Research Article
BibTex RIS Cite

Planning Forest Afforestation Activities Using Unmanned Aerial Vehicles (UAVs): The Case of Artvin

Year 2025, Volume: 26 Issue: 2, 343 - 354, 15.10.2025
https://doi.org/10.17474/artvinofd.1720603

Abstract

In this study, the accuracy analysis of unmanned aerial vehicle (UAV) technology was investigated in the planning of afforestation and maintenance activities carried out in forest ecosystems. A forested area with an area of 3.5 ha and an average slope of 60%, which was afforested in 2019 within the boundaries of the Artvin Forest Management Directorate, was selected as the study area. A total of 24 terraces were created in the study area using terrestrial photogrammetric data obtained with the Meridian M6 model GPS/GNSS, and Scots pine (Pinus sylvestris L.) (800 seedlings) and stone pine (Pinus pinea L.) (200 seedlings) were planted at 3 m intervals. For the production of the Digital Terrain Model and orthophoto map of the area, UAV images were captured using a DJI Mavic 3 Enterprise device in April 2025. Prior to the flight, three ground control points (GCPs) were established in the area, and their locations were determined using the RTK method with a Meridian M6 CORS device. An UAV flight was planned with 9 columns at a ground sampling interval of 2.02 cm, resulting in 188 images obtained at a height of 41.8 m with an 80% forward overlap and 70% side overlap. Calculations were performed on the images processed in PIX4D software using ArcGIS 10.2 and Google Earth Pro software. Based on the data obtained from ground measurements and UAVs, the current terrace lengths and tree counts were compared, and the effectiveness rate of the UAV method was determined to be 99.4% and 98.8%, respectively. While afforestation activities in the study area were carried out by five people over two days on the ground, it was determined that they could be completed by a single operator in half a day using UAVs. This demonstrates that planning afforestation activities using UAV data offers significant contributions in terms of both time and cost.

References

  • Álvares JS, Costa DB, Melo RRS (2018) Exploratory study of using unmanned aerial system imagery for construction site 3D mapping. Constr. Innov. 18: 301–320. https://doi.org/10.1108/CI-05-2017-0049
  • Chen X, Hopkins B, Wang, H, O’Neill L, Afghah F, Razi A, Fule P, Coen J, Rowell E, Watts A (2022) Wildland fire detection and monitoring using a drone-collected RGB/IR image dataset. IEEE Access 10, 121301-121317.
  • Cromwell C, Giampaolo J, Hupy J, Miller Z, Chandrasekaran A (2021) A systematic review of best practices for UAS data collection in forestry-related applications. Forests, 12:957. https://doi.org/10.3390/f12070957
  • Çalışkan TB (2020) Professional perceptions of using unmanned aerial vehicles (UAV) in logistics sector: a research on some vocational groups and drone pilots. Master Thesis Akdeniz University, Antalya.
  • Dainelli R, Toscano P, Di Gennaro SF, Matese A (2021) Recent advances in unmanned aerial vehicle forest remote sensing-a systematic review part I: a general framework. Forests, 12: 327. https://doi.org/10.3390/f12030327
  • Dawei Z, Lizhuang Q, Demin Z, Baohui Z, Lianglin G (2020) Unmanned aerial vehicle (UaV) photogrammetry technology for dynamic mining subsidence monitoring and parameter inversion: a case study in China. IEEE Access, 8, 16372-16386.
  • De Vivo F, Battipede M, Johnson E (2021) Infra-red line camera data-driven edge detector in UAV forest fire monitoring. Aerosp Sci Technol, 111: 106574. https://doi.org/10.1016/j.ast.2021.106574
  • Ecke S, Dempewolf J, Frey J, Schwaller A, Endres E, Klemmt H-J, Tiede D, Seifert T (2022) UAV- based forest health monitoring: a systematic review. Remote Sens, 14:3205. https://doi.org/10.3390/rs14133205
  • Eker R, Aydın A, Hübl J (2018) Unmanned aerial vehicle (UAV)-based monitoring of a landslide: gallenzerkogel landslide (Ybbs-Lower Austria) case study. Environmental Monitoring and Assessment, 190:1- 28. https://doi.org/10.1007/s10661-017-6402-8
  • Golizadeh H, Hosseini MR, Edwards D, Abrishami S, Taghavi N, Banihashemi S (2019) Barriers to adoption of RPAs on construction projects: a task–technology fit perspective. Construction Innovation: Information, Process, Management, 19 (2):149-169. https://doi.org/10.1108/CI-09-2018-0074
  • Hasegawa H, Sujaswara AA, Kanemoto T, Tsubota K (2023) Possibilities of using UAV for estimating earthwork volumes during process of repairing a small-scale forest road, case study from Kyoto prefecture, Japan. Forests, 14 (4):677. https://doi.org/10.3390/f14040677
  • Hunt ER, Cavigelli M, Daughtry CST, McMurtrey JE, Walthall CL (2014) Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precision Agriculture, 15: 597–615. https://doi.org/10.1007/s11119-014-9363-3
  • Iost Filho FH, Heldens WB, Kong Z, de Lange ES (2020) Drones: innovative technology for use in precision pest management. J Econ Entomol, 113 (1):1–25. https://doi.org/10.1093/jee/toz268
  • Iqbal MH, Iqbal MJ, Saleem T (2025) Road layer detection and volume calculation using UAV technologies and artificial intelligence. Eng. Res. Express, 7: 015111. https://doi.org/10.1088/2631-8695/adaca9
  • Kaya Y, Polat N, Şenol Hİ, Memduhoğlu A, Ulukavak M (2021) Using terrestrial and UAV photogrammetry in documentation of archaeological artifact. Türkiye Fotogrametri Dergisi, 3(1):9-14. https://doi.org/10.53030/tufod.899089
  • Kim YH, Shin SS, Lee HK, Park ES (2022) Field applicability of earthwork volume calculations using unmanned aerial vehicle. Sustainability, 14: 9331. https://doi.org/10.3390/su14159331
  • Koontz MJ, Scholl VM, Spiers AI, Cattau ME, Adler J, McGlinchy J, Goulden T, Melbourne BA, Balch JK (2022) Democratizing macroecology: integrating unoccupied aerial systems with the National Ecological Observatory Network. Ecosphere, 13: e4206. https://doi.org/10.1002/ecs2.4206
  • Krause DJ, Hinke JT, Goebel ME, Perryman WL (2021) Drones minimize antarctic predator responses relative to ground survey methods: an appeal for context in policy advice. Frontiers in Marine Science, 8: 152. https://doi.org/10.3389/fmars.2021.648772
  • Lee K, Lee WH (2022) Earth work volume calculation, 3D model generation and comparative evaluation using vertical and high oblique images acquired by unmanned aerial vehicles. Aerospace, 9: 606. https://doi.org/10.3390/aerospace9100606
  • Li M, Zhen L, Wang S, Lv W, Qu X (2018) Unmanned aerial vehicle scheduling problem for traffic monitoring. Comput. Ind. Eng, 122: 15–23. https://doi.org/10.1016/j.cie.2018.05.039
  • Ma Y, Wu X, Yu G, Xu Y, Wang Y (2016) Pedestrian detection and tracking from low-resolution unmanned aerial vehicle thermal ımagery. Sensors, 16(4):446. https://doi.org/10.3390/s16040446
  • Martel V, Johns RC, Jochems-Tanguay L, Jean F, Maltais A, Trudeau S, St-Onge M, Cormier D, Smith SM, Boisclair J (2021) The use of UAS to release the egg Parasitoid Trichogramma spp. (Hymenoptera: trichogrammatidae) against an agricultural and a forest pest in Canada. J Econom Entomol, 114 (5):1867–1881. https://doi.org/10.1093/jee/toaa325
  • McClelland II MP, Hale DS, Aardt J Van (2018) A comparison of manned and unmanned aerial Lidar systems in the context of sustainable forest management. Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping III. Presented at the Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping III, International Society for Optics and Photonics, p. 106640S.
  • Mokroš M, Výbošťok J, Merganič J, Hollaus M, Barton I, Koreň M, Tomaštík J, Čerňava J (2017) Early stage forest windthrow estimation based on unmanned aircraft system ımagery. Forests, 8 (9):306. https://doi.org/10.3390/f8090306
  • Nex F, Remondino F (2014) UAV for 3D mapping applications: a review. Applied Geomatics, 6(1): 1–15. https://doi.org/10.1007/s12518-013-0120-x
  • OGM (2014) Silvikültürel Uygulamaların Teknik Esasları Tebliği. Tebliğ No: 298, Ankara, Türkiye.
  • OGM (2019) İş Planı Dosyası. Artvin Orman İşletme Şefliği, Artvin, Türkiye.
  • Olsoy PJ, Shipley LA, Rachlow JL, Forbey JS, Glenn NF, Burgess MA, Thornton DH (2018) Unmanned aerial systems measure structural habitat features for wildlife across multiple scales. Methods Ecol Evol, 9 (3):594–604. https://doi.org/10.1111/2041- 210X.12919
  • Özkan M (2024) Spectral index-based crop analyses. Masters’s Thesis, Harran University Graduate School of Natural and Applied Sciences, Şanlıurfa.
  • Park K, Ewing R (2017) The usability of unmanned aerial vehicles (UAVs) for measuring park- based physical activity. Landscape and Urban Planning, 167: 157–164. https://doi.org/10.1016/j.landurbplan.2017.06.010
  • Park K, Ewing R (2018) The usability of unmanned aerial vehicles (UAVS) for pedestrian observation. J. Plan. Educ. Res, 42: 206–217. https://doi.org/10.1177/0739456X18805154
  • Potente E, Cagnazzo C, Voett A, Deodat A, Mastronuzzi G (2021) UAV-UGV imagery for disaster scenario mapping: aerial-terrestrial data fusion and comparison. Rendiconti Online Soc Geol Ital, 55:10–19. https://doi.org/10.3301/ROL.2021.10
  • Ren H, Xiao W, Zhao Y, Hu Z (2020) Land damage assessment using maize above ground biomass estimated from unmanned aerial vehicle in high ground water level regions affected by underground coal mining. Environmental Science and Pollution Research, 27 (17):21666-21679. https://doi.org/10.1007/s11356-020-08695-3
  • Sarabia R, Aquino A, Ponce JM, López G, Andújar JM (2020) Automated identification of crop tree crowns from uav multispectral imagery by means of morphological image analysis. Remote Sens. 12:748. https://doi.org/10.3390/rs12050748
  • Schiefer F, Kattenborn T, Frick A, Frey J, Schall P, Koch B, Schmidtlein S (2020) Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks. ISPRS Journal of Photogrammetry and Remote Sensing, 170:205–215. https://doi.org/10.1016/j.isprsjprs.2020.10.015
  • Shakhatreh H, Sawalmeh AH, Al-Fuqaha A, Dou Z, Almaita E, Khalil I, Othman NS, Khreishah A, Guizani M (2019) Unmanned aerial vehicles (UAVs): a survey on civil applications and key research challenges. IEEE Access, 7, 48572-48634. https://doi.org/10.1109/ACCESS.2019.2909530
  • Sucu MS (2019) Unmanned aerial vehicle (UAV) data documentation of cultural heritage availability: one thousand churches. Master’s Thesis, Aksaray University Graduate School of Natural and Applied Sciences.
  • Talbot B, Rahlf J, Astrup R (2018) An operational UAV based approach for stand-level assessment of soil disturbance after forest harvesting. Scand J Forest Res, 33 (4):387-396. https://doi.org/10.1080/02827581.2017.1418421
  • Tercan E (2017) Karayolu projelerinde insansız hava aracı ile üretilen sayısal arazi modelinin değerlendirilmesi: Bucak-Kocaaliler Yolu Örneği. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8 (2):172-183.
  • Tomljanović K, Nosek H, Pernar R, Grubešić M (2018) Mogućnosti primjene lakih bespilotnih letjelica u prebrojavanju krupne divljači. Šumarski List, 142 (11–12):621–626. https://doi.org/10.31298/sl.142.11-12.6
  • Türk Y, Canyurt H (2024) Capabilities of usıng UAVs to determine forest road excavation volumes in mountainous areas. Šumarski List, 3-4:139-152. https://doi.org/10.31298/sl.148.3-4.3
  • Ulukavak M, Memduhoğlu A, Şenol Hİ, Polat N (2019) The Use of UAV and photogrammetry in digital documentation. Mersin Photogrammetry Journal, 1(1):17-22.
  • Ulvi A, Yiğit AY (2020) 3D Study of modelling and animation of Kayseri Gülük Mosque. Mersin Photogrammetry Journal, 2 (2):33-37.
  • Ulvi A, Yakar M, Yiğit AY, Kaya Y (2020) İHA ve yersel fotogrametrik teknikler kullanarak Aksaray Kızıl Kilise’nin 3 boyutlu nokta bulutu ve modelinin üretilmesi. Geomatik Dergisi, 5 (1):19-26. https://doi.org/10.29128/geomatik.560179
  • Ünver S, Yücesan Z (2024) Effects of Afforestation Activities in Forestry on Carbon Economy. Chapter 2: International Studies and Evaluations in The Field of Forestry and Forest Engineering. Serüven Publishing, 13-31, ISBN: 978-625-5955-95-1.
  • Verykokou S, Ioannidis C, Athanasiou G, Doulamis N, Amditis A (2018) 3D reconstruction of disaster scenes for urban search and rescue. Multimed. Tools Appl., 77:9691–9717. https://doi.org/10.1007/s11042-017-5450-y
  • Videras Rodríguez M, Melgar SG, Cordero AS, Márquez JMA (2021) A critical review of unmanned aerial vehicles (UAVs) use in architecture and urbanism: scientometric and bibliometric analysis. Appl. Sci., 11:9966. https://doi.org/10.3390/app11219966
  • Zhang C, Kovacs JM (2012) The application of small unmanned aerial systems for precision agriculture: a review. Precision Agriculture, 13(6):693–712. https://doi.org/10.1007/s11119-012-9274-5.

Orman Ağaçlandırma Faaliyetlerinin İnsansız Hava Aracı (İHA) Kullanılarak Planlanması: Artvin Örneği

Year 2025, Volume: 26 Issue: 2, 343 - 354, 15.10.2025
https://doi.org/10.17474/artvinofd.1720603

Abstract

Bu çalışmada, orman ekosistemlerinde gerçekleştirilen ağaçlandırma ve bakım faaliyetlerinin planlanmasında insansız hava aracı (İHA) teknolojisinin doğruluk analizi araştırılmıştır. Artvin Orman İşletme Şefliği sınırlarında 2019 yılında ağaçlandırılmış, alanı ve ortalama eğimi sırasıyla 3.5 ha ve %60 olan ormanlık saha çalışma alanı olarak seçilmiştir. Çalışma alanında Meridian M6 model GPS/GNSS ile elde edilen yersel fotogrametrik veriler ile gerçekleştirilen toplam 24 adet teras üzerine 3 m aralıklarla sarıçam (Pinus sylvestris L.) (800 adet) ve fıstık çamı (Pinus pinea L.) (200 adet) fidanları dikilmiştir. Alanın Sayısal Arazi Modeli ve ortofoto haritasının üretimi için Nisan 2025 tarihinde DJI Mavic 3 Enterprise cihazı ile İHA görüntüleri alınmıştır. Uçuş öncesinde alanda üç adet yer kontrol noktası (YKN) yapılarak Meridian M6 marka CORS cihazı kullanılarak RTK yöntemi ile konumları belirlenmiştir. Çalışma alanında 2.02 cm yer örnekleme aralığında 9 kolon ile İHA uçuşu planlanarak 41.8 m yükseklikte %80 ön bindirme ve %70 yan bindirme oranıyla 188 görüntü elde edilmiştir. ArcGIS 10.2 ve Google Earth Pro yazılımları kullanılarak PIX4D yazılımında işlenen görüntüler üzerinde hesaplamalar yapılmıştır. Yersel ölçüm ve İHA ile elde edilen verilere göre mevcut durumdaki teras uzunlukları ve ağaç sayıları karşılaştırılarak İHA yönteminin etkinlik oranı sırasıyla %99.4 ve %98.8 olarak belirlenmiştir. Çalışma alanındaki ağaçlandırma faaliyetleri yersel olarak beş kişi ile iki günde gerçekleştirilirken İHA ile bir operatör tarafından yarım günde gerçekleştirilebildiği belirlenmiştir. Bu durum ağaçlandırma faaliyetlerinin İHA verileri ile planlanmasının hem zamansal hem de ekonomik olarak önemli katkılar sunduğunu göstermiştir.

Thanks

Çalışmada İHA görüntülerinin alınmasında sağladığı desteklerden dolayı Harita ve Kadastro Yüksek Mühendisi Temel Tahir TURGUT’a teşekkür ederiz.

References

  • Álvares JS, Costa DB, Melo RRS (2018) Exploratory study of using unmanned aerial system imagery for construction site 3D mapping. Constr. Innov. 18: 301–320. https://doi.org/10.1108/CI-05-2017-0049
  • Chen X, Hopkins B, Wang, H, O’Neill L, Afghah F, Razi A, Fule P, Coen J, Rowell E, Watts A (2022) Wildland fire detection and monitoring using a drone-collected RGB/IR image dataset. IEEE Access 10, 121301-121317.
  • Cromwell C, Giampaolo J, Hupy J, Miller Z, Chandrasekaran A (2021) A systematic review of best practices for UAS data collection in forestry-related applications. Forests, 12:957. https://doi.org/10.3390/f12070957
  • Çalışkan TB (2020) Professional perceptions of using unmanned aerial vehicles (UAV) in logistics sector: a research on some vocational groups and drone pilots. Master Thesis Akdeniz University, Antalya.
  • Dainelli R, Toscano P, Di Gennaro SF, Matese A (2021) Recent advances in unmanned aerial vehicle forest remote sensing-a systematic review part I: a general framework. Forests, 12: 327. https://doi.org/10.3390/f12030327
  • Dawei Z, Lizhuang Q, Demin Z, Baohui Z, Lianglin G (2020) Unmanned aerial vehicle (UaV) photogrammetry technology for dynamic mining subsidence monitoring and parameter inversion: a case study in China. IEEE Access, 8, 16372-16386.
  • De Vivo F, Battipede M, Johnson E (2021) Infra-red line camera data-driven edge detector in UAV forest fire monitoring. Aerosp Sci Technol, 111: 106574. https://doi.org/10.1016/j.ast.2021.106574
  • Ecke S, Dempewolf J, Frey J, Schwaller A, Endres E, Klemmt H-J, Tiede D, Seifert T (2022) UAV- based forest health monitoring: a systematic review. Remote Sens, 14:3205. https://doi.org/10.3390/rs14133205
  • Eker R, Aydın A, Hübl J (2018) Unmanned aerial vehicle (UAV)-based monitoring of a landslide: gallenzerkogel landslide (Ybbs-Lower Austria) case study. Environmental Monitoring and Assessment, 190:1- 28. https://doi.org/10.1007/s10661-017-6402-8
  • Golizadeh H, Hosseini MR, Edwards D, Abrishami S, Taghavi N, Banihashemi S (2019) Barriers to adoption of RPAs on construction projects: a task–technology fit perspective. Construction Innovation: Information, Process, Management, 19 (2):149-169. https://doi.org/10.1108/CI-09-2018-0074
  • Hasegawa H, Sujaswara AA, Kanemoto T, Tsubota K (2023) Possibilities of using UAV for estimating earthwork volumes during process of repairing a small-scale forest road, case study from Kyoto prefecture, Japan. Forests, 14 (4):677. https://doi.org/10.3390/f14040677
  • Hunt ER, Cavigelli M, Daughtry CST, McMurtrey JE, Walthall CL (2014) Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precision Agriculture, 15: 597–615. https://doi.org/10.1007/s11119-014-9363-3
  • Iost Filho FH, Heldens WB, Kong Z, de Lange ES (2020) Drones: innovative technology for use in precision pest management. J Econ Entomol, 113 (1):1–25. https://doi.org/10.1093/jee/toz268
  • Iqbal MH, Iqbal MJ, Saleem T (2025) Road layer detection and volume calculation using UAV technologies and artificial intelligence. Eng. Res. Express, 7: 015111. https://doi.org/10.1088/2631-8695/adaca9
  • Kaya Y, Polat N, Şenol Hİ, Memduhoğlu A, Ulukavak M (2021) Using terrestrial and UAV photogrammetry in documentation of archaeological artifact. Türkiye Fotogrametri Dergisi, 3(1):9-14. https://doi.org/10.53030/tufod.899089
  • Kim YH, Shin SS, Lee HK, Park ES (2022) Field applicability of earthwork volume calculations using unmanned aerial vehicle. Sustainability, 14: 9331. https://doi.org/10.3390/su14159331
  • Koontz MJ, Scholl VM, Spiers AI, Cattau ME, Adler J, McGlinchy J, Goulden T, Melbourne BA, Balch JK (2022) Democratizing macroecology: integrating unoccupied aerial systems with the National Ecological Observatory Network. Ecosphere, 13: e4206. https://doi.org/10.1002/ecs2.4206
  • Krause DJ, Hinke JT, Goebel ME, Perryman WL (2021) Drones minimize antarctic predator responses relative to ground survey methods: an appeal for context in policy advice. Frontiers in Marine Science, 8: 152. https://doi.org/10.3389/fmars.2021.648772
  • Lee K, Lee WH (2022) Earth work volume calculation, 3D model generation and comparative evaluation using vertical and high oblique images acquired by unmanned aerial vehicles. Aerospace, 9: 606. https://doi.org/10.3390/aerospace9100606
  • Li M, Zhen L, Wang S, Lv W, Qu X (2018) Unmanned aerial vehicle scheduling problem for traffic monitoring. Comput. Ind. Eng, 122: 15–23. https://doi.org/10.1016/j.cie.2018.05.039
  • Ma Y, Wu X, Yu G, Xu Y, Wang Y (2016) Pedestrian detection and tracking from low-resolution unmanned aerial vehicle thermal ımagery. Sensors, 16(4):446. https://doi.org/10.3390/s16040446
  • Martel V, Johns RC, Jochems-Tanguay L, Jean F, Maltais A, Trudeau S, St-Onge M, Cormier D, Smith SM, Boisclair J (2021) The use of UAS to release the egg Parasitoid Trichogramma spp. (Hymenoptera: trichogrammatidae) against an agricultural and a forest pest in Canada. J Econom Entomol, 114 (5):1867–1881. https://doi.org/10.1093/jee/toaa325
  • McClelland II MP, Hale DS, Aardt J Van (2018) A comparison of manned and unmanned aerial Lidar systems in the context of sustainable forest management. Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping III. Presented at the Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping III, International Society for Optics and Photonics, p. 106640S.
  • Mokroš M, Výbošťok J, Merganič J, Hollaus M, Barton I, Koreň M, Tomaštík J, Čerňava J (2017) Early stage forest windthrow estimation based on unmanned aircraft system ımagery. Forests, 8 (9):306. https://doi.org/10.3390/f8090306
  • Nex F, Remondino F (2014) UAV for 3D mapping applications: a review. Applied Geomatics, 6(1): 1–15. https://doi.org/10.1007/s12518-013-0120-x
  • OGM (2014) Silvikültürel Uygulamaların Teknik Esasları Tebliği. Tebliğ No: 298, Ankara, Türkiye.
  • OGM (2019) İş Planı Dosyası. Artvin Orman İşletme Şefliği, Artvin, Türkiye.
  • Olsoy PJ, Shipley LA, Rachlow JL, Forbey JS, Glenn NF, Burgess MA, Thornton DH (2018) Unmanned aerial systems measure structural habitat features for wildlife across multiple scales. Methods Ecol Evol, 9 (3):594–604. https://doi.org/10.1111/2041- 210X.12919
  • Özkan M (2024) Spectral index-based crop analyses. Masters’s Thesis, Harran University Graduate School of Natural and Applied Sciences, Şanlıurfa.
  • Park K, Ewing R (2017) The usability of unmanned aerial vehicles (UAVs) for measuring park- based physical activity. Landscape and Urban Planning, 167: 157–164. https://doi.org/10.1016/j.landurbplan.2017.06.010
  • Park K, Ewing R (2018) The usability of unmanned aerial vehicles (UAVS) for pedestrian observation. J. Plan. Educ. Res, 42: 206–217. https://doi.org/10.1177/0739456X18805154
  • Potente E, Cagnazzo C, Voett A, Deodat A, Mastronuzzi G (2021) UAV-UGV imagery for disaster scenario mapping: aerial-terrestrial data fusion and comparison. Rendiconti Online Soc Geol Ital, 55:10–19. https://doi.org/10.3301/ROL.2021.10
  • Ren H, Xiao W, Zhao Y, Hu Z (2020) Land damage assessment using maize above ground biomass estimated from unmanned aerial vehicle in high ground water level regions affected by underground coal mining. Environmental Science and Pollution Research, 27 (17):21666-21679. https://doi.org/10.1007/s11356-020-08695-3
  • Sarabia R, Aquino A, Ponce JM, López G, Andújar JM (2020) Automated identification of crop tree crowns from uav multispectral imagery by means of morphological image analysis. Remote Sens. 12:748. https://doi.org/10.3390/rs12050748
  • Schiefer F, Kattenborn T, Frick A, Frey J, Schall P, Koch B, Schmidtlein S (2020) Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks. ISPRS Journal of Photogrammetry and Remote Sensing, 170:205–215. https://doi.org/10.1016/j.isprsjprs.2020.10.015
  • Shakhatreh H, Sawalmeh AH, Al-Fuqaha A, Dou Z, Almaita E, Khalil I, Othman NS, Khreishah A, Guizani M (2019) Unmanned aerial vehicles (UAVs): a survey on civil applications and key research challenges. IEEE Access, 7, 48572-48634. https://doi.org/10.1109/ACCESS.2019.2909530
  • Sucu MS (2019) Unmanned aerial vehicle (UAV) data documentation of cultural heritage availability: one thousand churches. Master’s Thesis, Aksaray University Graduate School of Natural and Applied Sciences.
  • Talbot B, Rahlf J, Astrup R (2018) An operational UAV based approach for stand-level assessment of soil disturbance after forest harvesting. Scand J Forest Res, 33 (4):387-396. https://doi.org/10.1080/02827581.2017.1418421
  • Tercan E (2017) Karayolu projelerinde insansız hava aracı ile üretilen sayısal arazi modelinin değerlendirilmesi: Bucak-Kocaaliler Yolu Örneği. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8 (2):172-183.
  • Tomljanović K, Nosek H, Pernar R, Grubešić M (2018) Mogućnosti primjene lakih bespilotnih letjelica u prebrojavanju krupne divljači. Šumarski List, 142 (11–12):621–626. https://doi.org/10.31298/sl.142.11-12.6
  • Türk Y, Canyurt H (2024) Capabilities of usıng UAVs to determine forest road excavation volumes in mountainous areas. Šumarski List, 3-4:139-152. https://doi.org/10.31298/sl.148.3-4.3
  • Ulukavak M, Memduhoğlu A, Şenol Hİ, Polat N (2019) The Use of UAV and photogrammetry in digital documentation. Mersin Photogrammetry Journal, 1(1):17-22.
  • Ulvi A, Yiğit AY (2020) 3D Study of modelling and animation of Kayseri Gülük Mosque. Mersin Photogrammetry Journal, 2 (2):33-37.
  • Ulvi A, Yakar M, Yiğit AY, Kaya Y (2020) İHA ve yersel fotogrametrik teknikler kullanarak Aksaray Kızıl Kilise’nin 3 boyutlu nokta bulutu ve modelinin üretilmesi. Geomatik Dergisi, 5 (1):19-26. https://doi.org/10.29128/geomatik.560179
  • Ünver S, Yücesan Z (2024) Effects of Afforestation Activities in Forestry on Carbon Economy. Chapter 2: International Studies and Evaluations in The Field of Forestry and Forest Engineering. Serüven Publishing, 13-31, ISBN: 978-625-5955-95-1.
  • Verykokou S, Ioannidis C, Athanasiou G, Doulamis N, Amditis A (2018) 3D reconstruction of disaster scenes for urban search and rescue. Multimed. Tools Appl., 77:9691–9717. https://doi.org/10.1007/s11042-017-5450-y
  • Videras Rodríguez M, Melgar SG, Cordero AS, Márquez JMA (2021) A critical review of unmanned aerial vehicles (UAVs) use in architecture and urbanism: scientometric and bibliometric analysis. Appl. Sci., 11:9966. https://doi.org/10.3390/app11219966
  • Zhang C, Kovacs JM (2012) The application of small unmanned aerial systems for precision agriculture: a review. Precision Agriculture, 13(6):693–712. https://doi.org/10.1007/s11119-012-9274-5.
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Forest Products Transport and Evaluation Information, Silviculture
Journal Section Research Article
Authors

Mustafa Acar 0000-0002-3382-9232

Saliha Ünver 0000-0001-9882-446X

Publication Date October 15, 2025
Submission Date June 16, 2025
Acceptance Date July 10, 2025
Published in Issue Year 2025 Volume: 26 Issue: 2

Cite

APA Acar, M., & Ünver, S. (2025). Orman Ağaçlandırma Faaliyetlerinin İnsansız Hava Aracı (İHA) Kullanılarak Planlanması: Artvin Örneği. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 26(2), 343-354. https://doi.org/10.17474/artvinofd.1720603
AMA Acar M, Ünver S. Orman Ağaçlandırma Faaliyetlerinin İnsansız Hava Aracı (İHA) Kullanılarak Planlanması: Artvin Örneği. ACUJFF. October 2025;26(2):343-354. doi:10.17474/artvinofd.1720603
Chicago Acar, Mustafa, and Saliha Ünver. “Orman Ağaçlandırma Faaliyetlerinin İnsansız Hava Aracı (İHA) Kullanılarak Planlanması: Artvin Örneği”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 26, no. 2 (October 2025): 343-54. https://doi.org/10.17474/artvinofd.1720603.
EndNote Acar M, Ünver S (October 1, 2025) Orman Ağaçlandırma Faaliyetlerinin İnsansız Hava Aracı (İHA) Kullanılarak Planlanması: Artvin Örneği. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 26 2 343–354.
IEEE M. Acar and S. Ünver, “Orman Ağaçlandırma Faaliyetlerinin İnsansız Hava Aracı (İHA) Kullanılarak Planlanması: Artvin Örneği”, ACUJFF, vol. 26, no. 2, pp. 343–354, 2025, doi: 10.17474/artvinofd.1720603.
ISNAD Acar, Mustafa - Ünver, Saliha. “Orman Ağaçlandırma Faaliyetlerinin İnsansız Hava Aracı (İHA) Kullanılarak Planlanması: Artvin Örneği”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 26/2 (October2025), 343-354. https://doi.org/10.17474/artvinofd.1720603.
JAMA Acar M, Ünver S. Orman Ağaçlandırma Faaliyetlerinin İnsansız Hava Aracı (İHA) Kullanılarak Planlanması: Artvin Örneği. ACUJFF. 2025;26:343–354.
MLA Acar, Mustafa and Saliha Ünver. “Orman Ağaçlandırma Faaliyetlerinin İnsansız Hava Aracı (İHA) Kullanılarak Planlanması: Artvin Örneği”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, vol. 26, no. 2, 2025, pp. 343-54, doi:10.17474/artvinofd.1720603.
Vancouver Acar M, Ünver S. Orman Ağaçlandırma Faaliyetlerinin İnsansız Hava Aracı (İHA) Kullanılarak Planlanması: Artvin Örneği. ACUJFF. 2025;26(2):343-54.
Creative Commons License
Artvin Coruh University Journal of Forestry Faculty is licensed under a Creative Commons Attribution 4.0 International License.