Research Article
BibTex RIS Cite

Profesyonel Futbolcularda Aşil Tendonunun Biyomekanik ve Viskoelastik Özelliklerinin Mevkilere Göre İncelenmesi

Year 2024, Volume: 7 Issue: 2, 310 - 319, 28.06.2024
https://doi.org/10.38021/asbid.1474137

Abstract

Tüm performans sporcularında olduğu gibi futbolcularda da aşil tendon’un (AT) çok sert ya da yumuşak olması atletik performansı etkilediği gibi sakatlık riskini de artırmaktadır. Bu çalışmanın amacı, tendon sertlik ve mekanik özelliklerinin mevkilere göre bilinmesi bu sayede futbolcuların mevkilerine göre AT mekanik özelliklerinin yapısal olarak geliştirilmesi için uygun antrenman programlarının uygulanmasıdır. Bu çalışmaya yaş ortalaması 18,19±0,402 yıl, , boy ortalaması 180,48±6,258 cm, vücut ağırlığı ortalaması 70,71±7,823 kg, BKİ ortalamaları 21,66±1,65 kg/m₂ olan 21 erkek profesyonel futbolcu dahil edildi. AT mekanik ve viskoelastik özellikleri yüksek güvenirlikte MyotonPro cihazı (Myoton AS, Estonia) ile değerlendirildi. Profesyonel futbolcuların AT ölçümleri ayak bilekleri nötr pozisyonda masadan sarkacak şekilde yüz üstü yattıkları pozisyonda tendonun distal insersiyosu (kalkaneal tüberkül) belirlendikten sonra bu noktanın 4 cm yukarısından gerçekleştirildi. AT elastisitesi mevkilere incelendiğinde anlamlı bir sonuç (p<0,05) çıkmasına rağmen Post-Doc ikili karşılaştırmaya bakıldığında anlamlı bir sonuç çıkmamıştır. İstatistiksel analiz, futbol branşı ile ilgilenen sporcuların oynadıkları mevkiler arasında AT mekanik özellikleri açısından anlamlı bir fark olmadığını göstermiştir. Takımda herkesin aynı antrenmanı yapması ve bölgesel olarak benzer vücut yapısında futbolculara ölçümlerin uygulanması elde edilen verilerin özelliklerini etkilemiştir. Bu anlamda futbolcuların mevkilerine göre AT yapılarının incelenmesinin, antrenmanlarla kuvvet çıktısında gelişmelere katkı sağlayacağı düşünülmektedir. Ayrıca bu çalışmadan elde edilen bulguların antrenörler ile birlikte sağlık çalışanlarına, sporcularda oluşabilecek tendon patolojileri riskini belirlemede, sporcu rehabilitasyonunda, atletik performansı artırmada ve sürdürmede destek olabilir. Futbolcularda AT’un mekanik ve viskoelastik özellikleri ile ilgili ileride yapılacak çalışmalarda katılımcı sayılarının arttırılmasının araştırmacılara daha güvenilir bilgiler vereceği öngörülmektedir.

References

  • Alexander, R. M., & Bennet-Clark, H. C. (1977). Storage of elastic strain energy in muscle and other tissues. Nature, 265(5590), 114-7.
  • Arampatzis, A., Karamanidis, K., De Monte, G., Morey-Klapsing, G., & Stafilidis, S. (2007). Mechanical properties of the triceps surae tendon and aponeurosis in relation to ıntensity of sport activity. Journal of Biomechanics, 40(9), 1946-1952.
  • Arampatzis, A., Peper, A., Bierbaum, S., & Albracht, K. (2010). Plasticity of human achilles tendon mechanical and morphological properties in response to cyclic strain. J. Biomech, 43, 3073-3079. doi: 10.1016/j.jbiomech.2010.08.014
  • Bohm, S., Mersmann, F., & Arampatzis, A. (2015). Human tendon adaptation in response to mechanical loading: A systematic review and meta-analysis of exercise ıntervention studies on healthy adults. Sports Med Open, 1:7.
  • Bojsen-Møller, J., Magnusson, S. P., Rasmussen, L. R., Kjaer, M., & Aagaard, P. (2005). Muscle performance during maximal ısometric and dynamic contractions is ınfluenced by the stiffness of the tendinous structures. J. Appl Physiol. Sep; 99(3), 986-94. doi: 10.1152/japplphysiol.01305.2004.
  • Butler, R. J., Crowell III, H. P., & Davis, I. M. (2003). Lower Extremity Stiffness: Implications for performance and ınjury. Clinical Biomechanics, 18(6), 511-517.
  • Chang, Y. J. & Kulig, K. (2015). The neuromechanical adaptations to achilles tendinosis. J Physiol. 593, 3373-3387.
  • Couppe, C., Hansen, P., Kongsgaard, M., Kovanen, V., Suetta, C., Aagaard, P., Kjaer, M., & Magnusson, S. P. (2009). Mechanical properties and collagen cross-linking of the patellar tendon in old and young men. J. Appl. Physiol, 107, 880-886.
  • Cristi-Sánchez I., Danes-Daetz C., Neira A., Ferrada W., Yáñez Diaz R., & Silvestre Aguirre R. (2019). Patellar and achilles tendon stiffness in elite soccer players assessed using myotonometric measurements. Sports Health. 11(2), 157-62.
  • Epro, G., McCrum, C., Mierau, A., Leyendecker, M., Brüggemann, G. P., & Karamanidis, K. (2018). effects of triceps surae muscle strength and tendon stiffness on the reactive dynamic stability and adaptability of older female adults during perturbed walking. J. Appl. Physiol, 124, 1541-1549. doi: 10.1152/ japplphysiol.00545.2017
  • Faria, A., Gabriel, R., Abrantes, J., Wood, P., & Moreira, H. (2013). Mechanical properties of the triceps surae: Differences between football and non-football players. Journal of Sports Sciences, 31(14), 1559-1567.
  • Fouré, A., Nordez, A., & Cornu, C. (2012). Effects of plyometric training on passive stiffness of gastrocnemii muscles and achilles tendon. European Journal of Applied Physiology, 112(8), 2849-2857.
  • Frankewycz, B., Penz, A., Weber, J., da Silva N. P., Freimoser, F., Bell, R., Nerlich, M., Jung, E.M., Docheva, D., & Pfeifer, C. G. (2018). Achilles tendon elastic properties remain decreased in long term after rupture. Knee Surg. Sport. Traumatol. Arthrosc, 26, 2080-2087.
  • Gapeyeva, H., & Vain, A. (2008). Principles of applying myoton in physical medicine and rehabilitation. Methodical Guide Tartu. 22.
  • Gavronski, G., Veraksits, A., Vasar, E., & Maaroos, J. (2007). Evaluation of viscoelastic parameters of the skeletal muscles in junior triathletes. Physiol Meas. 28, 625-37.
  • Heinemeier, K., & Kjaer, M. (2011). In vivo ınvestigation of tendon responses to mechanical loading. J Musculoskelet Neuronal Interact,11, 115-123.
  • Kongsgaard, M., Aagaard, P., Kjaer, M., & Magnusson, S. P. (2005). Structural achilles tendon properties in athletes subjected to different exercise modes and in achilles tendon rupture patients. J Appl Physiol, 1965-1971.
  • Konrad, A., & Tilp, M. (2018). Muscle and tendon tissue properties of competitive soccer goalkeepers and midfielders. Ger J. Exerc Sport Res., 48, 245-251 https://doi.org/10.1007/s12662-018-0510-7
  • Kubo K., Miyazaki D., Shimoju S., & Tsunoda N. (2015). Relationship between elastic properties of tendon structures and performance in long distance runners. Eur J. Appl Physiol, 115, 1725-1733.
  • Kubo, K., Morimoto, M., Komuro, T., Yata, H., Tsunoda, N., Kanehisa, H., & Fukunaga, T. (2007). Effects of plyometric and weight training on muscle-tendon complex and jump performance. Med. Sci. Sports Exerc., 39, 1801-1810.
  • Kurihara, T., Sasaki, R., & Isaka, T. (2012). Mechanical properties of achilles tendon in relation to various sport activities of collegiate athletes. 30th Annual Conference of Biomechanics in Sports. 183. Melbourne
  • Liu, C. L., Li Y. P., Wang, X. Q., & Zhang, Z. J. (2018). Quantifying the stiffness of achilles tendon: Intra- and ınter-operator reliability and the effect of ankle joint motion. Med Sci Monit. Jul., 14(24), 4876-4881. doi: 10.12659/MSM.909531.
  • Malliaras, P., Kamal B., Nowell A., Farley T., Dhamu H., Simpson, V., Morrissey, D, Langberg, H., Maffulli, N., & Reeves, N. D. (2013). Patellar Tendon Adaptation in Relation to Load-Intensity and Contraction Type. J. Biomech, 46(11), 1893-1899
  • Morgan, G. E., Martin, R., Williams, L., Pearce, O., & Morris, K. (2018). Objective assessment of stiffness in achilles tendinopathy: A novel approach using the MyotonPRO. BMJ Open Sport & Exercise Medicine, 4(1), e000446. doi:10.1136/ bmjsem-2018-000446
  • Obst, S. J., Newsham-West, R, & Barrett, R. S. (2016). Changes in achilles tendon mechanical properties following eccentric heel drop exercise are specific to the free tendon. Scand. J. Med. Sci. Sports, 26, 421-431. doi: 10.1111/sms.12466.
  • Orner, S., Kratzer, W., Schmidberger, J., & Grüner B. (2018). Quantitative tissue parameters of achilles tendon and plantar fascia in healthy subjects using a handheld myotonometer. J Bodyw Mov Ther., 22, 105-11.
  • Polat, S., Edis Ç., & Catıkkas, F. (2019). Effects of dynamic and static stretching exercises applied in warm-up session on performance. Turkish Journal of Sport Sciences, 2(1), 31-38.
  • Rogers, S. A. (2015). Relationships between multiple mechanical stiffness assessments and performance in middle-distance runners [Master's Thesis]. Auckland, New Zealand: Auckland University of Technology.
  • Usgu, S., Yakut, Y., & Cınar, M. A. (2020). Comparison of viscoelastic properties of achilles tendon in elite runners and soccer players. Turkish Journal of Sports Medicine, 55(4), 276-283.
  • Wu, Y. K., Lien, Y. H., Lin, K. H., Shih, T. T., Wang, T. G., & Wang, H. K. (2010). Relationships between three potentiation effects of plyometric training and performance. Scand. J. Med. Sci. Sports. 20, 80-86. doi: 10.1111/j.1600-0838.2009.00908.x.

Investigation of Biomechanical and Viscoelastic Properties of Achilles Tendon in Professional Soccer Players According to Position

Year 2024, Volume: 7 Issue: 2, 310 - 319, 28.06.2024
https://doi.org/10.38021/asbid.1474137

Abstract

As in all performance athletes, too hard or too soft Achilles tendon (AT) affects athletic performance and increases the risk of injury in soccer players. The aim of this study was to know the tendon stiffness and mechanical properties of the tendon according to the positions and thus to apply appropriate training programs for the structural improvement of the mechanical properties of the AT according to the positions of the soccer players. In this study, 21 male professional soccer players with a mean age of 18.19±0.402 years, mean height of 180.48±6.258 cm, mean body weight of 70.71±7.823 kg, and mean BMI of 21.66±1.65 kg/m₂ were included. The mechanical and viscoelastic properties of the AT were evaluated with the highly reliable MyotonPro device (Myoton AS, Estonia). AT measurements of professional soccer players were performed 4 cm above the distal insertion of the tendon (calcaneal tubercle) after determining the distal insertion of the tendon in the prone position with the ankles hanging from the table in a neutral position. Although there was a significant result (p<0.05) when AT elasticity was analyzed by position, there was no significant result when post-doc pairwise comparison was analyzed. Statistical analysis showed that there was no significant difference between the positions played by soccer players in terms of AT mechanical properties. The fact that everyone in the team performed the same training and the measurements were performed on soccer players with similar body structure regionally affected the characteristics of the data obtained. In this sense, it is thought that examining the AT structures of soccer players according to their positions will contribute to improvements in strength output with training. In addition, the findings obtained from this study may support coaches and health professionals in determining the risk of tendon pathologies that may occur in athletes, in athlete rehabilitation, and in increasing and maintaining athletic performance. It is predicted that increasing the number of participants in future studies on the mechanical and viscoelastic properties of AT in soccer players will provide more reliable information to the researchers.

References

  • Alexander, R. M., & Bennet-Clark, H. C. (1977). Storage of elastic strain energy in muscle and other tissues. Nature, 265(5590), 114-7.
  • Arampatzis, A., Karamanidis, K., De Monte, G., Morey-Klapsing, G., & Stafilidis, S. (2007). Mechanical properties of the triceps surae tendon and aponeurosis in relation to ıntensity of sport activity. Journal of Biomechanics, 40(9), 1946-1952.
  • Arampatzis, A., Peper, A., Bierbaum, S., & Albracht, K. (2010). Plasticity of human achilles tendon mechanical and morphological properties in response to cyclic strain. J. Biomech, 43, 3073-3079. doi: 10.1016/j.jbiomech.2010.08.014
  • Bohm, S., Mersmann, F., & Arampatzis, A. (2015). Human tendon adaptation in response to mechanical loading: A systematic review and meta-analysis of exercise ıntervention studies on healthy adults. Sports Med Open, 1:7.
  • Bojsen-Møller, J., Magnusson, S. P., Rasmussen, L. R., Kjaer, M., & Aagaard, P. (2005). Muscle performance during maximal ısometric and dynamic contractions is ınfluenced by the stiffness of the tendinous structures. J. Appl Physiol. Sep; 99(3), 986-94. doi: 10.1152/japplphysiol.01305.2004.
  • Butler, R. J., Crowell III, H. P., & Davis, I. M. (2003). Lower Extremity Stiffness: Implications for performance and ınjury. Clinical Biomechanics, 18(6), 511-517.
  • Chang, Y. J. & Kulig, K. (2015). The neuromechanical adaptations to achilles tendinosis. J Physiol. 593, 3373-3387.
  • Couppe, C., Hansen, P., Kongsgaard, M., Kovanen, V., Suetta, C., Aagaard, P., Kjaer, M., & Magnusson, S. P. (2009). Mechanical properties and collagen cross-linking of the patellar tendon in old and young men. J. Appl. Physiol, 107, 880-886.
  • Cristi-Sánchez I., Danes-Daetz C., Neira A., Ferrada W., Yáñez Diaz R., & Silvestre Aguirre R. (2019). Patellar and achilles tendon stiffness in elite soccer players assessed using myotonometric measurements. Sports Health. 11(2), 157-62.
  • Epro, G., McCrum, C., Mierau, A., Leyendecker, M., Brüggemann, G. P., & Karamanidis, K. (2018). effects of triceps surae muscle strength and tendon stiffness on the reactive dynamic stability and adaptability of older female adults during perturbed walking. J. Appl. Physiol, 124, 1541-1549. doi: 10.1152/ japplphysiol.00545.2017
  • Faria, A., Gabriel, R., Abrantes, J., Wood, P., & Moreira, H. (2013). Mechanical properties of the triceps surae: Differences between football and non-football players. Journal of Sports Sciences, 31(14), 1559-1567.
  • Fouré, A., Nordez, A., & Cornu, C. (2012). Effects of plyometric training on passive stiffness of gastrocnemii muscles and achilles tendon. European Journal of Applied Physiology, 112(8), 2849-2857.
  • Frankewycz, B., Penz, A., Weber, J., da Silva N. P., Freimoser, F., Bell, R., Nerlich, M., Jung, E.M., Docheva, D., & Pfeifer, C. G. (2018). Achilles tendon elastic properties remain decreased in long term after rupture. Knee Surg. Sport. Traumatol. Arthrosc, 26, 2080-2087.
  • Gapeyeva, H., & Vain, A. (2008). Principles of applying myoton in physical medicine and rehabilitation. Methodical Guide Tartu. 22.
  • Gavronski, G., Veraksits, A., Vasar, E., & Maaroos, J. (2007). Evaluation of viscoelastic parameters of the skeletal muscles in junior triathletes. Physiol Meas. 28, 625-37.
  • Heinemeier, K., & Kjaer, M. (2011). In vivo ınvestigation of tendon responses to mechanical loading. J Musculoskelet Neuronal Interact,11, 115-123.
  • Kongsgaard, M., Aagaard, P., Kjaer, M., & Magnusson, S. P. (2005). Structural achilles tendon properties in athletes subjected to different exercise modes and in achilles tendon rupture patients. J Appl Physiol, 1965-1971.
  • Konrad, A., & Tilp, M. (2018). Muscle and tendon tissue properties of competitive soccer goalkeepers and midfielders. Ger J. Exerc Sport Res., 48, 245-251 https://doi.org/10.1007/s12662-018-0510-7
  • Kubo K., Miyazaki D., Shimoju S., & Tsunoda N. (2015). Relationship between elastic properties of tendon structures and performance in long distance runners. Eur J. Appl Physiol, 115, 1725-1733.
  • Kubo, K., Morimoto, M., Komuro, T., Yata, H., Tsunoda, N., Kanehisa, H., & Fukunaga, T. (2007). Effects of plyometric and weight training on muscle-tendon complex and jump performance. Med. Sci. Sports Exerc., 39, 1801-1810.
  • Kurihara, T., Sasaki, R., & Isaka, T. (2012). Mechanical properties of achilles tendon in relation to various sport activities of collegiate athletes. 30th Annual Conference of Biomechanics in Sports. 183. Melbourne
  • Liu, C. L., Li Y. P., Wang, X. Q., & Zhang, Z. J. (2018). Quantifying the stiffness of achilles tendon: Intra- and ınter-operator reliability and the effect of ankle joint motion. Med Sci Monit. Jul., 14(24), 4876-4881. doi: 10.12659/MSM.909531.
  • Malliaras, P., Kamal B., Nowell A., Farley T., Dhamu H., Simpson, V., Morrissey, D, Langberg, H., Maffulli, N., & Reeves, N. D. (2013). Patellar Tendon Adaptation in Relation to Load-Intensity and Contraction Type. J. Biomech, 46(11), 1893-1899
  • Morgan, G. E., Martin, R., Williams, L., Pearce, O., & Morris, K. (2018). Objective assessment of stiffness in achilles tendinopathy: A novel approach using the MyotonPRO. BMJ Open Sport & Exercise Medicine, 4(1), e000446. doi:10.1136/ bmjsem-2018-000446
  • Obst, S. J., Newsham-West, R, & Barrett, R. S. (2016). Changes in achilles tendon mechanical properties following eccentric heel drop exercise are specific to the free tendon. Scand. J. Med. Sci. Sports, 26, 421-431. doi: 10.1111/sms.12466.
  • Orner, S., Kratzer, W., Schmidberger, J., & Grüner B. (2018). Quantitative tissue parameters of achilles tendon and plantar fascia in healthy subjects using a handheld myotonometer. J Bodyw Mov Ther., 22, 105-11.
  • Polat, S., Edis Ç., & Catıkkas, F. (2019). Effects of dynamic and static stretching exercises applied in warm-up session on performance. Turkish Journal of Sport Sciences, 2(1), 31-38.
  • Rogers, S. A. (2015). Relationships between multiple mechanical stiffness assessments and performance in middle-distance runners [Master's Thesis]. Auckland, New Zealand: Auckland University of Technology.
  • Usgu, S., Yakut, Y., & Cınar, M. A. (2020). Comparison of viscoelastic properties of achilles tendon in elite runners and soccer players. Turkish Journal of Sports Medicine, 55(4), 276-283.
  • Wu, Y. K., Lien, Y. H., Lin, K. H., Shih, T. T., Wang, T. G., & Wang, H. K. (2010). Relationships between three potentiation effects of plyometric training and performance. Scand. J. Med. Sci. Sports. 20, 80-86. doi: 10.1111/j.1600-0838.2009.00908.x.
There are 30 citations in total.

Details

Primary Language English
Subjects Sports Training, Physical Activity and Health, Physical Fitness
Journal Section Arşiv
Authors

Sinan Seyhan 0000-0002-4979-7992

Early Pub Date June 28, 2024
Publication Date June 28, 2024
Submission Date April 26, 2024
Acceptance Date June 9, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Seyhan, S. (2024). Investigation of Biomechanical and Viscoelastic Properties of Achilles Tendon in Professional Soccer Players According to Position. Mediterranean Journal of Sport Science, 7(2), 310-319. https://doi.org/10.38021/asbid.1474137

27208

Mediterranean Journal of Sport Science (MJSS) is licensed under a Creative Commons Attribution 4.0 International License CC BY-NC 4.0 .

2624526366