem Eng Sci. 68, 94–100.
  • [50] Shen, W. Xu, G. Wei, F. Yang, J. Cai, Z. Hu, Q. (2013). Preparation and application of imprinted polymer for tetrabromobisphenol A using tetrachlorobisphenol A as the dummy template, Anal. Methods, 5, 5208-5214.
  • [51]Xing, W., Wu, Y., Li, C., Lu, J., Lin, X., Yu, C. (2020) Biomass activated carbon/SiO2‑based imprinted membranes for selective separation of atrazine: A synergistic integration system, ACS Sustainable Chem. Eng. 2020, 8, 5636−5647.
There are 51 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Derleme
Authors

Rüstem Keçili 0000-0002-8377-9042

Publication Date June 30, 2022
Published in Issue Year 2022 Volume: 5 Issue: 1

Cite

APA Keçili, R. (2022). Moleküler Baskılanmış Polimerlerin Yeşil Yönleri ve Çevresel Uygulamaları. Artıbilim: Adana Alparslan Türkeş Bilim Ve Teknoloji Üniversitesi Fen Bilimleri Dergisi, 5(1), 60-73. https://doi.org/10.55198/artibilimfen.1127690
AMA Keçili R. Moleküler Baskılanmış Polimerlerin Yeşil Yönleri ve Çevresel Uygulamaları. Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi. June 2022;5(1):60-73. doi:10.55198/artibilimfen.1127690
Chicago Keçili, Rüstem. “Moleküler Baskılanmış Polimerlerin Yeşil Yönleri Ve Çevresel Uygulamaları”. Artıbilim: Adana Alparslan Türkeş Bilim Ve Teknoloji Üniversitesi Fen Bilimleri Dergisi 5, no. 1 (June 2022): 60-73. https://doi.org/10.55198/artibilimfen.1127690.
EndNote Keçili R (June 1, 2022) Moleküler Baskılanmış Polimerlerin Yeşil Yönleri ve Çevresel Uygulamaları. Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi 5 1 60–73.
IEEE R. Keçili, “Moleküler Baskılanmış Polimerlerin Yeşil Yönleri ve Çevresel Uygulamaları”, Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi, vol. 5, no. 1, pp. 60–73, 2022, doi: 10.55198/artibilimfen.1127690.
ISNAD Keçili, Rüstem. “Moleküler Baskılanmış Polimerlerin Yeşil Yönleri Ve Çevresel Uygulamaları”. Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi 5/1 (June 2022), 60-73. https://doi.org/10.55198/artibilimfen.1127690.
JAMA Keçili R. Moleküler Baskılanmış Polimerlerin Yeşil Yönleri ve Çevresel Uygulamaları. Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi. 2022;5:60–73.
MLA Keçili, Rüstem. “Moleküler Baskılanmış Polimerlerin Yeşil Yönleri Ve Çevresel Uygulamaları”. Artıbilim: Adana Alparslan Türkeş Bilim Ve Teknoloji Üniversitesi Fen Bilimleri Dergisi, vol. 5, no. 1, 2022, pp. 60-73, doi:10.55198/artibilimfen.1127690.
Vancouver Keçili R. Moleküler Baskılanmış Polimerlerin Yeşil Yönleri ve Çevresel Uygulamaları. Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi. 2022;5(1):60-73.