Research Article
BibTex RIS Cite

The Role of Superoxide Dismutase (SOD) Activity And Malondialdehyde (MDA) Levels in The Differentiation of Benign-Malign Pleural Effusion

Year 2004, , 39 - 43, 01.05.2004
https://doi.org/10.1501/Ashd_0000000053

Abstract

Giriş:Serbest radikaller birçok hastalığın
patogenezinde yer alan yüksek oranda oksijen
içeren moleküllerdir. Serbest radikal oluşumu
ile antioksidan savunma sistemi arasında kritik
bir denge vardır. Oksidatif stresin malignensi
ile birlikte olduğu bilinmektedir. Pleural
effüzyon (PE) bronkojenik malignensi
komplikasyonu olarak nadir değildir fakat
diğer bazı hastalıklarda da PE görülebilir. Bu
çalışmanın amacı malign ve benign hastalarda
pleural sıvıdaki malondialdehide (MDA)
seviyesi ve antioksidant enzim süperoksid
dismutaz (SOD) aktivitesinin arasında
herhangi bir fark olup olmadığını saptamaktır.
Gereç ve Yöntem:Bu çalışmaya
kırksekiz hasta dahil edildi. Grup I’de 24
malign pleural effüzyonlu hasta ve grup II’de
ise 24 benign pleural effüzyonlu hasta vardı.
MDA seviyesi ve SOD aktivitesi pleural
sıvıda incelendi.
Sonuçlar:MDA seviyesi Grup I’de
(135,15 ± 18,95 nmol/ml) group II’ ye göre
belirgin olarak yüksektir (67,35 ± 13,02
nmol/ml) (p<0,001). SOD aktivitesi ise grup
I’de grup II ile karşılaştırıldığında anlamlı Tartışma: Bu sonuçlarımız reaktif
oksijen türlerinin malign pleural sıvıda SOD
aktivitesi ile birlikte arttığını göstermektedir.
Bu parametreler malign efüzyonu bening
efüzyondan ayırmak için non-spesifik bir
diagnostik markır olabili

References

  • Portakal O, Özkaya Ö, İnal ME et al. Coenzyme Q10 concentrations and antioxidant status in tissues of breast cancer patients. Clinical Biochemistry 2000; 33(4): 279-284.
  • Timothy RR, Sharma HM. Free radicals in health and disease. Indian J Clin Pract 1991; 2: 15-27.
  • Halliwell B. Reactive oxygen species in living systems: Source, biochemistry and role in human disease. Am J Med 1991; 91: 14-21.
  • Halliwell B, Gutterage JMC. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 1989; 186: 1-85.
  • Galleotti T, Masotti L, Borrello S. Oxy-radical metabolism and control of tumour growth. Xenobiotica 1991; 21: 1041-1451.
  • Yamaguchi S, Sakurada S, Nagumo M. Role of intracellular SOD in protecting human leukaemic and cancer cells against superoxide and radiation. Free Radical Biol Med 1994; 17: 389-395.
  • Gavino VC, Miller JS, Ikharebha SO et al. Effects of polyunsaturated fatty acids and antioxidants on lipid peroxidation in tissue cultures. J Lipid Res 1981; 22: 763-769.
  • Devi GS, Prasad MH, Saraswathi I et al. Free radicals antioxidant enzymes and lipid peroxidation indifferent types of leukemias. Clinica Chimica Acta 2000; 293: 53-62.
  • Yoshioka T, Kawada K, Shimoda T, Muri M. Lipid peroxidation in maternal and cord blood and protective mechanisms against activated oxygen toxicity in the blood. Am J Obstet Gynecol 1979; 135: 372-376.
  • Yi-Sun, Larry W. Oberley R. Superoxide dismutase. Clin Chem 1988; 3413: 497-500.
  • Kakkar R, Mantha SV, Kalra S et al. Time course study of oxidative stress in aorta and heart of diabetic rat. Clinical Science 1996; 91: 441-448.
  • Jaruga P, Zastawny TH, Skoleowski S et al. Oxidation DNA base damage and antioxidant enzyme activities in human lung cancer. FEBS Letters 1994; 341:59-64.
  • O’Brien PJ. Antioxidants and cancer. Molecular mechanism. In: Armstrong D, Ed. Free radicals in diagnostic medicine. New York; Plenum Press, 1994: 215-239.
  • Floyd RA, Soung LM, Walker RN. Lipid hydroperoxide of N-hydroxyl-N-acetylaminofluorane via free radical route. Cancer Res 1976; 36: 2761-2766.
  • Cercitti PA. Proxidant states and tumor promotion. Science 1985; 227: 375-381.
  • Scott MD, Eaton JW, Frans A. Enhancement of erythrocyte superoxide dismutase activity. Effects on cellular oxidant defense. Blood 1989; 74: 2542-2549.
  • Diplock AT, Rice-Evans K, Burdan RH. Is there a significant role for lipid peroxidation in the aqusation of malignancy and for antioxidants. Cancer Prevent 1993; 54: 1952-1956.
  • Vanisree AJ, Syamaladevi CS. Status of lipid peroxidation and antioxidant enzymes in malignant (bronchogenic carcinoma) and non-malignant pleural effusions. Indian Journal of Cancer 1999; 36: 127-134.
  • Hammouda MA, Khalil MM, Salem A. Lipid peroxidation products in pleural fluid for seperation of transudates and exudates. Clinical Chemistry 1995; 41(9): 1314-1315.
  • Dormandy TL. Free-Radical oxidation and antioxidants. Lancet 1978; 1: 647-653.
  • Galleotti T, Masotti L, Borrello S. Oxy-radical metabolism and control of tumour growth Xenobiotica 1991; 21: 1041-1051.
  • Bhuvarahamurthy V, Balasubramaniant M, Govindasamy S. Effect of radiotherapy and chemoradiatherapy on circulating antioxidant system of human uterine cervical carcinoma. Molecular and Cellular Biochemistry 1996 158; 17-23
  • Guyton KZ, Kensler TW. Oxidative mechanism in carcinogenesis. Br Med Bull 1993; 49: 523-544.
  • Taniguchi N. Superoxide dismutase significances in aging, diabetes, ischemia and cancer. Rinshe Boyri 1990; 38: 376-381.
  • Comporti M. Biology of disease: lipid peroxidation and cellular damage in toxic liver injury. Lab Invest 1985; 53: 599-623.
  • Lizuka S. Human manganase-containing superoxide dismutase; immunoassay and contents in lung cancer. Hokkoido Igatu Zasshi 1984; 59: 739-749.
  • Durak İ, Canbolat O, Kavutçu M et al. Activities of total, cytoplasmic and mitochondrial superoxide dismutase enzymes in sera and pleural fluids from patients with lung cancer. Journal of Clinical Laboratory Analysis 1996; 10:17-20.

The Role Of Superoxide Dismutase(SOD) Activity And Malondialdehyde(MDA) Levels In The Differentiation OfBenign-Malign Pleural Effusion

Year 2004, , 39 - 43, 01.05.2004
https://doi.org/10.1501/Ashd_0000000053

Abstract

Introduction: Free radicals are highly
reactive oxygen-containing molecular species
that have been implicated in the pathogenesis
of many diseases. There is a critical balance
between free radical generation and
antioxidant defenses. It has been suggested that
oxidative stress may be associated with
malignancy. Pleural effusions (PE)
complicating bronchogenic malignancy is not
uncommon but many diseases that cause PE
are also present. The aim of our study was to
assess the level of the malondialdehide (MDA)
and antioxidant enzyme superoxide dismutase
(SOD), in pleural fluids of malign and benign
patients.
Material and Methods: Forty-eight
patients were enrolled into the study. Group I
had 24 cases with malign pleural effusion and
group II had 24 cases with benign pleural
effusion. The MDA levels and SOD activities
in pleural fluid were quantified.
Results: There was a significant increase
in MDA levels in group I (135,15 ± 18,95
nmol/ml) than in group II (67,35 ± 13,02
nmol/ml) (p<0,001). The activities of SOD is
found to be increased significantly in group I
when compared to group II (40,33 ± 7,1 U/ml
vs 33,2 ± 6,2 U/ml) (p< 0,05).
Discussion: These findings may support
the previous findings showing that reactive
oxygen species increased in malignant pleural
fluid with increased activities of SOD. These
parameters might be helpful in differation of
malign from benign effusion and could be used
as non-spesific diagnostic markers.

References

  • Portakal O, Özkaya Ö, İnal ME et al. Coenzyme Q10 concentrations and antioxidant status in tissues of breast cancer patients. Clinical Biochemistry 2000; 33(4): 279-284.
  • Timothy RR, Sharma HM. Free radicals in health and disease. Indian J Clin Pract 1991; 2: 15-27.
  • Halliwell B. Reactive oxygen species in living systems: Source, biochemistry and role in human disease. Am J Med 1991; 91: 14-21.
  • Halliwell B, Gutterage JMC. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 1989; 186: 1-85.
  • Galleotti T, Masotti L, Borrello S. Oxy-radical metabolism and control of tumour growth. Xenobiotica 1991; 21: 1041-1451.
  • Yamaguchi S, Sakurada S, Nagumo M. Role of intracellular SOD in protecting human leukaemic and cancer cells against superoxide and radiation. Free Radical Biol Med 1994; 17: 389-395.
  • Gavino VC, Miller JS, Ikharebha SO et al. Effects of polyunsaturated fatty acids and antioxidants on lipid peroxidation in tissue cultures. J Lipid Res 1981; 22: 763-769.
  • Devi GS, Prasad MH, Saraswathi I et al. Free radicals antioxidant enzymes and lipid peroxidation indifferent types of leukemias. Clinica Chimica Acta 2000; 293: 53-62.
  • Yoshioka T, Kawada K, Shimoda T, Muri M. Lipid peroxidation in maternal and cord blood and protective mechanisms against activated oxygen toxicity in the blood. Am J Obstet Gynecol 1979; 135: 372-376.
  • Yi-Sun, Larry W. Oberley R. Superoxide dismutase. Clin Chem 1988; 3413: 497-500.
  • Kakkar R, Mantha SV, Kalra S et al. Time course study of oxidative stress in aorta and heart of diabetic rat. Clinical Science 1996; 91: 441-448.
  • Jaruga P, Zastawny TH, Skoleowski S et al. Oxidation DNA base damage and antioxidant enzyme activities in human lung cancer. FEBS Letters 1994; 341:59-64.
  • O’Brien PJ. Antioxidants and cancer. Molecular mechanism. In: Armstrong D, Ed. Free radicals in diagnostic medicine. New York; Plenum Press, 1994: 215-239.
  • Floyd RA, Soung LM, Walker RN. Lipid hydroperoxide of N-hydroxyl-N-acetylaminofluorane via free radical route. Cancer Res 1976; 36: 2761-2766.
  • Cercitti PA. Proxidant states and tumor promotion. Science 1985; 227: 375-381.
  • Scott MD, Eaton JW, Frans A. Enhancement of erythrocyte superoxide dismutase activity. Effects on cellular oxidant defense. Blood 1989; 74: 2542-2549.
  • Diplock AT, Rice-Evans K, Burdan RH. Is there a significant role for lipid peroxidation in the aqusation of malignancy and for antioxidants. Cancer Prevent 1993; 54: 1952-1956.
  • Vanisree AJ, Syamaladevi CS. Status of lipid peroxidation and antioxidant enzymes in malignant (bronchogenic carcinoma) and non-malignant pleural effusions. Indian Journal of Cancer 1999; 36: 127-134.
  • Hammouda MA, Khalil MM, Salem A. Lipid peroxidation products in pleural fluid for seperation of transudates and exudates. Clinical Chemistry 1995; 41(9): 1314-1315.
  • Dormandy TL. Free-Radical oxidation and antioxidants. Lancet 1978; 1: 647-653.
  • Galleotti T, Masotti L, Borrello S. Oxy-radical metabolism and control of tumour growth Xenobiotica 1991; 21: 1041-1051.
  • Bhuvarahamurthy V, Balasubramaniant M, Govindasamy S. Effect of radiotherapy and chemoradiatherapy on circulating antioxidant system of human uterine cervical carcinoma. Molecular and Cellular Biochemistry 1996 158; 17-23
  • Guyton KZ, Kensler TW. Oxidative mechanism in carcinogenesis. Br Med Bull 1993; 49: 523-544.
  • Taniguchi N. Superoxide dismutase significances in aging, diabetes, ischemia and cancer. Rinshe Boyri 1990; 38: 376-381.
  • Comporti M. Biology of disease: lipid peroxidation and cellular damage in toxic liver injury. Lab Invest 1985; 53: 599-623.
  • Lizuka S. Human manganase-containing superoxide dismutase; immunoassay and contents in lung cancer. Hokkoido Igatu Zasshi 1984; 59: 739-749.
  • Durak İ, Canbolat O, Kavutçu M et al. Activities of total, cytoplasmic and mitochondrial superoxide dismutase enzymes in sera and pleural fluids from patients with lung cancer. Journal of Clinical Laboratory Analysis 1996; 10:17-20.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Other ID JA47HP74RC
Journal Section Research Article
Authors

Ulukavak Çiftçi Tansu This is me

Yıldız Güney This is me

Ayşe Bilgehan This is me

Filiz Çimen This is me

Publication Date May 1, 2004
Submission Date May 1, 2004
Published in Issue Year 2004

Cite

APA Çiftçi Tansu, U., Güney, Y., Bilgehan, A., Çimen, F. (2004). The Role of Superoxide Dismutase (SOD) Activity And Malondialdehyde (MDA) Levels in The Differentiation of Benign-Malign Pleural Effusion. Ankara Sağlık Hizmetleri Dergisi, 6(2), 39-43. https://doi.org/10.1501/Ashd_0000000053
AMA Çiftçi Tansu U, Güney Y, Bilgehan A, Çimen F. The Role of Superoxide Dismutase (SOD) Activity And Malondialdehyde (MDA) Levels in The Differentiation of Benign-Malign Pleural Effusion. ASHD. May 2004;6(2):39-43. doi:10.1501/Ashd_0000000053
Chicago Çiftçi Tansu, Ulukavak, Yıldız Güney, Ayşe Bilgehan, and Filiz Çimen. “The Role of Superoxide Dismutase (SOD) Activity And Malondialdehyde (MDA) Levels in The Differentiation of Benign-Malign Pleural Effusion”. Ankara Sağlık Hizmetleri Dergisi 6, no. 2 (May 2004): 39-43. https://doi.org/10.1501/Ashd_0000000053.
EndNote Çiftçi Tansu U, Güney Y, Bilgehan A, Çimen F (May 1, 2004) The Role of Superoxide Dismutase (SOD) Activity And Malondialdehyde (MDA) Levels in The Differentiation of Benign-Malign Pleural Effusion. Ankara Sağlık Hizmetleri Dergisi 6 2 39–43.
IEEE U. Çiftçi Tansu, Y. Güney, A. Bilgehan, and F. Çimen, “The Role of Superoxide Dismutase (SOD) Activity And Malondialdehyde (MDA) Levels in The Differentiation of Benign-Malign Pleural Effusion”, ASHD, vol. 6, no. 2, pp. 39–43, 2004, doi: 10.1501/Ashd_0000000053.
ISNAD Çiftçi Tansu, Ulukavak et al. “The Role of Superoxide Dismutase (SOD) Activity And Malondialdehyde (MDA) Levels in The Differentiation of Benign-Malign Pleural Effusion”. Ankara Sağlık Hizmetleri Dergisi 6/2 (May 2004), 39-43. https://doi.org/10.1501/Ashd_0000000053.
JAMA Çiftçi Tansu U, Güney Y, Bilgehan A, Çimen F. The Role of Superoxide Dismutase (SOD) Activity And Malondialdehyde (MDA) Levels in The Differentiation of Benign-Malign Pleural Effusion. ASHD. 2004;6:39–43.
MLA Çiftçi Tansu, Ulukavak et al. “The Role of Superoxide Dismutase (SOD) Activity And Malondialdehyde (MDA) Levels in The Differentiation of Benign-Malign Pleural Effusion”. Ankara Sağlık Hizmetleri Dergisi, vol. 6, no. 2, 2004, pp. 39-43, doi:10.1501/Ashd_0000000053.
Vancouver Çiftçi Tansu U, Güney Y, Bilgehan A, Çimen F. The Role of Superoxide Dismutase (SOD) Activity And Malondialdehyde (MDA) Levels in The Differentiation of Benign-Malign Pleural Effusion. ASHD. 2004;6(2):39-43.