Research Article
BibTex RIS Cite

Akut Yüksek Doz Taurin Takviyesinin Tükenme Zamanına Kadar Yapılan Koşu Performansına Etkisi

Year 2023, Volume: 6 Issue: 2, 436 - 445, 28.06.2023
https://doi.org/10.38021/asbid.1239679

Abstract

Bu çalışmanın amacı tükenme zamanına kadar yapılan artan şiddetli koşu performansından 90 dakika önce akut olarak tüketilen yüksek doz izole taurin takviyesinin (6 g), maksimal oksijen alımı (VO2max), maksimal kalp atım hızı (HRmax), tükenme zamanı (TTE) ve algılanan zorluk derecesi (AZD) üzerindeki etkisini araştırmaktı. Çalışmaya 10 antrenmanlı, yarışmacı, dayanıklılık (biatlon) sporcusu katılmıştır. Çalışmada çift-kör randomize çapraz geçişli çalışma dizaynı kullanılmıştır. Katılımcılara egzersiz protokollerinden 90 dk önce ~500 ml şekersiz limonata ile karıştırılmış 6 g taurin (Hardline Nutrition; 100% pure) ya da hiçbir şey eklenmeden şekersiz limonata (plasebo) takviyesi verilmiştir. Artan şiddetli koşu protokolü 6km·h-1 hızla başlamıştır ve katılımcılar bu sabit hızda 6 dakika ısındıktan sonra, koşu bandının hızı saniyede 0.016 km/h, eğimi ise dakikada %0,5 artmıştır. Katılımcıların VO2 ve HR değerleri koşu bandı protokolleri süresince kaydedilmiştir. AZD her denemeden sonra Borg skalası (6-20 puan) ile ölçülmüştür. Bu çalışmanın sonucunda, tükenme zamanına kadar yapılan artan şiddetli koşu performansından 90 dakika önce akut olarak tüketilen 6 gr izole taurin takviyesinin HRmax, TTE ve RPE değerlerinde plasebo müdahalesine kıyasla istatiksel olarak anlamlı fark oluşturmadığı saptanmıştır. VO2max değerinde ise istatiksel olarak anlamsız ancak %2 gelişim sağlandığı görülmüştür.

References

  • Ahmadian, M., Dabidi Roshan, V., & Ashourpore, E. (2017). Taurine supplementation improves functional capacity, myocardial oxygen consumption, and electrical activity in heart failure. Journal of Dietary Supplements, 14(4), 422–432. https://doi.org/10.1080/19390211.2016.1267059
  • Baker, L. B., Rollo, I., Stein, K. W., & Jeukendrup, A. E. (2015). Acute effects of carbohydrate supplementation on intermittent sports performance. Nutrients, 7(7), 5733–5763. https://doi.org/10.3390/nu7075249
  • Balshaw, T. G., Bampouras, T. M., Barry, T. J., & Sparks, S. A. (2013). The effect of acute taurine ingestion on 3-km running performance in trained middle-distance runners. Amino Acids, 44(2), 555–561. https://doi.org/10.1007/s00726-012-1372-1
  • Beyranvand, M. R., Khalafi, M. K., Roshan, V. D., Choobineh, S., Parsa, S. A., & Piranfar, M. A. (2011). Effect of taurine supplementation on exercise capacity of patients with heart failure. Journal of Cardiology, 57(3), 333–337. https://doi.org/10.1016/j.jjcc.2011.01.007
  • Bichler, A., Swenson, A., & Harris, M. A. (2006). A combination of caffeine and taurine has no effect on short term memory but induces changes in heart rate and mean arterial blood pressure. Amino Acids, 31(4), 471–476. https://doi.org/10.1007/s00726-005-0302-x
  • Carvalho, M. B. d., Brandao, C. F. C., Fassini, P. G., Bianco, T. M., Batitucci, G., Galan, B. S. M., De Carvalho, F. G., Vieira, T. S., Ferriolli, E., Marchini, J. S., Silva, A. S. R. da, & de Freitas, E. C. (2020). Taurine supplementation increases post-exercise lipid oxidation at moderate intensity in fasted healthy males. Nutrients, 12(5), 1540. https://doi.org/10.3390/nu12051540
  • Doerner, J. M., Kuetting, D. L., Luetkens, J. A., Naehle, C. P., Dabir, D., Homsi, R., Nadal, J., Schild, H. H., & Thomas, D. K. (2015). Caffeine and taurine containing energy drink increases left ventricular contractility in healthy volunteers. The International Journal of Cardiovascular Imaging, 31(3), 595–601. https://doi.org/10.1007/s10554-014-0577-7
  • Dutka, T. L., Lamboley, C. R., Murphy, R. M., & Lamb, G. D. (2014). Acute effects of taurine on sarcoplasmic reticulum Ca2+ accumulation and contractility in human type I and type II skeletal muscle fibers. Journal of Applied Physiology (Bethesda, Md.: 1985), 117(7), 797–805. https://doi.org/10.1152/japplphysiol.00494.2014
  • Galloway, S. D. R., Talanian, J. L., Shoveller, A. K., Heigenhauser, G. J. F., & Spriet, L. L. (2008). Seven days of oral taurine supplementation does not increase muscle taurine content or alter substrate metabolism during prolonged exercise in humans. Journal of Applied Physiology (Bethesda, Md.: 1985), 105(2), 643–651. https://doi.org/10.1152/japplphysiol.90525.2008
  • Gaull, G. E. (1986). Taurine as a conditionally essential nutrient in man. Journal of the American College of Nutrition, 5(2), 121–125. https://doi.org/10.1080/07315724.1986.10720119
  • Ghandforoush-Sattari, M., Mashayekhi, S., Krishna, C. V., Thompson, J. P., & Routledge, P. A. (2010). Pharmacokinetics of Oral Taurine in Healthy Volunteers. Journal of Amino Acids, 2010, e346237. https://doi.org/10.4061/2010/346237
  • Hansen, S. H., Andersen, M. L., Birkedal, H., Cornett, C., & Wibrand, F. (2006). The important role of taurine in oxidative metabolism. Advances in Experimental Medicine and Biology, 583, 129–135. https://doi.org/10.1007/978-0-387-33504-9_13
  • Hansen, S. H., Andersen, M. L., Cornett, C., Gradinaru, R., & Grunnet, N. (2010). A role for taurine in mitochondrial function. Journal of Biomedical Science, 17(1), S23. https://doi.org/10.1186/1423-0127-17-S1-S23
  • Huxtable, R. J. (1992). Physiological actions of taurine. Physiological Reviews, 72(1), 101–163. https://doi.org/10.1152/physrev.1992.72.1.101
  • Jacobsen, J. G., & Smith, L. H. (1968). Biochemistry and physiology of taurine and taurine derivatives. Physiological Reviews, 48(2), 424–511.
  • Kammerer, M., Jaramillo, J. A., García, A., Calderín, J. C., & Valbuena, L. H. (2014). Effects of energy drink major bioactive compounds on the performance of young adults in fitness and cognitive tests: a randomized controlled trial. Journal of the International Society of Sports Nutrition, 11(1), 44. https://doi.org/10.1186/s12970-014-0044-9
  • Matsuzaki, Y., Miyazaki, T., Miyakawa, S., Bouscarel, B., Ikegami, T., & Tanaka, N. (2002). Decreased taurine concentration in skeletal muscles after exercise for various durations. Medicine and Science in Sports and Exercise, 34(5), 793–797.
  • Milioni, F., Malta, E. de S., Rocha, L. G. S. do A., Mesquita, C. A. A., de Freitas, E. C., & Zagatto, A. M. (2016). Acute administration of high doses of taurine does not substantially improve high-intensity running performance and the effect on maximal accumulated oxygen deficit is unclear. Applied Physiology, Nutrition, and Metabolism, 41(5), 498–503. https://doi.org/10.1139/apnm-2015-0435
  • Rutherford, J. A., Spriet, L. L., & Stellingwerff, T. (2010). The effect of acute taurine ingestion on endurance performance and metabolism in well-trained cyclists. International Journal of Sport Nutrition and Exercise Metabolism, 20(4), 322–329. https://doi.org/10.1123/ijsnem.20.4.322
  • Souissi, N., Driss, T., Chamari, K., Vandewalle, H., Davenne, D., Gam, A., Fillard, J. R., & Jousselin, E. (2010). Diurnal variation in wingate test performances: influence of active warm-up. Chronobiology International, 27(3), 640–652. https://doi.org/10.3109/07420528.2010.483157
  • Waldron, M., Patterson, S. D., Tallent, J., & Jeffries, O. (2018). The effects of an oral taurine dose and supplementation period on endurance exercise performance in humans: a meta-Analysis. Sports Medicine, 48(5), 1247–1253. https://doi.org/10.1007/s40279-018-0896-2
  • Ward, R., Bridge, C. A., McNaughton, L. R., & Sparks, S. A. (2016). The effect of acute taurine ingestion on 4-km time trial performance in trained cyclists. Amino Acids, 48(11), 2581–2587. https://doi.org/10.1007/s00726-016-2282-4
  • Ward, R. J., Francaux, M., Cuisinier, C., Sturbois, X., & De Witte, P. (1999). Changes in plasma taurine levels after different endurance events. Amino Acids, 16(1), 71–77. https://doi.org/10.1007/BF01318886
  • Warnock, R., Jeffries, O., Patterson, S., & Waldron, M. (2017). The effects of caffeine, taurine, or caffeine-taurine coingestion on repeat-sprint cycling performance and physiological responses. International Journal of Sports Physiology and Performance, 12(10), 1341–1347. https://doi.org/10.1123/ijspp.2016-0570
  • Wójcik, O. P., Koenig, K. L., Zeleniuch-Jacquotte, A., Costa, M., & Chen, Y. (2010). The potential protective effects of taurine on coronary heart disease. Atherosclerosis, 208(1), 19. https://doi.org/10.1016/j.atherosclerosis.2009.06.002
  • Zhang, M., Izumi, I., Kagamimori, S., Sokejima, S., Yamagami, T., Liu, Z., & Qi, B. (2004). Role of taurine supplementation to prevent exercise-induced oxidative stress in healthy young men. Amino Acids, 26(2), 203–207. https://doi.org/10.1007/s00726-003-0002-3

The Effect of High-Doses of Taurine Ingestion on Time to Exhaustion Running Performance

Year 2023, Volume: 6 Issue: 2, 436 - 445, 28.06.2023
https://doi.org/10.38021/asbid.1239679

Abstract

The study aimed to investigate the effect of acutely consuming high-dose isolated 6 g of taurine 90 min before incremental treadmill-running time to exhaustion (TTE) performance on maximal oxygen uptake (VO2max), maximal heart rate (HRmax), TTE, and ratings of perceived exertion (RPE). A total of ten well-trained, competitive male endurance (biathlon) athletes participated in this study. A double-blind, randomized crossover design was used in the study and consisted of three separate testing sessions. During the second and third sessions, 90 min before the exercise protocols, participants consumed ~500 ml of a sugar-free lemonade drink with either 6 g of taurine or nothing added (placebo). The incremental treadmill-running TTE performance started at 6km·h-1, and the participants warmed up for 6 minutes at this constant speed. After a warm-up, the treadmill's speed was increased by 0.016km/h per second, and the slope of the treadmill was increased by 0.5% for each 60 seconds. Oxygen uptake (VO2) and HR were measured while the participant was running on the treadmill. RPE was measured immediately after each trial using the Borg Scale (6-20 points). As a result, the acute ingestion of 6 g of taurine 90 min before incremental treadmill-running TTE performance did not enhance TTE, HRmax, and RPE but did result in a non-significant slight change in VO2max (2%).

References

  • Ahmadian, M., Dabidi Roshan, V., & Ashourpore, E. (2017). Taurine supplementation improves functional capacity, myocardial oxygen consumption, and electrical activity in heart failure. Journal of Dietary Supplements, 14(4), 422–432. https://doi.org/10.1080/19390211.2016.1267059
  • Baker, L. B., Rollo, I., Stein, K. W., & Jeukendrup, A. E. (2015). Acute effects of carbohydrate supplementation on intermittent sports performance. Nutrients, 7(7), 5733–5763. https://doi.org/10.3390/nu7075249
  • Balshaw, T. G., Bampouras, T. M., Barry, T. J., & Sparks, S. A. (2013). The effect of acute taurine ingestion on 3-km running performance in trained middle-distance runners. Amino Acids, 44(2), 555–561. https://doi.org/10.1007/s00726-012-1372-1
  • Beyranvand, M. R., Khalafi, M. K., Roshan, V. D., Choobineh, S., Parsa, S. A., & Piranfar, M. A. (2011). Effect of taurine supplementation on exercise capacity of patients with heart failure. Journal of Cardiology, 57(3), 333–337. https://doi.org/10.1016/j.jjcc.2011.01.007
  • Bichler, A., Swenson, A., & Harris, M. A. (2006). A combination of caffeine and taurine has no effect on short term memory but induces changes in heart rate and mean arterial blood pressure. Amino Acids, 31(4), 471–476. https://doi.org/10.1007/s00726-005-0302-x
  • Carvalho, M. B. d., Brandao, C. F. C., Fassini, P. G., Bianco, T. M., Batitucci, G., Galan, B. S. M., De Carvalho, F. G., Vieira, T. S., Ferriolli, E., Marchini, J. S., Silva, A. S. R. da, & de Freitas, E. C. (2020). Taurine supplementation increases post-exercise lipid oxidation at moderate intensity in fasted healthy males. Nutrients, 12(5), 1540. https://doi.org/10.3390/nu12051540
  • Doerner, J. M., Kuetting, D. L., Luetkens, J. A., Naehle, C. P., Dabir, D., Homsi, R., Nadal, J., Schild, H. H., & Thomas, D. K. (2015). Caffeine and taurine containing energy drink increases left ventricular contractility in healthy volunteers. The International Journal of Cardiovascular Imaging, 31(3), 595–601. https://doi.org/10.1007/s10554-014-0577-7
  • Dutka, T. L., Lamboley, C. R., Murphy, R. M., & Lamb, G. D. (2014). Acute effects of taurine on sarcoplasmic reticulum Ca2+ accumulation and contractility in human type I and type II skeletal muscle fibers. Journal of Applied Physiology (Bethesda, Md.: 1985), 117(7), 797–805. https://doi.org/10.1152/japplphysiol.00494.2014
  • Galloway, S. D. R., Talanian, J. L., Shoveller, A. K., Heigenhauser, G. J. F., & Spriet, L. L. (2008). Seven days of oral taurine supplementation does not increase muscle taurine content or alter substrate metabolism during prolonged exercise in humans. Journal of Applied Physiology (Bethesda, Md.: 1985), 105(2), 643–651. https://doi.org/10.1152/japplphysiol.90525.2008
  • Gaull, G. E. (1986). Taurine as a conditionally essential nutrient in man. Journal of the American College of Nutrition, 5(2), 121–125. https://doi.org/10.1080/07315724.1986.10720119
  • Ghandforoush-Sattari, M., Mashayekhi, S., Krishna, C. V., Thompson, J. P., & Routledge, P. A. (2010). Pharmacokinetics of Oral Taurine in Healthy Volunteers. Journal of Amino Acids, 2010, e346237. https://doi.org/10.4061/2010/346237
  • Hansen, S. H., Andersen, M. L., Birkedal, H., Cornett, C., & Wibrand, F. (2006). The important role of taurine in oxidative metabolism. Advances in Experimental Medicine and Biology, 583, 129–135. https://doi.org/10.1007/978-0-387-33504-9_13
  • Hansen, S. H., Andersen, M. L., Cornett, C., Gradinaru, R., & Grunnet, N. (2010). A role for taurine in mitochondrial function. Journal of Biomedical Science, 17(1), S23. https://doi.org/10.1186/1423-0127-17-S1-S23
  • Huxtable, R. J. (1992). Physiological actions of taurine. Physiological Reviews, 72(1), 101–163. https://doi.org/10.1152/physrev.1992.72.1.101
  • Jacobsen, J. G., & Smith, L. H. (1968). Biochemistry and physiology of taurine and taurine derivatives. Physiological Reviews, 48(2), 424–511.
  • Kammerer, M., Jaramillo, J. A., García, A., Calderín, J. C., & Valbuena, L. H. (2014). Effects of energy drink major bioactive compounds on the performance of young adults in fitness and cognitive tests: a randomized controlled trial. Journal of the International Society of Sports Nutrition, 11(1), 44. https://doi.org/10.1186/s12970-014-0044-9
  • Matsuzaki, Y., Miyazaki, T., Miyakawa, S., Bouscarel, B., Ikegami, T., & Tanaka, N. (2002). Decreased taurine concentration in skeletal muscles after exercise for various durations. Medicine and Science in Sports and Exercise, 34(5), 793–797.
  • Milioni, F., Malta, E. de S., Rocha, L. G. S. do A., Mesquita, C. A. A., de Freitas, E. C., & Zagatto, A. M. (2016). Acute administration of high doses of taurine does not substantially improve high-intensity running performance and the effect on maximal accumulated oxygen deficit is unclear. Applied Physiology, Nutrition, and Metabolism, 41(5), 498–503. https://doi.org/10.1139/apnm-2015-0435
  • Rutherford, J. A., Spriet, L. L., & Stellingwerff, T. (2010). The effect of acute taurine ingestion on endurance performance and metabolism in well-trained cyclists. International Journal of Sport Nutrition and Exercise Metabolism, 20(4), 322–329. https://doi.org/10.1123/ijsnem.20.4.322
  • Souissi, N., Driss, T., Chamari, K., Vandewalle, H., Davenne, D., Gam, A., Fillard, J. R., & Jousselin, E. (2010). Diurnal variation in wingate test performances: influence of active warm-up. Chronobiology International, 27(3), 640–652. https://doi.org/10.3109/07420528.2010.483157
  • Waldron, M., Patterson, S. D., Tallent, J., & Jeffries, O. (2018). The effects of an oral taurine dose and supplementation period on endurance exercise performance in humans: a meta-Analysis. Sports Medicine, 48(5), 1247–1253. https://doi.org/10.1007/s40279-018-0896-2
  • Ward, R., Bridge, C. A., McNaughton, L. R., & Sparks, S. A. (2016). The effect of acute taurine ingestion on 4-km time trial performance in trained cyclists. Amino Acids, 48(11), 2581–2587. https://doi.org/10.1007/s00726-016-2282-4
  • Ward, R. J., Francaux, M., Cuisinier, C., Sturbois, X., & De Witte, P. (1999). Changes in plasma taurine levels after different endurance events. Amino Acids, 16(1), 71–77. https://doi.org/10.1007/BF01318886
  • Warnock, R., Jeffries, O., Patterson, S., & Waldron, M. (2017). The effects of caffeine, taurine, or caffeine-taurine coingestion on repeat-sprint cycling performance and physiological responses. International Journal of Sports Physiology and Performance, 12(10), 1341–1347. https://doi.org/10.1123/ijspp.2016-0570
  • Wójcik, O. P., Koenig, K. L., Zeleniuch-Jacquotte, A., Costa, M., & Chen, Y. (2010). The potential protective effects of taurine on coronary heart disease. Atherosclerosis, 208(1), 19. https://doi.org/10.1016/j.atherosclerosis.2009.06.002
  • Zhang, M., Izumi, I., Kagamimori, S., Sokejima, S., Yamagami, T., Liu, Z., & Qi, B. (2004). Role of taurine supplementation to prevent exercise-induced oxidative stress in healthy young men. Amino Acids, 26(2), 203–207. https://doi.org/10.1007/s00726-003-0002-3
There are 26 citations in total.

Details

Primary Language English
Subjects Sport and Exercise Nutrition
Journal Section Arşiv
Authors

Derya Çetin Sarışık 0000-0003-4659-0803

Hülya Andre 0000-0002-6021-2991

Erkan Tortu 0000-0003-2816-9994

Gökhan Deliceoğlu 0000-0003-2459-9209

Early Pub Date June 27, 2023
Publication Date June 28, 2023
Submission Date January 20, 2023
Acceptance Date February 26, 2023
Published in Issue Year 2023 Volume: 6 Issue: 2

Cite

APA Çetin Sarışık, D., Andre, H., Tortu, E., Deliceoğlu, G. (2023). The Effect of High-Doses of Taurine Ingestion on Time to Exhaustion Running Performance. Mediterranean Journal of Sport Science, 6(2), 436-445. https://doi.org/10.38021/asbid.1239679

27208

Mediterranean Journal of Sport Science (MJSS) is licensed under a Creative Commons Attribution 4.0 International License CC BY-NC 4.0 .

2624526366