Year 2018,
Volume: 33 Issue: 1, 11 - 19, 06.01.2018
Bekir Tufan
,
Gülsüm Balçık Mısır
,
Sevim Köse
References
- Balçik Misir, G., Tufan, B. & Köse, S. (2014). Monthly variation of total lipid and fatty acid contents of Atlantic bonito, Sarda sarda (Bloch, 1793) of Black Sea. International Journal of Food Science and Technology, 49, 2668-2677. doi: 10.1111/ijfs.12578
- Bayır, A., Haliloğlu, H.İ., Sirkecioğlu, N. & Aras, N.M. (2006). Fatty acid composition in some selected marine fish species living in Turkish waters. Journal of the Science of Food and Agriculture, 86, 163-168. doi: 10.1002/jsfa.2295
- Bektas, Y. & Belduz, A.O. (2008). Molecular phylogeny of Turkish Trachurus species (Perciformes: Carangidae) inferred frommitochondrial DNA analyses. Journal of Fish Biology, 73, 1228-1248. doi:10.1111/j.1095-8649.2008.01996.x
- Bligh, E.G. & Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917. doi: 10.1139/o59-099
- Boran, G. & Karaçam, H. (2011). Seasonal changes in proximate composition of some fish species from the Black Sea. Turkish Journal of Fisheries and Aquatic Sciences, 11, 01-05. doi: 10.4194/trjfas.2011.0101
- Candela, C.G., Lopez, L.M.B. & Kohen, V. (2011). Importance of a balanced omega 6/omega 3 ratio for the maintenance of health. Nutritional recommendations. Nutricion Hospitalaria, 26, 323-329. doi: 10.1590/S0212-16112011000200013
- Carlson, S.E. & Werkman, S. H. (1996). A randomized trial of visual attention of preterm infants fed docosahexaenoic acid until two months. Lipids, 31(1), 85-90. doi: 10.1007/BF02522416
- Celik, M. (2008). Seasonal changes in the proximate chemical compositions and fatty acids of chub mackerel (Scomber japonicus) and horse mackerel (Trachurus trachurus) from the north eastern Mediterranean Sea. International Journal of Food Science and Technology, 43(5), 933-938. doi: 10.1111/j.1365-2621.2007.01549.x
- Chuang, L.T., Bülbül, U., Wen, P.C., Glew, R.H. & Ayaz, F.A. (2012). Fatty Acid composition of 12 fish species from the black sea. Journal of Food Science, 77 (5), 512-518. doi: 10.1111/j.1750-3841.2012.02661.x
- Compilers' Toolbox™ (2016). What Greenfield and Southgate did not write. http://toolbox.foodcomp.info/ToolBox_FattyAcids.asp. (accessed 29.09.2016)
- Exler, J., Kinsella, J.E. & Watt, B.K. (1975). Lipids and fatty acids of important finfish: New data for nutrient tables. Journal of the American Oil Chemists' Society, 52(5), 154-159. doi: 10.1007/BF02557948
- FAO (2014). Food and Agricultural Organization of United Nations, Global Capture Fisheries Production Statistics for the year 2012. Reti Retrieved from http://www.fao.org/fishery/statistics/global-capture-production/query/en (accessed 09.09.2016)
- Fernandez-Jover, D., Lopez Jimenez, J.A., Sanchez-Jerez, P., Bayle-Sempere, J., Casalduero, F.G.C., Lopez, F.J.M. & Dempster, T. (2007). Changes in body condition and fatty acid composition of wild Mediterranean horse mackerel (Trachurus mediterraneus, Steindachner, 1868) associated to sea cage fish farms. Marine Environmental Research, 63, 1-18. doi:10.1016/j.marenvres.2006.05.002
- FISHBASE (2016). http://www.fishbase.org/search.php (accessed 16.09. 2016)
- Gogus, U. & Smith, C. (2010). n-3 Omega fatty acids: a review of current knowledge. International Journal of Food Science and Technology, 45 (3), 417-436. doi: 10.1111/j.1365-2621.2009.02151.x
- Gordon, D.T. & Ratliff, V. (1992). The Implications of Omega-3 Fatty Acits in Human Health, In Advances in Seafood Biochemistry Composition and Quality, Flick, G. J. And Martin R. E. Eds., Technomic Publ., Lancester, 69-98.
- Greenfield, H. & Southgate, D.A.T. (2003). Assuring the Quality of Analytical Data. Chapter 8. In: Food Composition Data Part 2, 2nd ed., FAO Publishing Management Service, Rome, Italy, 149–255 pp.
- Güner, S., Dincer, B., Alemdag, N., Colak, A. & Tüfekci, M. (1998). Proximate composition and selected mineral content of commercially important fish species from the Black Sea. Journal of the Science of Food and Agriculture, 78, 337-342. doi: 10.1002/(SICI)1097-0010(199811)78:3<337::AID-JSFA122>3.0.CO;2-A
- Hureau, J.C. (1986). Mullidae. In Fishes of the North-eastern Atlantic and the Mediterranean (Whitehead, P. J. P., Bauchot, M, L., Hureau, J. C., Nielsen, J. & Tortonese, E., eds) Vol. 2. UNESCO, Paris, 877–882 pp.
- Ichihara, K., Shibahara, A., Yamamoto, K. & Nakayama, T. (1996). An improved method for rapid analysis of the fatty acids of glycerolipids. Lipids, 31 (5), 535-539. doi: 10.1007/BF02522648
- Karakoltsidis, P.A., Zotos, A. & Constantinides, S.M. (1995). Composition of the commercially important Mediterranean finfish, crustaceans, and molluscs. Journal of Food Composition and Analysis, 8, 258-273. doi:10.1006/jfca.1995.1019
- Kasapoglu, N. & Duzgunes, E. (2013). The relationship between somatic growth and otolith dimensions of Mediterranean horse mackerel (Trachurus mediterraneus) from the Black Sea. Journal of Applied Ichthyology, 29, 230-233. doi: 10.1111/jai.12019
- Kiessling, A., Pickova, J., Johansson, L., Asgard, T., Storebakken, T. & Kiessling, K.-H. (2001). Changes in fatty acid composition in muscle and adipose tissue of farmed rainbow trout (Oncorhynchus mykiss) in relation to ration and age. Food Chemistry, 73, 271-284. doi: 10.1016/S0308-8146(00)00297-1
- Kocatepe, D. & Turan, H. (2012). Proximate and Fatty Acid Composition of Some Commercially Important Fish Species from the Sinop Region of the Black Sea. Lipids, 47, 635-641. doi: 10.1007/s11745-012-3658-1
- Merdzhanova, A., Stancheva, M. & Makedonski, L. (2012). Fatty acid composition of Bulgarian Black Sea fish species. Ovidius University Annals of Chemistry, 23(1), 41-46. doi: 10.2478/v10310-012-0006-5
- Osman, H., Suriah, A.R. & Law, E.C. (2001). Fatty acid composition and cholesterol content of selected marine fish in Malaysian waters. Food Chemistry, 73, 55-60. doi: 10.1016/S0308-8146(00)00277-6
- Ozogul, Y. & Ozogul, F. (2007). Fatty acid profiles of commercially important fish species from the Mediterranean, Aegean and Black Seas. Food Chemistry, 100, 1634-1638.
- Polat, A., Kuzu, S., Özyurt, G. & Tokur, B. (2009). Fatty acid composition of red mullet (Mullus barbatus): a seasonal differentiation. Journal of Muscle Foods, 20, 70-78. doi: 10.1111/j.1745-4573.2008.00134.x
- Rodriguez, C., Acosta, C., Badia, P., Cejas, J.R., Santamaria, F.J. & Lorenzo, A. (2004). Assessment of lipid and essential fatty acids requirements of black seabream (Spondyliosoma cantharus) by comparison of lipid composition in muscle and liver of wild and captive adult fish. Comparative Biochemistry and Physiology, 139, 619-629. doi: 10.1016/j.cbpc.2004.07.013
- Samsun, O., Samsun, N., Bilgin, S. & Kalayci, F. (2006). Population biology and status of exploitation of introduced garfish Belone belone euxini (Gunther, 1866) in the Black Sea. Journal of Applied Ichthyology, 22, 353-356, doi: 10.1111/j.1439-0426.2006.00751.x
- Šantič, M., Jardas, I. & Pallaoro, A. (2003). Feeding habits of Mediterranean horse mackerel, Truchurus mediterraneus (Carangidae), in the central Adriatic Sea. Cybium, 27(4), 247-253.
- Saglık, S. & Imre, S. (2001). ω3-Fatty acids in some fish species in Turkey. Journal of Food Sciences, 66 (1), 210-212. doi: 10.1111/j.1365-2621.2001.tb11318.x
- Sidhu, K.S. (2003). Health benefits and potential risks related to consumption of fish or fish oil. Regulatory Toxicology and Pharmacology, 38 (3): 336–344. doi: 10.1016/j.yrtph.2003.07.002
- Simopoulos, A.P. (2003). Importance of the ratio of omega-6 ⁄ omega-3 essential fatty acids: evolutionary aspects. World review of nutrition and dietetics, 92, 1–22.
- Sokal, R.R. & Rohlf, F.J. (1987). Introduction to Biostatistics, 2nd edn., New York: W.H. Freeman and Company.
- Stancheva, M., Galunska, B., Dobreva, A.D. & Merdzhanova, A. (2012). Retinol, alpha-tocopherol and fatty acid content in Bulgarian Black Sea fish species. Grasas y Aceites, 63(2), 152-157. doi: 10.3989/gya.069611
- Tanakol, R., Yazıcı, Z., Sener, E. & Sencer, E. (1999). Fatty acid composition of 19 species of fish from the black sea and the Marmara Sea. Lipids, 34 (3), 291-297.
- Testi, S., Bonaldo, A., Gatta, P.P. & Badiani, A. (2006). Nutritional traits of dorsal and ventral fillets from three farmed fish species. Food Chemistry, 98, 104-111. doi: 10.1016/j.foodchem.2005.05.053
- Tufan, B., Koral, S. & Köse, S. (2011). Changes during fishing season in the fat content and fatty acid profile of edible muscle, liver and gonads of anchovy (Engraulis encrasicolus) caught in the Turkish Black Sea. International Journal of Food Science and Technology, 10, 439-443. doi: 10.1111/j.1365-2621.2011.02562.x
- Tufan, B., Koral, S. & Köse, S. (2013). The variations in proximate chemical composition and fatty acid profile in different parts of the thornback ray (Raja clavata) caught from Black Sea, Turkey. Journal of Aquatic Food Products Technology, 22 (1), 83-95. doi: 10.1080/10498850.2011.625593
- Tufan, B. & Köse, S. (2014). Variations in lipid and fatty acid contents in different body parts of Black Sea whiting, (Nordmann, 1840). International Journal of Food Science and Technology, 49, 373-384. doi: 10.1111/ijfs.12309
- TSI (2013). Turkish Statistical Institute, State Fisheries Statistics. Turkey: TUIK. Retrieved from http://www.tuik.gov.tr (accessed 15.03.2016)
- Turan, C. (2004). Stock identification of Mediterranean horse mackerel (Trachurus mediterraneus) using morphometric and meristic characters. ICES Journal of Marine Science, 61, 774-781. doi: 10.1016/j.icesjms.2004.05.001
- Tzikas, Z., Amvrosiadis, I., Soultos, N. & Georgakis, S. (2007). Seasonal variation in the chemical composition and microbiological condition of Mediterranean horse mackerel (Trachurus mediterraneus) muscle from the North Aegean Sea (Greece). Food Control, 18, 251-257. doi: 10.1016/j.foodcont.2005.10.003
- Weihrauch, J.L., Posati, L.P., Anderson, B.A. & Exler, J. (1977). Lipid conversion factors for calculating fatty acid contents of foods. Journal of the American Oil Chemists' Society, 54 (1), 36-40. doi: 10.1007/BF02671370
- Zlatanos, S. & Laskaridis, K. (2007). Seasonal variation in the fatty acid composition of three Mediterranean fish-sardine (Sardina pilchardus), anchovy (Engraulis encrasicholus) and picarel (Spicara smaris). Food Chemistry, 103, 725-728. doi: 10.1016/j.foodchem.2006.09.013
Comparison of Seasonal Fatty Acid Composition in Relation to Nutritional Value of Three Commercial Fish Species Caught From Different Zones of Eastern Black Sea
Year 2018,
Volume: 33 Issue: 1, 11 - 19, 06.01.2018
Bekir Tufan
,
Gülsüm Balçık Mısır
,
Sevim Köse
Abstract
The biochemical composition of fish differs according to seasons and habitat. This study aims to compare seasonal variations in the fatty acid composition of garfish (Belone euxini), Mediterranean horse mackerel (Trachurus mediterraneus) and red mullet (Mullus barbatus), commercially caught from different zones of Eastern Black Sea of Turkey. The results demonstrated significant seasonal variations in the levels of total saturated fatty acids (ΣSFA), monounsaturated fatty acids (ΣMUFA) and polyunsaturated fatty acids (ΣPUFA) in the fish (p<0.05). The highest percentage of omega-3 and ΣPUFA fatty acids were observed in autumn for red mullet and Mediterranean horse mackerel, while the highest values of these fatty acids were found in spring for garfish. The highest eicosapentaenoic acid + docosahexaenoic acid (EPA+DHA) levels were obtained for garfish and the lowest for red mullet. Significant seasonal variations were also observed among the three-fish species in values of fatty acids expressed as mg/100g in the edible portion (p<0.05). Considering, the highest levels of EPA+DHA, only 145 g of garfish is found enough to meet the weekly requirement of EPA+DHA for winter; although, consumption of approximately 431 g of edible muscle is required for red mullet to meet the same requirement. About 295 g edible muscle of Mediterranean horse mackerel was needed to meet the requisite amount of nutrients in summer. Therefore, this study implies that garfish has a better nutritional value for human consumption due to higher contents of EPA+DHA compared to other two species.
References
- Balçik Misir, G., Tufan, B. & Köse, S. (2014). Monthly variation of total lipid and fatty acid contents of Atlantic bonito, Sarda sarda (Bloch, 1793) of Black Sea. International Journal of Food Science and Technology, 49, 2668-2677. doi: 10.1111/ijfs.12578
- Bayır, A., Haliloğlu, H.İ., Sirkecioğlu, N. & Aras, N.M. (2006). Fatty acid composition in some selected marine fish species living in Turkish waters. Journal of the Science of Food and Agriculture, 86, 163-168. doi: 10.1002/jsfa.2295
- Bektas, Y. & Belduz, A.O. (2008). Molecular phylogeny of Turkish Trachurus species (Perciformes: Carangidae) inferred frommitochondrial DNA analyses. Journal of Fish Biology, 73, 1228-1248. doi:10.1111/j.1095-8649.2008.01996.x
- Bligh, E.G. & Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917. doi: 10.1139/o59-099
- Boran, G. & Karaçam, H. (2011). Seasonal changes in proximate composition of some fish species from the Black Sea. Turkish Journal of Fisheries and Aquatic Sciences, 11, 01-05. doi: 10.4194/trjfas.2011.0101
- Candela, C.G., Lopez, L.M.B. & Kohen, V. (2011). Importance of a balanced omega 6/omega 3 ratio for the maintenance of health. Nutritional recommendations. Nutricion Hospitalaria, 26, 323-329. doi: 10.1590/S0212-16112011000200013
- Carlson, S.E. & Werkman, S. H. (1996). A randomized trial of visual attention of preterm infants fed docosahexaenoic acid until two months. Lipids, 31(1), 85-90. doi: 10.1007/BF02522416
- Celik, M. (2008). Seasonal changes in the proximate chemical compositions and fatty acids of chub mackerel (Scomber japonicus) and horse mackerel (Trachurus trachurus) from the north eastern Mediterranean Sea. International Journal of Food Science and Technology, 43(5), 933-938. doi: 10.1111/j.1365-2621.2007.01549.x
- Chuang, L.T., Bülbül, U., Wen, P.C., Glew, R.H. & Ayaz, F.A. (2012). Fatty Acid composition of 12 fish species from the black sea. Journal of Food Science, 77 (5), 512-518. doi: 10.1111/j.1750-3841.2012.02661.x
- Compilers' Toolbox™ (2016). What Greenfield and Southgate did not write. http://toolbox.foodcomp.info/ToolBox_FattyAcids.asp. (accessed 29.09.2016)
- Exler, J., Kinsella, J.E. & Watt, B.K. (1975). Lipids and fatty acids of important finfish: New data for nutrient tables. Journal of the American Oil Chemists' Society, 52(5), 154-159. doi: 10.1007/BF02557948
- FAO (2014). Food and Agricultural Organization of United Nations, Global Capture Fisheries Production Statistics for the year 2012. Reti Retrieved from http://www.fao.org/fishery/statistics/global-capture-production/query/en (accessed 09.09.2016)
- Fernandez-Jover, D., Lopez Jimenez, J.A., Sanchez-Jerez, P., Bayle-Sempere, J., Casalduero, F.G.C., Lopez, F.J.M. & Dempster, T. (2007). Changes in body condition and fatty acid composition of wild Mediterranean horse mackerel (Trachurus mediterraneus, Steindachner, 1868) associated to sea cage fish farms. Marine Environmental Research, 63, 1-18. doi:10.1016/j.marenvres.2006.05.002
- FISHBASE (2016). http://www.fishbase.org/search.php (accessed 16.09. 2016)
- Gogus, U. & Smith, C. (2010). n-3 Omega fatty acids: a review of current knowledge. International Journal of Food Science and Technology, 45 (3), 417-436. doi: 10.1111/j.1365-2621.2009.02151.x
- Gordon, D.T. & Ratliff, V. (1992). The Implications of Omega-3 Fatty Acits in Human Health, In Advances in Seafood Biochemistry Composition and Quality, Flick, G. J. And Martin R. E. Eds., Technomic Publ., Lancester, 69-98.
- Greenfield, H. & Southgate, D.A.T. (2003). Assuring the Quality of Analytical Data. Chapter 8. In: Food Composition Data Part 2, 2nd ed., FAO Publishing Management Service, Rome, Italy, 149–255 pp.
- Güner, S., Dincer, B., Alemdag, N., Colak, A. & Tüfekci, M. (1998). Proximate composition and selected mineral content of commercially important fish species from the Black Sea. Journal of the Science of Food and Agriculture, 78, 337-342. doi: 10.1002/(SICI)1097-0010(199811)78:3<337::AID-JSFA122>3.0.CO;2-A
- Hureau, J.C. (1986). Mullidae. In Fishes of the North-eastern Atlantic and the Mediterranean (Whitehead, P. J. P., Bauchot, M, L., Hureau, J. C., Nielsen, J. & Tortonese, E., eds) Vol. 2. UNESCO, Paris, 877–882 pp.
- Ichihara, K., Shibahara, A., Yamamoto, K. & Nakayama, T. (1996). An improved method for rapid analysis of the fatty acids of glycerolipids. Lipids, 31 (5), 535-539. doi: 10.1007/BF02522648
- Karakoltsidis, P.A., Zotos, A. & Constantinides, S.M. (1995). Composition of the commercially important Mediterranean finfish, crustaceans, and molluscs. Journal of Food Composition and Analysis, 8, 258-273. doi:10.1006/jfca.1995.1019
- Kasapoglu, N. & Duzgunes, E. (2013). The relationship between somatic growth and otolith dimensions of Mediterranean horse mackerel (Trachurus mediterraneus) from the Black Sea. Journal of Applied Ichthyology, 29, 230-233. doi: 10.1111/jai.12019
- Kiessling, A., Pickova, J., Johansson, L., Asgard, T., Storebakken, T. & Kiessling, K.-H. (2001). Changes in fatty acid composition in muscle and adipose tissue of farmed rainbow trout (Oncorhynchus mykiss) in relation to ration and age. Food Chemistry, 73, 271-284. doi: 10.1016/S0308-8146(00)00297-1
- Kocatepe, D. & Turan, H. (2012). Proximate and Fatty Acid Composition of Some Commercially Important Fish Species from the Sinop Region of the Black Sea. Lipids, 47, 635-641. doi: 10.1007/s11745-012-3658-1
- Merdzhanova, A., Stancheva, M. & Makedonski, L. (2012). Fatty acid composition of Bulgarian Black Sea fish species. Ovidius University Annals of Chemistry, 23(1), 41-46. doi: 10.2478/v10310-012-0006-5
- Osman, H., Suriah, A.R. & Law, E.C. (2001). Fatty acid composition and cholesterol content of selected marine fish in Malaysian waters. Food Chemistry, 73, 55-60. doi: 10.1016/S0308-8146(00)00277-6
- Ozogul, Y. & Ozogul, F. (2007). Fatty acid profiles of commercially important fish species from the Mediterranean, Aegean and Black Seas. Food Chemistry, 100, 1634-1638.
- Polat, A., Kuzu, S., Özyurt, G. & Tokur, B. (2009). Fatty acid composition of red mullet (Mullus barbatus): a seasonal differentiation. Journal of Muscle Foods, 20, 70-78. doi: 10.1111/j.1745-4573.2008.00134.x
- Rodriguez, C., Acosta, C., Badia, P., Cejas, J.R., Santamaria, F.J. & Lorenzo, A. (2004). Assessment of lipid and essential fatty acids requirements of black seabream (Spondyliosoma cantharus) by comparison of lipid composition in muscle and liver of wild and captive adult fish. Comparative Biochemistry and Physiology, 139, 619-629. doi: 10.1016/j.cbpc.2004.07.013
- Samsun, O., Samsun, N., Bilgin, S. & Kalayci, F. (2006). Population biology and status of exploitation of introduced garfish Belone belone euxini (Gunther, 1866) in the Black Sea. Journal of Applied Ichthyology, 22, 353-356, doi: 10.1111/j.1439-0426.2006.00751.x
- Šantič, M., Jardas, I. & Pallaoro, A. (2003). Feeding habits of Mediterranean horse mackerel, Truchurus mediterraneus (Carangidae), in the central Adriatic Sea. Cybium, 27(4), 247-253.
- Saglık, S. & Imre, S. (2001). ω3-Fatty acids in some fish species in Turkey. Journal of Food Sciences, 66 (1), 210-212. doi: 10.1111/j.1365-2621.2001.tb11318.x
- Sidhu, K.S. (2003). Health benefits and potential risks related to consumption of fish or fish oil. Regulatory Toxicology and Pharmacology, 38 (3): 336–344. doi: 10.1016/j.yrtph.2003.07.002
- Simopoulos, A.P. (2003). Importance of the ratio of omega-6 ⁄ omega-3 essential fatty acids: evolutionary aspects. World review of nutrition and dietetics, 92, 1–22.
- Sokal, R.R. & Rohlf, F.J. (1987). Introduction to Biostatistics, 2nd edn., New York: W.H. Freeman and Company.
- Stancheva, M., Galunska, B., Dobreva, A.D. & Merdzhanova, A. (2012). Retinol, alpha-tocopherol and fatty acid content in Bulgarian Black Sea fish species. Grasas y Aceites, 63(2), 152-157. doi: 10.3989/gya.069611
- Tanakol, R., Yazıcı, Z., Sener, E. & Sencer, E. (1999). Fatty acid composition of 19 species of fish from the black sea and the Marmara Sea. Lipids, 34 (3), 291-297.
- Testi, S., Bonaldo, A., Gatta, P.P. & Badiani, A. (2006). Nutritional traits of dorsal and ventral fillets from three farmed fish species. Food Chemistry, 98, 104-111. doi: 10.1016/j.foodchem.2005.05.053
- Tufan, B., Koral, S. & Köse, S. (2011). Changes during fishing season in the fat content and fatty acid profile of edible muscle, liver and gonads of anchovy (Engraulis encrasicolus) caught in the Turkish Black Sea. International Journal of Food Science and Technology, 10, 439-443. doi: 10.1111/j.1365-2621.2011.02562.x
- Tufan, B., Koral, S. & Köse, S. (2013). The variations in proximate chemical composition and fatty acid profile in different parts of the thornback ray (Raja clavata) caught from Black Sea, Turkey. Journal of Aquatic Food Products Technology, 22 (1), 83-95. doi: 10.1080/10498850.2011.625593
- Tufan, B. & Köse, S. (2014). Variations in lipid and fatty acid contents in different body parts of Black Sea whiting, (Nordmann, 1840). International Journal of Food Science and Technology, 49, 373-384. doi: 10.1111/ijfs.12309
- TSI (2013). Turkish Statistical Institute, State Fisheries Statistics. Turkey: TUIK. Retrieved from http://www.tuik.gov.tr (accessed 15.03.2016)
- Turan, C. (2004). Stock identification of Mediterranean horse mackerel (Trachurus mediterraneus) using morphometric and meristic characters. ICES Journal of Marine Science, 61, 774-781. doi: 10.1016/j.icesjms.2004.05.001
- Tzikas, Z., Amvrosiadis, I., Soultos, N. & Georgakis, S. (2007). Seasonal variation in the chemical composition and microbiological condition of Mediterranean horse mackerel (Trachurus mediterraneus) muscle from the North Aegean Sea (Greece). Food Control, 18, 251-257. doi: 10.1016/j.foodcont.2005.10.003
- Weihrauch, J.L., Posati, L.P., Anderson, B.A. & Exler, J. (1977). Lipid conversion factors for calculating fatty acid contents of foods. Journal of the American Oil Chemists' Society, 54 (1), 36-40. doi: 10.1007/BF02671370
- Zlatanos, S. & Laskaridis, K. (2007). Seasonal variation in the fatty acid composition of three Mediterranean fish-sardine (Sardina pilchardus), anchovy (Engraulis encrasicholus) and picarel (Spicara smaris). Food Chemistry, 103, 725-728. doi: 10.1016/j.foodchem.2006.09.013