Research Article
BibTex RIS Cite

Sosyal Araştırmalarda Reddetme Nedenlerini Anlamak İçin Araştırma Verisi ile Teoriyi Birleştirmek

Year 2025, Volume: 29 Issue: 1, 16 - 28, 25.03.2025
https://doi.org/10.53487/atasobed.1471410

Abstract

Bu çalışma, sosyal araştırmalarda sürekli olarak azalan cevaplama oranlarının görüldüğü dönemde cevaplayıcıların araştırmaya katılmayı reddetme davranışı altındaki nedenlere odaklanmaktadır. Çalışmanın temel amacı, cevaplayıcıların reddetme davranışı nedenlerini cevapsızlık teorileri ışığında görüşme ziyaretlerine ve görüşme sonuç kodlarına göre incelemektir. Çalışmanın veri kaynağını farklı Avrupa ülkelerinde büyük ölçekte gerçekleştirilen bir araştırma olan European Social Survey’in 10. serisi (ESS10) oluşturmaktadır. Bu araştırmada, ziyaret formları aracılığıyla toplanan paradata aracığıyla cevaplayıcıların red nedenlerini değerlendirmek mümkün olabilmektedir. Çalışmanın bulguları, reddetme davranışı altındaki nedenleri anlamamıza yardımcı olan cevapsızlık teorileri ile tartışılmaktadır. Ayrıca, özellikle red nedenleri ve araştırma katılımı arasında doğrudan bir ilişki kuran leverage-salience teorisine değinilmektedir. Çalışmanın sonunda sosyal araştırmalarda cevaplayıcıların reddetme nedenlerine odaklanılarak, artan cevapsızlık oranlarını düşürecek çeşitli metodolojik önerilerde bulunulmuştur. Son olarak, bu çalışmanın Türkiye’deki sosyal araştırmalar için uygulanabilecek pratik uygulamaların geliştirilmesi süreçlerine katkıda bulunması beklenmektedir.

Ethical Statement

Bu çalışma etik kurul onayı gerektirmemektedir.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • AAPOR (American Association of Public Opinion Research). 2016. Standard definitions, final dispositions of case codes and outcome rates for surveys. Epub ahead of print. https://www.aapor.org/AAPOR_Main/media/publications/Standard- Definitions20169 theditionfinal.pdf
  • Beaumont, J. (2005). On the use of data collection process information for the treatment of unit nonresponse through weight adjustment. Survey Methodology, 31(2), 227-231.
  • Couper, M. P. (1997). Survey introductions and data quality. Public Opinion Quarterly, 61(2), 317-338. https://doi.org/10.1086/297797
  • De Leeuw, E. & De Heer, W. (2002). Trends in household survey nonresponse: A longitudinal and international comparison. In R.M. Groves, D.A. Dillman, J.L. Eltinge & R.J.A. Little (Eds.), Survey nonresponse (pp. 41-54). Wiley.
  • Dillman, D. A., Smyth, J. D. & Christian, L. M. (2014). Internet, phone, mail and mixed-mode surveys; The tailored design method. Hoboken, NJ: Wiley.
  • Dillman, D. A. (2020). Towards survey response rate theories that no longer pass each other like strangers in the night. In P.S. Brenner (Eds.), Understanding survey methodology, Frontiers in sociology and social research (pp. 15-44). Springer.
  • Edwards, P., Roberts, I., Clarke, M., DiGuiseppi, C., Pratap, S., Wentz, R. & Kwan, I. (2002). Increasing response rates to postal questionnaires: Systematic review. BMJ, 324(7347), 1183. https://doi.org/10.1136/bmj.324.7347.1183
  • ESS. (2024a, March 31). European Social Survey data collection. https://www.europeansocialsurvey.org/methodology/ess- methodology/data-collection
  • ESS. (2024b, April 1). European Social Survey round 10-2020. Democracy, digital social contacts. https://ess.sikt.no/en/study/172ac431-2a06-41df-9dab-c1fd8f3877e7/425
  • Gfroerer, J., Lessler, J. & Parsley, T. (1997). Studies of non-response and measurement error in the National Household Survey on Drug Abuse. National Institute on Drug Abuse Research Monograph, 167, 273-295.
  • Groves, R., & Couper, M. (1998). Nonresponse in household interview surveys. Wiley.
  • Groves, R. M., Singer, E. & Bowers, A. (1999). A laboratory approach to measuring the effects on survey participation of interview length, incentives, differential incentives, and refusal conversion. Journal of Official Statistics, 15(2), 251- 268.
  • Groves, R. M., Singer, E. & Corning, A. (2000). Leverage-saliency theory of survey participation. Public Opinion Quarterly, 64(3), 299–308. https://doi.org/10.1086/317990
  • Groves, R. M., Presser, S. & Dipko, S. (2004). The role of topic interest in survey participation decisions. Public Opinion Quarterly, 68(1), 2-31. https://doi.org/10.1093/poq/nfh002
  • Groves, R. M. & Peytcheva, E. (2008). The impact of nonresponse rates on nonresponse bias: a meta-analysis. Public Opinion Quarterly, 72(2), 167-189. https://doi.org/10.1093/poq/nfn011
  • Groves, R. M., Fowler Jr, F. J., Couper, M. P., Lepkowski, J., Singer, E., & Tourangeau, R. (2009). Survey methodology (2nd). Hoboken: John Wiley and Sons, 97-9.
  • Haan, M., Toepoel, V., Ongena, Y. & Janssen, B. (2024). Recruiting non-respondents for a conversation about reasons for non- response: A description and evaluation. Survey Practice, 17. https://doi.org/10.29115/SP-2024-0001
  • Koç, İ. & Saraç, M. (2023, July). The impact of household welfare on response behavior at cluster level. European Survey Research Association (ESRA) 2023 Conference, Milano, Italy.
  • Kohut, A., Keeter, S., Doherty, C., Dimock, M. & Christian, L. (2012). Assessing the representativeness of public opinion surveys. Pew Research Center, Washington, DC. Epub ahead of print. https://www.pewresearch.org/politics/2012/05/15/assessing-the-representativeness-of-public-opinion-surveys/ 28
  • Luiten, A., Hox, J. & de Leeuw, E. (2020). Survey nonresponse trends and fieldwork effort in the 21st century: Results of an international study across countries and surveys. Journal of Official Statistics, 36(3), 469-487. https://doi.org/10.2478/jos-2020-0025
  • Lynn, P. & Clarke, P. (2002). Separating refusal bias and non-contact bias: Evidence from UK national surveys. Journal of the Royal Statistical Society Series D: The Statistician, 51(3), 319-333. https://doi.org/10.1111/1467-9884.00321
  • Parsons, N. L. & Manierre, M. J. (2014). Investigating the relationship among prepaid token incentives, response rates, and nonresponse bias in a web survey. Field Methods, 26(2), 191-204. https://doi.org/10.1177/1525822X1300120
  • Rutstein, S.O. & Rojas, G. (2006). Guide to DHS statistics. Demographic and Health Surveys, ORC Macro:
  • Calverton, Maryland. Saraç, M. & Adalı, T. (2019). Interview result codes in DHS surveys in Turkey: An Assessment between 1993 and 2013.Nüfusbilim Dergisi, 41(1), 52-67.
  • Singer, E. (2011). Toward a benefit-cost theory of survey participation: Evidence, further tests, and implications. Journal of Official Statistics, 27(2), 379–392.
  • Stoop, I. (2005). The Hunt for the Last Respondent. https://dspace.library.uu.nl/handle/1874/2900
  • Stoop, I. (2012). Unit non-response due to refusal. In L. Gideon (Eds.), Handbook of survey methodology for the social sciences (pp. 121-147). Springer.
  • Traugott, M. W. & Goldstein, K. (1993). Evaluating dual frame samples and advance letters as a means of increasing response rates. In Proceedings of the Survey Research Methods Section, American Statistical Association (pp. 1284- 1286).
  • Watson, N. & Wooden, M. (2009). Identifying factors affecting longitudinal survey response. In P. Lynn (Eds.), Methodology of Longitudinal Surveys (pp. 157-179). John Wiley & Sons.

Blending Survey Data and Theory to Comprehend Refusal Reasons in Social Surveys

Year 2025, Volume: 29 Issue: 1, 16 - 28, 25.03.2025
https://doi.org/10.53487/atasobed.1471410

Abstract

This study focuses on the reasons behind the refusal behavior of survey respondents in the era of steadily declining response trends in social surveys. In this sense, the primary goal of the study is to examine refusal reasons by contact attempts and interview outcomes in the light of nonresponse theories. The data source of the study is the 10th round of the European Social Survey (ESS10), a large-scale and cross-national survey carried out in European countries. In the survey, it is possible to observe the reasons behind refusals using the contact forms, which are mainly used to collect paradata. The study findings are discussed along with the nonresponse theories assisting in our understanding of the reasons underlying refusals. A particular attention was given to the leverage-salience theory which posits a direct relationship between survey participation and respondent benefits. The study concludes by presenting methodological strategies to reduce the increasing rates of nonresponse, concentrating on refusals. Finally, it is expected to develop practical implications for social survey settings in Türkiye.

Ethical Statement

This study does not require ethics committee approval.

Project Number

-

References

  • AAPOR (American Association of Public Opinion Research). 2016. Standard definitions, final dispositions of case codes and outcome rates for surveys. Epub ahead of print. https://www.aapor.org/AAPOR_Main/media/publications/Standard- Definitions20169 theditionfinal.pdf
  • Beaumont, J. (2005). On the use of data collection process information for the treatment of unit nonresponse through weight adjustment. Survey Methodology, 31(2), 227-231.
  • Couper, M. P. (1997). Survey introductions and data quality. Public Opinion Quarterly, 61(2), 317-338. https://doi.org/10.1086/297797
  • De Leeuw, E. & De Heer, W. (2002). Trends in household survey nonresponse: A longitudinal and international comparison. In R.M. Groves, D.A. Dillman, J.L. Eltinge & R.J.A. Little (Eds.), Survey nonresponse (pp. 41-54). Wiley.
  • Dillman, D. A., Smyth, J. D. & Christian, L. M. (2014). Internet, phone, mail and mixed-mode surveys; The tailored design method. Hoboken, NJ: Wiley.
  • Dillman, D. A. (2020). Towards survey response rate theories that no longer pass each other like strangers in the night. In P.S. Brenner (Eds.), Understanding survey methodology, Frontiers in sociology and social research (pp. 15-44). Springer.
  • Edwards, P., Roberts, I., Clarke, M., DiGuiseppi, C., Pratap, S., Wentz, R. & Kwan, I. (2002). Increasing response rates to postal questionnaires: Systematic review. BMJ, 324(7347), 1183. https://doi.org/10.1136/bmj.324.7347.1183
  • ESS. (2024a, March 31). European Social Survey data collection. https://www.europeansocialsurvey.org/methodology/ess- methodology/data-collection
  • ESS. (2024b, April 1). European Social Survey round 10-2020. Democracy, digital social contacts. https://ess.sikt.no/en/study/172ac431-2a06-41df-9dab-c1fd8f3877e7/425
  • Gfroerer, J., Lessler, J. & Parsley, T. (1997). Studies of non-response and measurement error in the National Household Survey on Drug Abuse. National Institute on Drug Abuse Research Monograph, 167, 273-295.
  • Groves, R., & Couper, M. (1998). Nonresponse in household interview surveys. Wiley.
  • Groves, R. M., Singer, E. & Bowers, A. (1999). A laboratory approach to measuring the effects on survey participation of interview length, incentives, differential incentives, and refusal conversion. Journal of Official Statistics, 15(2), 251- 268.
  • Groves, R. M., Singer, E. & Corning, A. (2000). Leverage-saliency theory of survey participation. Public Opinion Quarterly, 64(3), 299–308. https://doi.org/10.1086/317990
  • Groves, R. M., Presser, S. & Dipko, S. (2004). The role of topic interest in survey participation decisions. Public Opinion Quarterly, 68(1), 2-31. https://doi.org/10.1093/poq/nfh002
  • Groves, R. M. & Peytcheva, E. (2008). The impact of nonresponse rates on nonresponse bias: a meta-analysis. Public Opinion Quarterly, 72(2), 167-189. https://doi.org/10.1093/poq/nfn011
  • Groves, R. M., Fowler Jr, F. J., Couper, M. P., Lepkowski, J., Singer, E., & Tourangeau, R. (2009). Survey methodology (2nd). Hoboken: John Wiley and Sons, 97-9.
  • Haan, M., Toepoel, V., Ongena, Y. & Janssen, B. (2024). Recruiting non-respondents for a conversation about reasons for non- response: A description and evaluation. Survey Practice, 17. https://doi.org/10.29115/SP-2024-0001
  • Koç, İ. & Saraç, M. (2023, July). The impact of household welfare on response behavior at cluster level. European Survey Research Association (ESRA) 2023 Conference, Milano, Italy.
  • Kohut, A., Keeter, S., Doherty, C., Dimock, M. & Christian, L. (2012). Assessing the representativeness of public opinion surveys. Pew Research Center, Washington, DC. Epub ahead of print. https://www.pewresearch.org/politics/2012/05/15/assessing-the-representativeness-of-public-opinion-surveys/ 28
  • Luiten, A., Hox, J. & de Leeuw, E. (2020). Survey nonresponse trends and fieldwork effort in the 21st century: Results of an international study across countries and surveys. Journal of Official Statistics, 36(3), 469-487. https://doi.org/10.2478/jos-2020-0025
  • Lynn, P. & Clarke, P. (2002). Separating refusal bias and non-contact bias: Evidence from UK national surveys. Journal of the Royal Statistical Society Series D: The Statistician, 51(3), 319-333. https://doi.org/10.1111/1467-9884.00321
  • Parsons, N. L. & Manierre, M. J. (2014). Investigating the relationship among prepaid token incentives, response rates, and nonresponse bias in a web survey. Field Methods, 26(2), 191-204. https://doi.org/10.1177/1525822X1300120
  • Rutstein, S.O. & Rojas, G. (2006). Guide to DHS statistics. Demographic and Health Surveys, ORC Macro:
  • Calverton, Maryland. Saraç, M. & Adalı, T. (2019). Interview result codes in DHS surveys in Turkey: An Assessment between 1993 and 2013.Nüfusbilim Dergisi, 41(1), 52-67.
  • Singer, E. (2011). Toward a benefit-cost theory of survey participation: Evidence, further tests, and implications. Journal of Official Statistics, 27(2), 379–392.
  • Stoop, I. (2005). The Hunt for the Last Respondent. https://dspace.library.uu.nl/handle/1874/2900
  • Stoop, I. (2012). Unit non-response due to refusal. In L. Gideon (Eds.), Handbook of survey methodology for the social sciences (pp. 121-147). Springer.
  • Traugott, M. W. & Goldstein, K. (1993). Evaluating dual frame samples and advance letters as a means of increasing response rates. In Proceedings of the Survey Research Methods Section, American Statistical Association (pp. 1284- 1286).
  • Watson, N. & Wooden, M. (2009). Identifying factors affecting longitudinal survey response. In P. Lynn (Eds.), Methodology of Longitudinal Surveys (pp. 157-179). John Wiley & Sons.
There are 29 citations in total.

Details

Primary Language English
Subjects Social Work (Other)
Journal Section Research Articles
Authors

Melike Saraç 0000-0003-1076-9473

Project Number -
Publication Date March 25, 2025
Submission Date April 20, 2024
Acceptance Date January 7, 2025
Published in Issue Year 2025 Volume: 29 Issue: 1

Cite

APA Saraç, M. (2025). Blending Survey Data and Theory to Comprehend Refusal Reasons in Social Surveys. Current Perspectives in Social Sciences, 29(1), 16-28. https://doi.org/10.53487/atasobed.1471410

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

29909