Research Article
BibTex RIS Cite

Işıklı Gölü’nün (Denizli-Çivril) Yıllık ve Aylık Göl Yüzey Alanı ve Su Rengi Değişim Analizleri

Year 2024, Volume: 29 Issue: 52, 77 - 95, 30.12.2024
https://doi.org/10.17295/ataunidcd.1548841

Abstract

Göller, oluşum kökenleri, yükselti seviyesi, derinlikleri, hidrografik beslenme kaynakları, bulunduğu iklim koşullarındaki farklılıklar ve antropojenik unsurlarla etkileşimi nedeniyle dinamik değişim yapısına sahiptir. Bu çalışmada, Işıklı Gölü’nün (Denizli-Çivril) yıllar arası (1984-2024) ve aylık (2023 yılı içerisinde) yüzey alanı ve göl rengi değişimlerinin analiz edilmesi amaçlanmıştır. Bu araştırmada; 1984, 1994, 2004, 2014 ve 2024 yıllarına ait 10 yıl aralıklarla Landsat uydu görüntüleri ile 2023 yılının her ayına ait Sentinel uydu görüntüleri, meteorolojik veriler materyal olarak kullanılmıştır. Belirtilen uydu görüntülerinden NDWI analizi ile uzun ve kısa dönemli su yüzey alanları belirlenmiştir. Daha sonra her uydu görüntüsünün elektromanyetik spektrum görünür dalga boyunun baskın değeri tespit edilmiştir. Buradan elde edilen verilerle de gölün uzun ve kısa dönemli rengi saptanmıştır. Çalışmada ayrıca GCI analizine tabi tutulmuş ortalama değerler üzerinden gölün sucul bitki, klorofil dağılış yoğunluğu ortaya konmuştur. Son olarak aylık göl yüzey alanı, göl rengi, uzun yıllar ortalama aylık sıcaklık ve yağış değerleri korelasyona tabi tutulmuş, aralarındaki bağlantı düzeyleri incelenmiştir. Elde edilen bulgular, 1984’den 2024’e göl yüzeyinin 30,3 km2 alan kaybettiği ve gölün % 48,7 küçüldüğünü göstermektedir. 2023 yılının aylık su yüzey alanı pik verilerinden göl yüzeyinin martta 42 km2 olduğu, eylülde ise 16 km2’ye kadar küçüldüğü saptanmıştır. Göl renginin martta mavi tonlarda, eylülde ise sucul bitki, su kaybı, ötrofikasyon nedeniyle yeşil tonlarda olduğu tespit edilmiştir.

Thanks

Drone görüntüleri için Doç. Dr. A. Emrah SİYAVUŞ ve Dr. Öğr. Üyesi Emre DUMAN'a, arazi çalışması için Dr. Öğr. Üyesi H. Melih ÖZDEMİR'e ve arazi fotoğraf çekimlerinde yardımcı olan Osman YILDIRIM'a teşekkür ederim.

References

  • Akbaş, A., Freer, J., Ozdemir, H., Bates, P.D., & Turp, M.T. (2020). What about reservoirs? Questioning anthropogenic and climatic interferences on water availability. Hydrological Processes, 34(26), 5441–5455. https://doi.org/10.1002/hyp.13960
  • Akbaş, A. (2024). Human or climate? Differentiating the anthropogenic and climatic drivers of lake storage changes on spatial perspective via remote sensing data, Science of the Total Environment. 912. Makale 168982. https://doi.org/10.1016/j.scitotenv.2023.168982
  • Ataol, M., & Onmuş, O. (2021). Wetland loss in Turkey over a hundred years: implications for conservation and management, Ecosystem Health and Sustainability, 7(1), 1-13. https://dx.doi.org/10.1080/20964129.2021.1930587
  • Aydın, F., Erlat, E., & Türkeş, M. (2020). Impact of climate variability on the surface of Lake Tuz (Turkey), 1985–2016. Regional Environmental Change, 20, Makale 68. https://doi.org/10.1007/s10113-020-01656-z
  • Bahadır, M. (2014). Işıklı Gölü Havzası’nda doğal ortam koşulları ve arazi kullanımına yansıması. Coğrafya Dergisi 26, 1-20.
  • Busker, T., de Roo, A., Gelati, E., Schwatke, C., Adamovic, M., Bisselink, B., Pekel, J. F., & Cottam, A. (2019). A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry. Hydrology and Earth System Sciences, 23(2), 669–690. https://doi.org/10.5194/hess-23-669-2019
  • Burket, M. O., Olmanson, L. G., & Brezonik, P. L. (2023). Comparison of two water color algorithms: Implications for the remote sensing of water bodies with moderate to high CDOM or chlorophyll levels. Sensors, 23, Makale 1071. https://doi.org/10.3390/s23031071
  • Ceylan, M., A. (1998). Baklan-Çivril Havzası ve yakın çevresinin hidrojeomorfolojik etüdü. [Yayımlanmamış doktora tezi]. Marmara Üniversitesi.
  • Ceylan, M. A., & Eskikurt, A. (2001). Kûfi Çayı Boğazı’nın doğal ve tarihî coğrafyası (Çivril/Denizli). Marmara Coğrafya Dergisi(3), 123-152.
  • Collins, S. M., Yuan, S., Tan, P. N., Oliver, S. K., Lapierre, J. F., Cheruvelil, K. S., Fergus, C. E., Skaff, K., Stachelek, J., Wagner, T., & Soranno, P. A. (2019). Winter precipitation and summer temperature predict lake water quality at macroscales. Water Resources Research, 55(4), 2708–2721. https://doi.org/10.1029/2018wr023088
  • Conte, J. L. (1881). Cause of the blue color of certain waters. Science, 2(35), 78–81. https://doi.org/10.1126/science.os-2.35.78
  • Cooley, S.W., Ryan, J.C. & Smith, L. C. (2021). Human alteration of global surface water storage variability. Nature, 591, 78–81. https://doi.org/10.1038/s41586-021-03262-3
  • Crosby, W., O. (1884). The colors of natural waters. Science, 3(62), 445–446. https://doi.org/10.1126/science.ns-3.62.445
  • Çelik, M. A., & Gülersoy, A. E. (2013). Işıklı Gölü (Çivril-Denizli) çevresindeki arazi kullanım faaliyetlerinin göl üzerine etkilerinin incelenmesi. SDÜ Fen-Edebiyat Fakültesi Sosyal Bilimler Dergisi, 29, 191-200.
  • Dereli, M. A., & Tercan, E. (2020). Assessment of shoreline changes using historical satellite images and geospatial analysis along the Lake Salda in Turkey. Earth Science Information, 13, 709-718. https://doi.org/10.1007/s12145-020-00460-x
  • Gardner, J. R., Yang, X., Topp, S. N., Ross, M. R. V., Altenau, E. H., & Pavelsky, T. M. (2021). The color of rivers. Geophysical Research Letters, 48(1), Makale e2020GL088946. https://doi.org/10.1029/2020GL088946
  • Garaba, S. P., Friedrichs, A., Voß, D., & Zielinski, O. (2015). Classifying natural waters with the Forel-Ule colour index system: Results, applications, correlations and crowdsourcing. International Journal of Environmental Research and Public Health, 12(12), 16096–16109. https://doi.org/10.3390/ijerph121215044
  • Giardino, C., Kõks, K., Bolpagni, R., Luciani, G., Candiani, G., Lehmann, M. K., Van der Woerd, H., & Bresciani, M., (2019). The color of water from space: A case study for Italian lakes from Sentinel-2. In A. Pepe, & Q. Zhao (Eds.), Geospatial Analyses of Earth Observation (EO) data. IntechOpen. https://doi.org/10.5772/intechopen.86596
  • Hayden, B., Harrod, C., Thomas, S. M., Eloranta, A. P., Myllykangas, P. J., Siwertsson, A., Præbel, K., Knudsen, R., Amundsen, P., A., & Kahilainen, K., K. (2019). From clear lakes to murky waters–tracingthe functional response of high-latitude lake communities to concurrent “greening” and “browning”. Ecology Letters, 22(5), 807–816. https://doi.org/10.1111/ele.13238
  • Hoşgören, M. Y. (2020). Hidrografyanın ana çizgileri II (6. Baskı). Çantay Kitabevi.
  • Hoşgören, M. Y. (1994). Türkiye’nin gölleri. Türk Coğrafya Dergisi, 29, 19-51 https://doi.org/10.17211/tcd.70549
  • Janki, S., Klop, K. W., Dooper, I. M., Weimar, W., Ijzermans, J. N., & Kok, N. F. (2015). More than a decade after live donor nephrectomy: a prospective cohort study. Transplant International, 28(11), 1268-1275. https://doi.org/10.1111/tri.12589
  • Kale, M. M., (2018). Historical shoreline change assessment using DSAS: A case study of Lake Akşehir, SW Turkey. Current Debates in Sustainable Architecture, Urban Design Environmental Studies (Edt. Doğan, A. Gönüllü, G.), (ss. 187-196) JOPEC Publication.
  • Kale, M. M., & Erişmiş, M. (2024). Eğirdir Gölü alansal değişiminin uzaktan algılama ve coğrafi bilgi sistemleri yardımıyla analizi. International Journal of Geography and Geography Education (52), 122-140. https://doi.org/10.32003/igge.1380588
  • Karabulut, U., & Yıldırım, Y., (2022). Çevre tarihi perspektifinden suyun kontrolü: Işıklı Gölü Barajı. Pamukkale Üniversitesi Belgi Dergisi, 24(2), 267-283. https://doi.org/10.33431/belgi.1111227
  • Kaya, Y., Sanli, F. B., & Abdikan, S. (2023). Determination of long-term volume change in lakes by integration of UAV and satellite data: the case of Lake Burdur in Türkiye. Environmental Science and Pollution Research, 30, 117729–117747. https://doi.org/10.1007/s11356-023-30369-z
  • Köhler, S. J., Kothawala, D., Futter, M. N., Liungman, O., & Tranvik, L. (2013). In-lake processes offset increased terrestrial inputs of dissolved organic carbon and color to lakes. PLoS One, 8(8), Makale e70598. https://doi.org/10.1371/journal.pone.0070598
  • Lausch, A., Bannehr, L., Berger, S.A., Borg, E., Bumberger, J., Hacker, J., M., Heege, T., Hupfer, M., Jung, A., Kuhwald, K., Oppelt, N., Pause, M., Schrodt, F., Selsam, P., Trentini V.F., Vohland, M., & Glässer, C. (2024). Monitoring water diversity and water quality with remote sensing and traits. Remote Sensing, 16, Makale 2425. https://doi.org/10.3390/rs16132425
  • Lehmann, M. K., Nguyen, U., Allan, M., & Van der Woerd, H. J. (2018). Colour classification of 1486 lakes across a wide range of optical water types. Remote Sensing, 10(8), Makale 1273. https://doi.org/10.3390/rs10081273
  • Luo, S., Song, C., Ke, L., Zhan, P., Fan, C., & Liu, K. (2022). Satellite laser altimetry reveals a net water mass gain in global lakes with spatial heterogeneity in the early 21st century. Geophysical Research Letters, 49, Makale e2021GL096676. https://doi.org/10.1029/2021GL096676
  • Matta, E., Bresciani, M., Giardino, C., Chiarle, M., & Nigrelli, G. (2024). Water colour changes in high-elevation alpine lakes during 2017–2022: A case study of the Upper Orco Valley Catchment. Water, 16, Makale 1057. https://doi.org/10.3390/w16071057
  • McFeeters, S., K. (1996). The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425-1432, http://doi.org/10.1080/01431169608948714
  • Meyer, M.F., Topp, S.N., King, T.V., Ladwig, R., Pilla, R. M., Dugan, H., A., Eggleston, J., Hampton, S., E., Leech, D. M., Oleksy, I. A., Ross, J. C., Ross, M. R., Woolway, R. I., Yang, X., Brousil, M., R., Fickas, K. C., Padowski, J., C., Pollard, A., I., Ren J., & Zwart, J. A. (2024). National-scale remotely sensed lake trophic state from 1984 through 2020. Scientific Data, 11, 77. https://doi.org/10.1038/s41597-024-02921-0
  • Oleksy, I, A., Collins, S. M., Sillen, S. J., Topp, S. N., Austin, M., Hall, E. K., O’Reilly, C. M., Yang, X., & Ross, M. (2022). Heterogenous controls on lake color and trends across the high-elevation U.S. Rocky Mountain region, Environmental Research Letters, 17, Makale 104041. https://doi.org/10.1088/1748-9326/ac939c
  • O’Reilly, C. M., Sharma, S., Gray, D. K., Hampton, S. E., Read, J. S., Rowley, R. J., Schneider, P., Lenters, J., D., McIntyre, P., B., Kraemer, B., M., Weyhenmeyer, G. A., Straile, D., Dong, B., Adrian, R., Allan, M., G., Anneville, O., Arvola, R., Austin, J., Bailey, J., B., Baron J., S., ... & Zhang, G. (2015). Rapid and highly variable warming of lake surface waters around the globe. Geophysical Research Letters, 42(24), 10773–10781. https://doi.org/10.1002/2015gl066235
  • Özen, A., Ürker, O., (2020). Avrupa Doğa Bilgi Sistemi (EUNIS) habitat sınıflandırmasını kullanarak Işıklı Gölü ve Gökgöl sulak alanlarında habitat değişimlerinin belirlenmesi. Erzincan Üniversitesi-Fen Bilimleri Enstitüsü Dergisi, 13(2), 518-531. https://doi.org/10.18185/erzifbed.646077
  • Öztürk, M. Z., Çetinkaya, G., & Aydın, S. (2017). Köppen-Geiger iklim sınıflandırmasına göre Türkiye’nin iklim tipleri. Coğrafya Dergisi, 35, 17-27. https://doi.org/10.26650/JGEOG295515
  • Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 https://doi.org/10.1038/nature20584
  • Persson, I. & Jones, I. D. (2008), The effect of water colour on lake hydrodynamics: a modelling study. Freshwater Biology, 53, 2345-2355. https://doi.org/10.1111/j.1365-2427.2008.02049.x
  • Schirpke, U., Scolozzi, R., & Tappeiner, U. (2021). “A Gem among the Rocks”—Identifying and measuring visual preferences for mountain lakes. Water, 13(9), Makale 1151. https://doi.org/10.3390/w13091151
  • Sharma, S., Blagrave, K., Magnuson, J. J., O’Reilly, C. M., Oliver, S., Batt, R. D., Madeline, M. R., Straile, D., Weyhenmeyer, G. A., Winslow, L., & Woolway, R. L. (2019). Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nature Climate Change, 9(3), 227–231. https://doi.org/10.1038/s41558-018-0393-5
  • Shen, Z., Yu, X., Sheng, Y., Li, J., & Luo, J. (2015). A fast algorithm to estimate the deepest points of lakes for regional lake registration. PLoS One, 10(12), Makale e0144700. https://doi.org/10.1371/journal.pone.0144700
  • Sikder, M. S., Wang, J., Allen, G. H., Sheng, Y., Yamazaki, D., Song, C., Ding, M., Crétaux, J.-F., & Pavelsky, T. M. (2023). Lake-TopoCat: a global lake drainage topology and catchment database. Earth System Science Data, 15, 3483–3511, https://doi.org/10.5194/essd-15-3483-2023
  • Smith, D. G., & Davies-Colley, R. J. (1992). Perception of water clarity and colour in terms of suitability for recreational use. Journal of Environmental Management, 36(3), 225–235. https://doi.org/10.1016/S0301-4797(05)80136-7
  • Soranno, P. A., Wagner, T., Collins, S. M., Lapierre, J.-F., Lottig, N. R., & Oliver, S. K. (2019). Spatial and temporal variation of ecosystem properties at macroscales. Ecology Letters, 22(10), 1587–1598. https://doi.org/10.1111/ele.13346
  • Topp, S. N., Pavelsky, T. M., Dugan, H. A., Yang, X., Gardner, J., & Ross, M. R. V. (2020). Shifting patterns of summer lake color phenology in over 26,000 US lakes. Water Resources Research, 57(5), Makale e2020WR029123. https://doi.org/10.1029/2020WR029123
  • Topp, S. N., Pavelsky, T. M., Stanley, E. H., Yang, X., Griffin, C. G., & Ross, M. R. V. (2021). Multi-decadal improvement in US Lake water clarity. Environmental Research Letters, 16(5), Makale 055025. https://doi.org/10.1088/1748-9326/abf002
  • Turoğlu, (2017). Deniz ve göllerde kıyı, yasal ve bilimsel boyutlarıyla kıyı. (Editörler: H. Turoğlu, H. Yiğitbaşıoğlu) Jeomorfoloji Derneği Yayını No: 1.
  • Tyler, J. E. (1965). Colour of “pure” water. Nature, 208(5010), 549–550. https://doi.org/10.1038/208549a0
  • Tyndall, J. (1870). On the colour of the lake of Geneva and the Mediterranean Sea. Nature, 2(51), 489–490. https://doi.org/10.1038/002489a0
  • Uzun, M. (2024). Analysis of Manyas Lake surface area and shoreline change over various periods with dsas tool. Türkiye Uzaktan Algılama Dergisi, 6(1), 35-56. https://doi.org/10.51489/tuzal.1443490
  • Van der Woerd, H. J., & Wernand, M. R. (2018). Hue-angle product for low to medium spatial resolution optical satellite sensors. Remote Sensing, 10(2), 180. https://doi.org/10.3390/rs10020180
  • Votruba, A. M., & Corman, J. R. (2020). Definitions of water quality: A survey of lake-users of water quality-compromised lakes. Water, 12(8), 2114. https://doi.org/10.3390/w12082114
  • Wang, S., Li, J., Zhang, B., Spyrakos, E., Tyler, A. N., Shen, Q., Zhang, F., Kuster, T., Lehmann M. K., Wu, Y., & Peng, D. (2018). Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index. Remote Sensing of Environment, 217, 444–460. https://doi.org/10.1016/j.rse.2018.08.026
  • Wang, S., Ma, L., Yang, L., Long, X., Guan, C., Zhao, C., & Chen, N. (2024), Quantifying desertification in the Qinghai Lake Basin. Frontiers in Environmental Science 12, Makale 1309757 https://doi.org/10.3389/fenvs.2024.1309757
  • Webster, K. E., Soranno, P. A., Cheruvelil, K. S., Bremigan, M. T., Downing, J. A., Vaux, P. D., Asplund, T., Bacon, L., C., & Connor, J. (2008). An empirical evaluation of the nutrient-color paradigm for lakes. Limnology & Oceanography, 53(3), 1137–1148. https://doi.org/10.4319/lo.2008.53.3.1137
  • Wernand, M. R., & van der Woerd, H. J. (2010). Spectral analysis of the Forel-Ule Ocean colour comparator scale. Journal of the European Optical Society: Rapid Publications, 5, Makale 10014s. https://doi.org/10.2971/jeos.2010.10014s
  • Woolway, R. I., Kraemer, B. M., Lenters, J. D., Merchant, C. J., O'Reilly, C. M., & Sharma, S. (2020). Global lake responses to climate change, Nature Reviews Earth & Environment, 1, 388–403, https://doi.org/10.1038/s43017-020-0067-5
  • Woolway, R. I., Sharma, S., Weyhenmeyer, G. A., Debolskiy, A., Golub, M., Mercado-Bettín, D., Perroud, M., Stepanenko, V., Tan, Z., Grant, L., Ladwig, R., Mesman, J.,Tadhg Moore, N., Shatwell, T., Vanderkelen, I., Austin, J., A., DeGasperi, C., L., Dokulil, M., & La Fuente, S. (2021). Phenological shifts in lake stratification under climate change. Nature Communications, 12(1), Makale 2318. https://doi.org/10.1038/s41467-021-22657-4
  • Yang, X., O’Reilly, C. M., Gardner, J. R., Ross, M. R. V., Topp, S. N., Wang, J., & Pavelsky, T. M. (2022). The color of Earth’s lakes. Geophysical Research Letters, 49, Makale e2022GL098925. https://doi.org/10.1029/2022GL098925
  • Zhao, G., Li, Y., Zhou, L., & Gao, H. (2022). Evaporative water loss of 1.42 million global lakes. Nature Communications, 13, Makale 3686. https://doi.org/10.1038/s41467-022-31125-6

Annual and Monthly Lake Surface Area and Water Colour Change Analyses of Işıklı Lake (Denı̇zlı̇-Çı̇vrı̇l)

Year 2024, Volume: 29 Issue: 52, 77 - 95, 30.12.2024
https://doi.org/10.17295/ataunidcd.1548841

Abstract

Lakes have a dynamic change structure due to their origin of formation, elevation level, depth, hydrographic feeding sources, differences in climatic conditions and interaction with anthropogenic factors. In this study, it was aimed to analyse the inter-annual (1984-2024) and monthly surface area and lake colour changes of Işıklı Lake (Denizli-Çivril). In the study; Landsat satellite images of 1984, 1994, 2004, 2014 and 2024 at 10-year intervals and Sentinel satellite images of each month of 2023 and meteorological data were used as materials. Long and short term water surface areas were determined by NDWI analysis from the mentioned satellite images. Then, the dominant value of the visible wavelength of the electromagnetic spectrum of each satellite image was determined. The long and short term colour of the lake was determined with the data obtained from here. In the study, aquatic plant and chlorophyll distribution density of the lake was also determined based on the average values subjected to GCI analysis. Finally, monthly lake surface area, lake colour, long-term average monthly temperature and precipitation values were correlated and the level of connection between them was examined. The findings obtained show that the lake surface lost 30.3 km2 of area from 1984 to 2024 and the lake shrunk by 48.7%. In 2023, it was determined from the monthly water surface area peak data that the lake surface was 42 km2 in March and decreased to 16 km2 in September. It was determined that the lake colour was blue in March and green in September due to aquatic plants, water loss and eutrophication.

Thanks

I would like to thank for drone images to Assoc. Prof. Dr. A. Emrah SİYAVUŞ and Lect. Dr. Emre DUMAN; for the field work to Lect. Dr. H. Melih ÖZDEMİR; and to Osman YILDIRIM who helped with the field photo shoots.

References

  • Akbaş, A., Freer, J., Ozdemir, H., Bates, P.D., & Turp, M.T. (2020). What about reservoirs? Questioning anthropogenic and climatic interferences on water availability. Hydrological Processes, 34(26), 5441–5455. https://doi.org/10.1002/hyp.13960
  • Akbaş, A. (2024). Human or climate? Differentiating the anthropogenic and climatic drivers of lake storage changes on spatial perspective via remote sensing data, Science of the Total Environment. 912. Makale 168982. https://doi.org/10.1016/j.scitotenv.2023.168982
  • Ataol, M., & Onmuş, O. (2021). Wetland loss in Turkey over a hundred years: implications for conservation and management, Ecosystem Health and Sustainability, 7(1), 1-13. https://dx.doi.org/10.1080/20964129.2021.1930587
  • Aydın, F., Erlat, E., & Türkeş, M. (2020). Impact of climate variability on the surface of Lake Tuz (Turkey), 1985–2016. Regional Environmental Change, 20, Makale 68. https://doi.org/10.1007/s10113-020-01656-z
  • Bahadır, M. (2014). Işıklı Gölü Havzası’nda doğal ortam koşulları ve arazi kullanımına yansıması. Coğrafya Dergisi 26, 1-20.
  • Busker, T., de Roo, A., Gelati, E., Schwatke, C., Adamovic, M., Bisselink, B., Pekel, J. F., & Cottam, A. (2019). A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry. Hydrology and Earth System Sciences, 23(2), 669–690. https://doi.org/10.5194/hess-23-669-2019
  • Burket, M. O., Olmanson, L. G., & Brezonik, P. L. (2023). Comparison of two water color algorithms: Implications for the remote sensing of water bodies with moderate to high CDOM or chlorophyll levels. Sensors, 23, Makale 1071. https://doi.org/10.3390/s23031071
  • Ceylan, M., A. (1998). Baklan-Çivril Havzası ve yakın çevresinin hidrojeomorfolojik etüdü. [Yayımlanmamış doktora tezi]. Marmara Üniversitesi.
  • Ceylan, M. A., & Eskikurt, A. (2001). Kûfi Çayı Boğazı’nın doğal ve tarihî coğrafyası (Çivril/Denizli). Marmara Coğrafya Dergisi(3), 123-152.
  • Collins, S. M., Yuan, S., Tan, P. N., Oliver, S. K., Lapierre, J. F., Cheruvelil, K. S., Fergus, C. E., Skaff, K., Stachelek, J., Wagner, T., & Soranno, P. A. (2019). Winter precipitation and summer temperature predict lake water quality at macroscales. Water Resources Research, 55(4), 2708–2721. https://doi.org/10.1029/2018wr023088
  • Conte, J. L. (1881). Cause of the blue color of certain waters. Science, 2(35), 78–81. https://doi.org/10.1126/science.os-2.35.78
  • Cooley, S.W., Ryan, J.C. & Smith, L. C. (2021). Human alteration of global surface water storage variability. Nature, 591, 78–81. https://doi.org/10.1038/s41586-021-03262-3
  • Crosby, W., O. (1884). The colors of natural waters. Science, 3(62), 445–446. https://doi.org/10.1126/science.ns-3.62.445
  • Çelik, M. A., & Gülersoy, A. E. (2013). Işıklı Gölü (Çivril-Denizli) çevresindeki arazi kullanım faaliyetlerinin göl üzerine etkilerinin incelenmesi. SDÜ Fen-Edebiyat Fakültesi Sosyal Bilimler Dergisi, 29, 191-200.
  • Dereli, M. A., & Tercan, E. (2020). Assessment of shoreline changes using historical satellite images and geospatial analysis along the Lake Salda in Turkey. Earth Science Information, 13, 709-718. https://doi.org/10.1007/s12145-020-00460-x
  • Gardner, J. R., Yang, X., Topp, S. N., Ross, M. R. V., Altenau, E. H., & Pavelsky, T. M. (2021). The color of rivers. Geophysical Research Letters, 48(1), Makale e2020GL088946. https://doi.org/10.1029/2020GL088946
  • Garaba, S. P., Friedrichs, A., Voß, D., & Zielinski, O. (2015). Classifying natural waters with the Forel-Ule colour index system: Results, applications, correlations and crowdsourcing. International Journal of Environmental Research and Public Health, 12(12), 16096–16109. https://doi.org/10.3390/ijerph121215044
  • Giardino, C., Kõks, K., Bolpagni, R., Luciani, G., Candiani, G., Lehmann, M. K., Van der Woerd, H., & Bresciani, M., (2019). The color of water from space: A case study for Italian lakes from Sentinel-2. In A. Pepe, & Q. Zhao (Eds.), Geospatial Analyses of Earth Observation (EO) data. IntechOpen. https://doi.org/10.5772/intechopen.86596
  • Hayden, B., Harrod, C., Thomas, S. M., Eloranta, A. P., Myllykangas, P. J., Siwertsson, A., Præbel, K., Knudsen, R., Amundsen, P., A., & Kahilainen, K., K. (2019). From clear lakes to murky waters–tracingthe functional response of high-latitude lake communities to concurrent “greening” and “browning”. Ecology Letters, 22(5), 807–816. https://doi.org/10.1111/ele.13238
  • Hoşgören, M. Y. (2020). Hidrografyanın ana çizgileri II (6. Baskı). Çantay Kitabevi.
  • Hoşgören, M. Y. (1994). Türkiye’nin gölleri. Türk Coğrafya Dergisi, 29, 19-51 https://doi.org/10.17211/tcd.70549
  • Janki, S., Klop, K. W., Dooper, I. M., Weimar, W., Ijzermans, J. N., & Kok, N. F. (2015). More than a decade after live donor nephrectomy: a prospective cohort study. Transplant International, 28(11), 1268-1275. https://doi.org/10.1111/tri.12589
  • Kale, M. M., (2018). Historical shoreline change assessment using DSAS: A case study of Lake Akşehir, SW Turkey. Current Debates in Sustainable Architecture, Urban Design Environmental Studies (Edt. Doğan, A. Gönüllü, G.), (ss. 187-196) JOPEC Publication.
  • Kale, M. M., & Erişmiş, M. (2024). Eğirdir Gölü alansal değişiminin uzaktan algılama ve coğrafi bilgi sistemleri yardımıyla analizi. International Journal of Geography and Geography Education (52), 122-140. https://doi.org/10.32003/igge.1380588
  • Karabulut, U., & Yıldırım, Y., (2022). Çevre tarihi perspektifinden suyun kontrolü: Işıklı Gölü Barajı. Pamukkale Üniversitesi Belgi Dergisi, 24(2), 267-283. https://doi.org/10.33431/belgi.1111227
  • Kaya, Y., Sanli, F. B., & Abdikan, S. (2023). Determination of long-term volume change in lakes by integration of UAV and satellite data: the case of Lake Burdur in Türkiye. Environmental Science and Pollution Research, 30, 117729–117747. https://doi.org/10.1007/s11356-023-30369-z
  • Köhler, S. J., Kothawala, D., Futter, M. N., Liungman, O., & Tranvik, L. (2013). In-lake processes offset increased terrestrial inputs of dissolved organic carbon and color to lakes. PLoS One, 8(8), Makale e70598. https://doi.org/10.1371/journal.pone.0070598
  • Lausch, A., Bannehr, L., Berger, S.A., Borg, E., Bumberger, J., Hacker, J., M., Heege, T., Hupfer, M., Jung, A., Kuhwald, K., Oppelt, N., Pause, M., Schrodt, F., Selsam, P., Trentini V.F., Vohland, M., & Glässer, C. (2024). Monitoring water diversity and water quality with remote sensing and traits. Remote Sensing, 16, Makale 2425. https://doi.org/10.3390/rs16132425
  • Lehmann, M. K., Nguyen, U., Allan, M., & Van der Woerd, H. J. (2018). Colour classification of 1486 lakes across a wide range of optical water types. Remote Sensing, 10(8), Makale 1273. https://doi.org/10.3390/rs10081273
  • Luo, S., Song, C., Ke, L., Zhan, P., Fan, C., & Liu, K. (2022). Satellite laser altimetry reveals a net water mass gain in global lakes with spatial heterogeneity in the early 21st century. Geophysical Research Letters, 49, Makale e2021GL096676. https://doi.org/10.1029/2021GL096676
  • Matta, E., Bresciani, M., Giardino, C., Chiarle, M., & Nigrelli, G. (2024). Water colour changes in high-elevation alpine lakes during 2017–2022: A case study of the Upper Orco Valley Catchment. Water, 16, Makale 1057. https://doi.org/10.3390/w16071057
  • McFeeters, S., K. (1996). The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425-1432, http://doi.org/10.1080/01431169608948714
  • Meyer, M.F., Topp, S.N., King, T.V., Ladwig, R., Pilla, R. M., Dugan, H., A., Eggleston, J., Hampton, S., E., Leech, D. M., Oleksy, I. A., Ross, J. C., Ross, M. R., Woolway, R. I., Yang, X., Brousil, M., R., Fickas, K. C., Padowski, J., C., Pollard, A., I., Ren J., & Zwart, J. A. (2024). National-scale remotely sensed lake trophic state from 1984 through 2020. Scientific Data, 11, 77. https://doi.org/10.1038/s41597-024-02921-0
  • Oleksy, I, A., Collins, S. M., Sillen, S. J., Topp, S. N., Austin, M., Hall, E. K., O’Reilly, C. M., Yang, X., & Ross, M. (2022). Heterogenous controls on lake color and trends across the high-elevation U.S. Rocky Mountain region, Environmental Research Letters, 17, Makale 104041. https://doi.org/10.1088/1748-9326/ac939c
  • O’Reilly, C. M., Sharma, S., Gray, D. K., Hampton, S. E., Read, J. S., Rowley, R. J., Schneider, P., Lenters, J., D., McIntyre, P., B., Kraemer, B., M., Weyhenmeyer, G. A., Straile, D., Dong, B., Adrian, R., Allan, M., G., Anneville, O., Arvola, R., Austin, J., Bailey, J., B., Baron J., S., ... & Zhang, G. (2015). Rapid and highly variable warming of lake surface waters around the globe. Geophysical Research Letters, 42(24), 10773–10781. https://doi.org/10.1002/2015gl066235
  • Özen, A., Ürker, O., (2020). Avrupa Doğa Bilgi Sistemi (EUNIS) habitat sınıflandırmasını kullanarak Işıklı Gölü ve Gökgöl sulak alanlarında habitat değişimlerinin belirlenmesi. Erzincan Üniversitesi-Fen Bilimleri Enstitüsü Dergisi, 13(2), 518-531. https://doi.org/10.18185/erzifbed.646077
  • Öztürk, M. Z., Çetinkaya, G., & Aydın, S. (2017). Köppen-Geiger iklim sınıflandırmasına göre Türkiye’nin iklim tipleri. Coğrafya Dergisi, 35, 17-27. https://doi.org/10.26650/JGEOG295515
  • Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 https://doi.org/10.1038/nature20584
  • Persson, I. & Jones, I. D. (2008), The effect of water colour on lake hydrodynamics: a modelling study. Freshwater Biology, 53, 2345-2355. https://doi.org/10.1111/j.1365-2427.2008.02049.x
  • Schirpke, U., Scolozzi, R., & Tappeiner, U. (2021). “A Gem among the Rocks”—Identifying and measuring visual preferences for mountain lakes. Water, 13(9), Makale 1151. https://doi.org/10.3390/w13091151
  • Sharma, S., Blagrave, K., Magnuson, J. J., O’Reilly, C. M., Oliver, S., Batt, R. D., Madeline, M. R., Straile, D., Weyhenmeyer, G. A., Winslow, L., & Woolway, R. L. (2019). Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nature Climate Change, 9(3), 227–231. https://doi.org/10.1038/s41558-018-0393-5
  • Shen, Z., Yu, X., Sheng, Y., Li, J., & Luo, J. (2015). A fast algorithm to estimate the deepest points of lakes for regional lake registration. PLoS One, 10(12), Makale e0144700. https://doi.org/10.1371/journal.pone.0144700
  • Sikder, M. S., Wang, J., Allen, G. H., Sheng, Y., Yamazaki, D., Song, C., Ding, M., Crétaux, J.-F., & Pavelsky, T. M. (2023). Lake-TopoCat: a global lake drainage topology and catchment database. Earth System Science Data, 15, 3483–3511, https://doi.org/10.5194/essd-15-3483-2023
  • Smith, D. G., & Davies-Colley, R. J. (1992). Perception of water clarity and colour in terms of suitability for recreational use. Journal of Environmental Management, 36(3), 225–235. https://doi.org/10.1016/S0301-4797(05)80136-7
  • Soranno, P. A., Wagner, T., Collins, S. M., Lapierre, J.-F., Lottig, N. R., & Oliver, S. K. (2019). Spatial and temporal variation of ecosystem properties at macroscales. Ecology Letters, 22(10), 1587–1598. https://doi.org/10.1111/ele.13346
  • Topp, S. N., Pavelsky, T. M., Dugan, H. A., Yang, X., Gardner, J., & Ross, M. R. V. (2020). Shifting patterns of summer lake color phenology in over 26,000 US lakes. Water Resources Research, 57(5), Makale e2020WR029123. https://doi.org/10.1029/2020WR029123
  • Topp, S. N., Pavelsky, T. M., Stanley, E. H., Yang, X., Griffin, C. G., & Ross, M. R. V. (2021). Multi-decadal improvement in US Lake water clarity. Environmental Research Letters, 16(5), Makale 055025. https://doi.org/10.1088/1748-9326/abf002
  • Turoğlu, (2017). Deniz ve göllerde kıyı, yasal ve bilimsel boyutlarıyla kıyı. (Editörler: H. Turoğlu, H. Yiğitbaşıoğlu) Jeomorfoloji Derneği Yayını No: 1.
  • Tyler, J. E. (1965). Colour of “pure” water. Nature, 208(5010), 549–550. https://doi.org/10.1038/208549a0
  • Tyndall, J. (1870). On the colour of the lake of Geneva and the Mediterranean Sea. Nature, 2(51), 489–490. https://doi.org/10.1038/002489a0
  • Uzun, M. (2024). Analysis of Manyas Lake surface area and shoreline change over various periods with dsas tool. Türkiye Uzaktan Algılama Dergisi, 6(1), 35-56. https://doi.org/10.51489/tuzal.1443490
  • Van der Woerd, H. J., & Wernand, M. R. (2018). Hue-angle product for low to medium spatial resolution optical satellite sensors. Remote Sensing, 10(2), 180. https://doi.org/10.3390/rs10020180
  • Votruba, A. M., & Corman, J. R. (2020). Definitions of water quality: A survey of lake-users of water quality-compromised lakes. Water, 12(8), 2114. https://doi.org/10.3390/w12082114
  • Wang, S., Li, J., Zhang, B., Spyrakos, E., Tyler, A. N., Shen, Q., Zhang, F., Kuster, T., Lehmann M. K., Wu, Y., & Peng, D. (2018). Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index. Remote Sensing of Environment, 217, 444–460. https://doi.org/10.1016/j.rse.2018.08.026
  • Wang, S., Ma, L., Yang, L., Long, X., Guan, C., Zhao, C., & Chen, N. (2024), Quantifying desertification in the Qinghai Lake Basin. Frontiers in Environmental Science 12, Makale 1309757 https://doi.org/10.3389/fenvs.2024.1309757
  • Webster, K. E., Soranno, P. A., Cheruvelil, K. S., Bremigan, M. T., Downing, J. A., Vaux, P. D., Asplund, T., Bacon, L., C., & Connor, J. (2008). An empirical evaluation of the nutrient-color paradigm for lakes. Limnology & Oceanography, 53(3), 1137–1148. https://doi.org/10.4319/lo.2008.53.3.1137
  • Wernand, M. R., & van der Woerd, H. J. (2010). Spectral analysis of the Forel-Ule Ocean colour comparator scale. Journal of the European Optical Society: Rapid Publications, 5, Makale 10014s. https://doi.org/10.2971/jeos.2010.10014s
  • Woolway, R. I., Kraemer, B. M., Lenters, J. D., Merchant, C. J., O'Reilly, C. M., & Sharma, S. (2020). Global lake responses to climate change, Nature Reviews Earth & Environment, 1, 388–403, https://doi.org/10.1038/s43017-020-0067-5
  • Woolway, R. I., Sharma, S., Weyhenmeyer, G. A., Debolskiy, A., Golub, M., Mercado-Bettín, D., Perroud, M., Stepanenko, V., Tan, Z., Grant, L., Ladwig, R., Mesman, J.,Tadhg Moore, N., Shatwell, T., Vanderkelen, I., Austin, J., A., DeGasperi, C., L., Dokulil, M., & La Fuente, S. (2021). Phenological shifts in lake stratification under climate change. Nature Communications, 12(1), Makale 2318. https://doi.org/10.1038/s41467-021-22657-4
  • Yang, X., O’Reilly, C. M., Gardner, J. R., Ross, M. R. V., Topp, S. N., Wang, J., & Pavelsky, T. M. (2022). The color of Earth’s lakes. Geophysical Research Letters, 49, Makale e2022GL098925. https://doi.org/10.1029/2022GL098925
  • Zhao, G., Li, Y., Zhou, L., & Gao, H. (2022). Evaporative water loss of 1.42 million global lakes. Nature Communications, 13, Makale 3686. https://doi.org/10.1038/s41467-022-31125-6
There are 61 citations in total.

Details

Primary Language Turkish
Subjects Türkiye Physical Geography
Journal Section RESEARCH ARTICLES
Authors

Murat Uzun 0000-0003-2191-3936

Publication Date December 30, 2024
Submission Date September 12, 2024
Acceptance Date December 19, 2024
Published in Issue Year 2024 Volume: 29 Issue: 52

Cite

APA Uzun, M. (2024). Işıklı Gölü’nün (Denizli-Çivril) Yıllık ve Aylık Göl Yüzey Alanı ve Su Rengi Değişim Analizleri. Doğu Coğrafya Dergisi, 29(52), 77-95. https://doi.org/10.17295/ataunidcd.1548841

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

29929