Technical Brief
BibTex RIS Cite

Transgenik Orman Ağaçları

Year 2011, Volume: 12 Issue: 2, 232 - 240, 07.02.2012

Abstract

Biyoteknolojik yöntemler günümüzde pek çok alanda kullanılmaktadır ve bu alanlardan biride orman ağaçlarındaki biyoteknoloji uygulamalarıdır. Orman ağaçlarının hastalıklara ve herbisitlere karşı direnç kazanması, ağaç büyüme hızlarının artırılması ve çevresel streslere (kuraklık, tuzluluk, iklim değişikliği vb.) karşı dirençlerinin geliştirilmesi gibi hayati konularda biyoteknolojik yöntemler sıkça kullanılmaktadır. Ayrıca, odun kalitesinin artırılmasına yönelik lignin içeriklerinin azaltılması ve selüloz miktarının artırılmasıyla ilgili çalışmalarda dikkat çekmektedir. Bu uygulamalarla birlikte, transgenik ağaçların çevreye pozitif ve negatif etkileri tartışılmakta ve bu çalışmalarla ilgili yasal düzenlemeler yapılarak denetim sağlanmaya çalışılmaktadır.

References

  • Balocchi C, Valenzuela S (2004) Introduction to GMOs and Biosafety in Forestry. In: Proceedings of the Forestry Biotechnology Workshop, Global Forum, (2–5 March, Concepción, Chile)
  • Bishop-Hurley SL, Zabkievicz RJ, Grace LJ, Gardner RC, Walter C (2001) Conifer genetic engineering: transgenic Pinus radiata (D Don) and Picea abies (Karst) plants are resistant to the herbicide Buster. Plant Cell Rep 20:235–243
  • Bittsanszky A. et al. (2005) Ability of transgenic poplars with elevated S glutathione content to tolerate zinc(2+) stress. Environ. Int. 31:251–254
  • Boerjan W (2005) Biotechnology and the domestication of forest trees. Current Opinion in Biotechnology 16:159–166 Brown JR (2003) Ancient horizontal gene transfer. Nature Reviews Genetics 4(2):121–132
  • Burley J (2001) Genetics in sustainable forestry: the challenges for forest genetics and tree breeding in the new millennium. Canadian Journal of Forest Research Vol. 31 no. 4:561–565
  • Coleman HD, Canam T, Kang KY, Ellis DD, Mansield SD (2007) Overexpression of UDP-glucose pyrophosphorylase in hybrid poplar affects carbon allocation. Journal of Experimental Botany 58:4257–4268
  • Confalonieri M, Belenghi B, Balestrazzi A, Negri S, Facciotto G, Schenone G, Delledonne M (2000) Transformation of elite white poplar (Populus alba L.) cv. ‘Villafranca’ and evaluation of herbicide resistance. Plant Cell Reports 10:978–982
  • Dgany O. et al. (2004) The structural basis of the thermostability of SP1, a novel plant (Populus tremula) boiling stable protein. J. Biol. Chem. 279:51516–51523
  • Ellis DD, McCabe DE, McInnis S, Ramachandran R, Russell DR, Wallace KM, Martinell BJ, Roberts DR, Raffa KF, McCown BH (1993) Stable transformation of Picea glauca by particle acceleration. Bio-Technology 11:84–89
  • FAO (2004) Preliminary review of biotechnology in forestry including genetic modifications, Rome, Italy.
  • FAO (2010) Forests and Genetically Modified Trees, Rome, Italy
  • Farnum P, Lucier A, Meilan R (2007) Ecological and population genetics research imperatives for transgenic trees. Tree Genetics & Genomes 3(2):119-133
  • Fu J, Sampalo R, Gallardo F, Canovas FM, Kirby EG (2003) Assembly of a cytosolic pine glutamine synthetase holoenzyme in leaves of transgenic poplar leads to enhanced vegetative growth in young plants. Plant Cell & Environment 26:411–418
  • Genissel A, Leple JC, Millet N, Augustin S, Jouanin L, Pilate G (2003) High tolerance against Chrysomela tremulae of transgenic poplar plants expressing a synthetic cry3Aa gene from Bacillus thuringiensis ssp. tenebrionis. Molecular Breeding 1:103–110
  • Gleeson D, Lelu-Walter MA and Parkinson M (2005) Overproduction of proline in transgenic hybrid larch (Larix × leptoeuropaea (Dengler)) cultures renders them tolerant to cold, salt and frost. Molecular Breeding 15:21–29
  • Grace LJ, Charity JA, Gresham B, Kay N, Walter C (2005) Insect-resistant transgenic Pinus radiata. Plant Cell Reports 24:103–111
  • Gray-Mitsumune M, Blomquist K, McQueen-Mason S, Teeri TT, Sundberg B, Mellerowicz EJ (2007) Ectopic expression of a wood-abundant expansion PttEXPA1 promotes cell expansion in primary and secondary tissues in aspen. Plant Biotechnology Journal 6:62–72
  • Guo XH (2009) A ThCAP gene from Tamarix hispida confers cold tolerance in transgenic Populus (P. davidiana X P. bolleana). Biotechnol. Lett. 31, 1079–1087
  • Halpin C, Thain SC, Tilston EL, Guiney E, Lapierre C, and Hopkins DW (2007) Ecological impacts of trees with modified lignin. Tree Genetics & Genomes 3(2):101-110
  • Harfouche A, Meilan R, Altman A (2011) Tree genetic engineering and applications to sustainable forestry and biomass production. Trends in Biotechnology Vol. 29:46-52
  • Henderson AR, Walter C (2006) Genetic engineering in conifer plantation forestry. Silvae Genetica 55(6):253–262
  • Hu L, Lu H, Liu Q, Chen X, Jiang X (2005) Overexpression of mtlD gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannitol. Tree Physiology 25:1273–1281
  • Jia Z (2010) The chitinase gene (Bbchit1) from Beauveria bassiana enhances resistance to Cytospora chrysosperma in Populus tomentosa Carr. Biotechnol. Lett. 32:1325–1332
  • Jing ZP, Gallardo F, Pascual MB, Sampalo R, Romero J, de Navarra AT, Canovas FM (2004) Improved growth in a yield trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytologist 164:137–145
  • Leple JC (2007) Downregulation of cinnamoyl-coenzyme A reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. ThePlant Cell 19:3669–3691
  • Li J, Meilan R, Ma C, Barish M, Strauss SH (2008) Stability of herbicide resistance over 8 years of coppice in ield-grown, genetically engineered poplars. Western Journal of Applied Forestry 23(2):89–93
  • Li L, Zhou Y, Cheng X, Sun J, Marita J, M, Ralph J, Chiang VL (2003) Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proceedings of the National Academy of Sciences of the United States of America 100: 4939–4944
  • Liu FH, Sun ZX, Cui DC, Du BX, Wang CR, Chen SY (2000) Cloning of E. coli mtl-D genes and its expression in transgenic Balizhuangyang (Populus) (in Chinese with an English abstract). Acta Genetica Sinica 27:428−433
  • Meilan R, Ma C, Cheng S, Eaton JA, Miller LK, Crockett RP, DiFazio SP, Strauss SH (2000) High levels of Roundup® and leaf-beetle resistance in genetically engineered hybrid cottonwoods. Washington State University Cooperative Extension Bulletin MISC0272 Pullman Washington, USA 29–38
  • Meng L, Li HS, Jin DM, Cui DC, Wang B (2004) Transformation of Populus deltoids with CH5B gene. Biotechnology Bulletin 3:48–51
  • Mentag R, Luckevich M, Morency MJ, Seguin A (2003) Bacterial disease resistance of transgenic hybrid poplar expressing the synthetic antimicrobial peptide D4E1. Tree Physiology 23:405–411
  • Merkle SA, Nairn CJ (2005) Hardwood tree biotechnology. In Vitro Cell Dev. Biol. Plant 41:602–619
  • Mohamed R, Meilan R, Ostry ME, Michler CS, Strauss SH (2001) Bacterio-opsin gene overexpression fails to elevate fungal disease resistance in transgenic poplar (Populus). Canadian Journal of Forest Research 31:1–8
  • Mullin TJ, Bertrand S (1998) Environmental release of transgenic trees in Canada -Potential benefits and assessment of biosafety. The Forestry Chronicle 74(2):203–219
  • O'Callaghan M, Glare TR, Gurgess E, Malone LA (2005) Effects of plants genetically modified for insect resistance on nontarget organisms. Annual Review of Entomology 50:271-292
  • Park YW, Baba K, Furuta Y, Iida I, Sameshima K, Arai M, Hayashi T (2004) Enhancement of growth and cellulose accumulation by overexpression of xyloglucanase in poplar. FEBS Letters 564:183–187
  • Pascual MB, Jing ZP, Kirby EG, Canovas FM, Gallardo F (2008) Response of transgenic poplar overexpressing cytosolic glutamine synthetase to phosphinothricin. Phytochemistry 69(2):382–389
  • Pilate G, Guiney E, Holt K, Petit-Conil M, Lapierre C, Leplé J.-C, Pollet B, Mila I, Webster EA, Marstorp HG, Hopkins DW, Jouanin L, Boerjan W, Schuch W, Cornu DC (2002) Field and pulping performances of transgenic trees with altered lignifications. Nature Biotechnology 20:607–612
  • Polin LD (2006) Agrobacterium-mediated transformation of American chestnut (Castanea dentata (Marsh.) Borkh.) somatic embryos. Plant Cell Tissue Organ. Cult. 84: 69–78
  • Shani Z, Dekel M, Tsabary G, Goren R, Shoseyov O (2004) Growth enhancement of transgenic poplar plants by overexpression of Arabidopsis thaliana endo-1,4-b-glucanase (cel1). Molecular Breeding 14:321–330
  • Tang W, Newton RJ, Li C, Charles TM (2007) Enhanced stress tolerance in transgenic pine expressing the pepper CaPF1 gene is associated with the polyamine biosynthesis. Plant Cell Reports 26:115–124
  • Tournier V, Grat S, Marque C, El Kayal W, Penchel R, de Andrade G, Boudet AM, Teulières C (2003) An efficient procedure to stably introduce genes into an economically important pulp tree (Eucalyptus grandis × Eucalyptus urophylla). Transgenic Research12:403–411
  • Trontin JF, Walter C, Klimaszewska K, Park YS, Walter MA (2007) Recent progress in genetic transformation of four Pinus spp. Transgenic Plant Journal 1(2):314–329
  • Tuskan GA, DiFazio S, Jansson S (2006) The genome of black cottonwood, Populus trichocarpa (Torr & Gray). Science 313(5793):1596–1604
  • Valenzuela S ve Strauss S (2005) Lost in the woods. Nature Biotechnology vol. 23:531-532
  • Van Frankenhuyzen K, Beardmore T (2004) Current status and environmental impact of transgenic forest trees, Canadian Journal of Forest Research 34:1163-1180
  • Volenberg DS, Stoltenberg DE, Boerboom CM (2001) Biochemical mechanism and inheritance of cross-resistance to acetolactate synthase inhibitors in giant foxtail. Weed Science 49:635–641
  • Wadenback J, von Arnold S, Egertsdotter U, Walter M, Grima-Pettenati J, Goffner D, Gellerstedt G, Gullion T, Clapham D (2008) Lignin biosynthesis in transgenic Norway spruce plants harboring an antisense construct for cinnamoyl CoA reductase (CCR). Transgenic Research 17(3):379–392
  • Yu X, Kikuchi A (2009) Establishment of the evaluation system of salt tolerance on transgenic woody plants in the special netted-house. Plant Biotechnol. 26:135–141
  • Zhang BY, Su XH, Li YL, Huang QJ, Zhang XH, Zhang L (2006) Regeneration of vgn-transgenic poplar (Populus alba × P. glandulosa) and the primary observation of growth. Chinese Journal of Agricultural Biotechnology 3:59–64

Transgenic Forest Trees

Year 2011, Volume: 12 Issue: 2, 232 - 240, 07.02.2012

Abstract

Biotechnological methods are used in many areas nowadays and one of these areas is applications of biotechnology in forest trees. Biotechnological methods are used frequently on vital issues such as gaining resistance against diseases and herbicide of forest trees, increasing tree growth rates and development of resistance against environmental stresses (drought, salinity, climate change etc.). Also, for improving the quality of wood that reducing lignin content and increasing the amount of cellulose draws attention. This together with applications, positive and negative effects of transgenic trees to the environment is discussed and it was tried to be provided on the auditing legal regulations concerned with these studies.

References

  • Balocchi C, Valenzuela S (2004) Introduction to GMOs and Biosafety in Forestry. In: Proceedings of the Forestry Biotechnology Workshop, Global Forum, (2–5 March, Concepción, Chile)
  • Bishop-Hurley SL, Zabkievicz RJ, Grace LJ, Gardner RC, Walter C (2001) Conifer genetic engineering: transgenic Pinus radiata (D Don) and Picea abies (Karst) plants are resistant to the herbicide Buster. Plant Cell Rep 20:235–243
  • Bittsanszky A. et al. (2005) Ability of transgenic poplars with elevated S glutathione content to tolerate zinc(2+) stress. Environ. Int. 31:251–254
  • Boerjan W (2005) Biotechnology and the domestication of forest trees. Current Opinion in Biotechnology 16:159–166 Brown JR (2003) Ancient horizontal gene transfer. Nature Reviews Genetics 4(2):121–132
  • Burley J (2001) Genetics in sustainable forestry: the challenges for forest genetics and tree breeding in the new millennium. Canadian Journal of Forest Research Vol. 31 no. 4:561–565
  • Coleman HD, Canam T, Kang KY, Ellis DD, Mansield SD (2007) Overexpression of UDP-glucose pyrophosphorylase in hybrid poplar affects carbon allocation. Journal of Experimental Botany 58:4257–4268
  • Confalonieri M, Belenghi B, Balestrazzi A, Negri S, Facciotto G, Schenone G, Delledonne M (2000) Transformation of elite white poplar (Populus alba L.) cv. ‘Villafranca’ and evaluation of herbicide resistance. Plant Cell Reports 10:978–982
  • Dgany O. et al. (2004) The structural basis of the thermostability of SP1, a novel plant (Populus tremula) boiling stable protein. J. Biol. Chem. 279:51516–51523
  • Ellis DD, McCabe DE, McInnis S, Ramachandran R, Russell DR, Wallace KM, Martinell BJ, Roberts DR, Raffa KF, McCown BH (1993) Stable transformation of Picea glauca by particle acceleration. Bio-Technology 11:84–89
  • FAO (2004) Preliminary review of biotechnology in forestry including genetic modifications, Rome, Italy.
  • FAO (2010) Forests and Genetically Modified Trees, Rome, Italy
  • Farnum P, Lucier A, Meilan R (2007) Ecological and population genetics research imperatives for transgenic trees. Tree Genetics & Genomes 3(2):119-133
  • Fu J, Sampalo R, Gallardo F, Canovas FM, Kirby EG (2003) Assembly of a cytosolic pine glutamine synthetase holoenzyme in leaves of transgenic poplar leads to enhanced vegetative growth in young plants. Plant Cell & Environment 26:411–418
  • Genissel A, Leple JC, Millet N, Augustin S, Jouanin L, Pilate G (2003) High tolerance against Chrysomela tremulae of transgenic poplar plants expressing a synthetic cry3Aa gene from Bacillus thuringiensis ssp. tenebrionis. Molecular Breeding 1:103–110
  • Gleeson D, Lelu-Walter MA and Parkinson M (2005) Overproduction of proline in transgenic hybrid larch (Larix × leptoeuropaea (Dengler)) cultures renders them tolerant to cold, salt and frost. Molecular Breeding 15:21–29
  • Grace LJ, Charity JA, Gresham B, Kay N, Walter C (2005) Insect-resistant transgenic Pinus radiata. Plant Cell Reports 24:103–111
  • Gray-Mitsumune M, Blomquist K, McQueen-Mason S, Teeri TT, Sundberg B, Mellerowicz EJ (2007) Ectopic expression of a wood-abundant expansion PttEXPA1 promotes cell expansion in primary and secondary tissues in aspen. Plant Biotechnology Journal 6:62–72
  • Guo XH (2009) A ThCAP gene from Tamarix hispida confers cold tolerance in transgenic Populus (P. davidiana X P. bolleana). Biotechnol. Lett. 31, 1079–1087
  • Halpin C, Thain SC, Tilston EL, Guiney E, Lapierre C, and Hopkins DW (2007) Ecological impacts of trees with modified lignin. Tree Genetics & Genomes 3(2):101-110
  • Harfouche A, Meilan R, Altman A (2011) Tree genetic engineering and applications to sustainable forestry and biomass production. Trends in Biotechnology Vol. 29:46-52
  • Henderson AR, Walter C (2006) Genetic engineering in conifer plantation forestry. Silvae Genetica 55(6):253–262
  • Hu L, Lu H, Liu Q, Chen X, Jiang X (2005) Overexpression of mtlD gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannitol. Tree Physiology 25:1273–1281
  • Jia Z (2010) The chitinase gene (Bbchit1) from Beauveria bassiana enhances resistance to Cytospora chrysosperma in Populus tomentosa Carr. Biotechnol. Lett. 32:1325–1332
  • Jing ZP, Gallardo F, Pascual MB, Sampalo R, Romero J, de Navarra AT, Canovas FM (2004) Improved growth in a yield trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytologist 164:137–145
  • Leple JC (2007) Downregulation of cinnamoyl-coenzyme A reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. ThePlant Cell 19:3669–3691
  • Li J, Meilan R, Ma C, Barish M, Strauss SH (2008) Stability of herbicide resistance over 8 years of coppice in ield-grown, genetically engineered poplars. Western Journal of Applied Forestry 23(2):89–93
  • Li L, Zhou Y, Cheng X, Sun J, Marita J, M, Ralph J, Chiang VL (2003) Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proceedings of the National Academy of Sciences of the United States of America 100: 4939–4944
  • Liu FH, Sun ZX, Cui DC, Du BX, Wang CR, Chen SY (2000) Cloning of E. coli mtl-D genes and its expression in transgenic Balizhuangyang (Populus) (in Chinese with an English abstract). Acta Genetica Sinica 27:428−433
  • Meilan R, Ma C, Cheng S, Eaton JA, Miller LK, Crockett RP, DiFazio SP, Strauss SH (2000) High levels of Roundup® and leaf-beetle resistance in genetically engineered hybrid cottonwoods. Washington State University Cooperative Extension Bulletin MISC0272 Pullman Washington, USA 29–38
  • Meng L, Li HS, Jin DM, Cui DC, Wang B (2004) Transformation of Populus deltoids with CH5B gene. Biotechnology Bulletin 3:48–51
  • Mentag R, Luckevich M, Morency MJ, Seguin A (2003) Bacterial disease resistance of transgenic hybrid poplar expressing the synthetic antimicrobial peptide D4E1. Tree Physiology 23:405–411
  • Merkle SA, Nairn CJ (2005) Hardwood tree biotechnology. In Vitro Cell Dev. Biol. Plant 41:602–619
  • Mohamed R, Meilan R, Ostry ME, Michler CS, Strauss SH (2001) Bacterio-opsin gene overexpression fails to elevate fungal disease resistance in transgenic poplar (Populus). Canadian Journal of Forest Research 31:1–8
  • Mullin TJ, Bertrand S (1998) Environmental release of transgenic trees in Canada -Potential benefits and assessment of biosafety. The Forestry Chronicle 74(2):203–219
  • O'Callaghan M, Glare TR, Gurgess E, Malone LA (2005) Effects of plants genetically modified for insect resistance on nontarget organisms. Annual Review of Entomology 50:271-292
  • Park YW, Baba K, Furuta Y, Iida I, Sameshima K, Arai M, Hayashi T (2004) Enhancement of growth and cellulose accumulation by overexpression of xyloglucanase in poplar. FEBS Letters 564:183–187
  • Pascual MB, Jing ZP, Kirby EG, Canovas FM, Gallardo F (2008) Response of transgenic poplar overexpressing cytosolic glutamine synthetase to phosphinothricin. Phytochemistry 69(2):382–389
  • Pilate G, Guiney E, Holt K, Petit-Conil M, Lapierre C, Leplé J.-C, Pollet B, Mila I, Webster EA, Marstorp HG, Hopkins DW, Jouanin L, Boerjan W, Schuch W, Cornu DC (2002) Field and pulping performances of transgenic trees with altered lignifications. Nature Biotechnology 20:607–612
  • Polin LD (2006) Agrobacterium-mediated transformation of American chestnut (Castanea dentata (Marsh.) Borkh.) somatic embryos. Plant Cell Tissue Organ. Cult. 84: 69–78
  • Shani Z, Dekel M, Tsabary G, Goren R, Shoseyov O (2004) Growth enhancement of transgenic poplar plants by overexpression of Arabidopsis thaliana endo-1,4-b-glucanase (cel1). Molecular Breeding 14:321–330
  • Tang W, Newton RJ, Li C, Charles TM (2007) Enhanced stress tolerance in transgenic pine expressing the pepper CaPF1 gene is associated with the polyamine biosynthesis. Plant Cell Reports 26:115–124
  • Tournier V, Grat S, Marque C, El Kayal W, Penchel R, de Andrade G, Boudet AM, Teulières C (2003) An efficient procedure to stably introduce genes into an economically important pulp tree (Eucalyptus grandis × Eucalyptus urophylla). Transgenic Research12:403–411
  • Trontin JF, Walter C, Klimaszewska K, Park YS, Walter MA (2007) Recent progress in genetic transformation of four Pinus spp. Transgenic Plant Journal 1(2):314–329
  • Tuskan GA, DiFazio S, Jansson S (2006) The genome of black cottonwood, Populus trichocarpa (Torr & Gray). Science 313(5793):1596–1604
  • Valenzuela S ve Strauss S (2005) Lost in the woods. Nature Biotechnology vol. 23:531-532
  • Van Frankenhuyzen K, Beardmore T (2004) Current status and environmental impact of transgenic forest trees, Canadian Journal of Forest Research 34:1163-1180
  • Volenberg DS, Stoltenberg DE, Boerboom CM (2001) Biochemical mechanism and inheritance of cross-resistance to acetolactate synthase inhibitors in giant foxtail. Weed Science 49:635–641
  • Wadenback J, von Arnold S, Egertsdotter U, Walter M, Grima-Pettenati J, Goffner D, Gellerstedt G, Gullion T, Clapham D (2008) Lignin biosynthesis in transgenic Norway spruce plants harboring an antisense construct for cinnamoyl CoA reductase (CCR). Transgenic Research 17(3):379–392
  • Yu X, Kikuchi A (2009) Establishment of the evaluation system of salt tolerance on transgenic woody plants in the special netted-house. Plant Biotechnol. 26:135–141
  • Zhang BY, Su XH, Li YL, Huang QJ, Zhang XH, Zhang L (2006) Regeneration of vgn-transgenic poplar (Populus alba × P. glandulosa) and the primary observation of growth. Chinese Journal of Agricultural Biotechnology 3:59–64
There are 50 citations in total.

Details

Primary Language Turkish
Subjects Architecture
Journal Section Technical Brief
Authors

Ertuğrul Filiz

Emrah Çiçek

Şemsettin Kulaç

Publication Date February 7, 2012
Published in Issue Year 2011 Volume: 12 Issue: 2

Cite

APA Filiz, E., Çiçek, E., & Kulaç, Ş. (2012). Transgenik Orman Ağaçları. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 12(2), 232-240.
AMA Filiz E, Çiçek E, Kulaç Ş. Transgenik Orman Ağaçları. ACUJFF. February 2012;12(2):232-240.
Chicago Filiz, Ertuğrul, Emrah Çiçek, and Şemsettin Kulaç. “Transgenik Orman Ağaçları”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 12, no. 2 (February 2012): 232-40.
EndNote Filiz E, Çiçek E, Kulaç Ş (February 1, 2012) Transgenik Orman Ağaçları. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 12 2 232–240.
IEEE E. Filiz, E. Çiçek, and Ş. Kulaç, “Transgenik Orman Ağaçları”, ACUJFF, vol. 12, no. 2, pp. 232–240, 2012.
ISNAD Filiz, Ertuğrul et al. “Transgenik Orman Ağaçları”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 12/2 (February2012), 232-240.
JAMA Filiz E, Çiçek E, Kulaç Ş. Transgenik Orman Ağaçları. ACUJFF. 2012;12:232–240.
MLA Filiz, Ertuğrul et al. “Transgenik Orman Ağaçları”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, vol. 12, no. 2, 2012, pp. 232-40.
Vancouver Filiz E, Çiçek E, Kulaç Ş. Transgenik Orman Ağaçları. ACUJFF. 2012;12(2):232-40.
Creative Commons License
Artvin Coruh University Journal of Forestry Faculty is licensed under a Creative Commons Attribution 4.0 International License.