BibTex RIS Cite

A Recent Welding Technique: Laser Welding

Year 2013, Volume: 23 Issue: 1, - , 01.01.2013

Abstract

Enamel demineralization around orthodontic attachments is a common complication of orthodontic treatment with fixed appliances. Plaque accumulation and plaque maturation, colonization of bacteria around the orthodontic attachments, presence of a susceptible tooth surface and duration of orthodontic treatment are reported to be factors that play a role in demineralization. Orthodontic adhesive resins that are used for bonding appliances to teeth are one of the risk factors for enamel demineralization during orthodontic treatment That is why some agents with antibacterial properties are now being added to orthodontic adhesive resins. Cetylpyridinium chloride, zinc oxide, triclosan, benzalkonium chloride and silver are the antibacterial agents that were added to restorative resins as well as orthodontic adhesives and their effects have been evaluated. If they prove to be viable, these new orthodontic adhesives may help with the prevention of white spot lesions along with other preventive measures such as mechanical plaque control and topical fluoride application. Our aim is to review the available literature on these new additives with special emphasis on their antimicrobial activity and effect on adhesive properties.

References

  • Buonocore MG. A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J Dent Res 1955; 34: 849-53.
  • Rossouw PE. A Historical Overview of the Development of the Acid-Etch Bonding System in Orthodontics. Semin Orthod 2010; 16: 2-23.
  • Gorelick L, Geiger A, Gwinnett A. Incidence of white spot formation after bonding and banding. Am J Orthod 1982; 81: 93-8.
  • Sudjalim TR, Woods MG, Manton DJ, Reynolds EC. Prevention of demineralization around orthodontic brackets in vitro. Am J Orthod Dentofacial Orthop 2007; 131: 705.e1-705.e9.
  • Wenderoth CJ, Weinstein M, Borislow AJ. Effectiveness of a fluoride-releasing sealant in reducing decalcification during orthodontic treatment. Am J Orthod Dentofacial Orthop 1999; 116: 629-34.
  • Ahn SJ, Lee SJ, Lee DY, Lim BS. Effects of different fluoride recharging protocols on fluoride ion release from various orthodontic adhesives. J Dent 2011; 39: 196-201.
  • Hess E, Campbell PM, Honeyman AL, Buschang PH. Determinants of enamel decalcification during simulated orthodontic treatment. Angle Orthod 2011; 81: 836-42.
  • Matasa CG. Microbial attack of orthodontic adhesives. Am J Orthod Dentofacial Orthop 1995; 108: 132-41.
  • Guzmán-Armstrong S, Chalmers J, Warren JJ. White spot lesions: Prevention and treatment. Am J Orthod Dentofacial Orthop 2010; 138: 690-6.
  • Geiger AM, Gorelick L, Gwinnett AJ, Benson BJ. Reducing white spot lesions in orthodontic populations with fluoride rinsing. Am J Orthod Dentofacial Orthop 1992; 101: 403-7.
  • Acun G, Nalbantgil D, Arun T. İki yüzey koruyucunun mine demineralizasyonuna etkilerinin in-vitro değerlendirilmesi. Türk Ortodonti Dergisi 2009; 22: 5-15.
  • Chung CK, Millett DT, Creanor SL, Gilmour WH, Foye RH. Fluoride release and cariostatic ability of a compomer and a resin-modified glass ionomer cement used for orthodontic bonding. J Dent 1998; 26: 533-8.
  • Trimpeneers LM, Dermaut LR. A clinical evaluation of the effectiveness of a fluoride-releasing visible light-activated bonding system to reduce demineralization around orthodontic brackets. Am J Orthod Dentofacial Orthop 1996; 110: 218-22.
  • Benson PE, Shah AA, Millett DT, Dyer F, Parkin N, Vine RS. Fluorides, orthodontics, and demineralization: a systematic review. J Orthod 2005; 32: 102-14.
  • Spencer CG, Campbell PM, Buschang PH, Cai J, Honeyman AL. Antimicrobial effects of zinc oxide in an orthodontic bonding agent. Angle Orthod 2009; 79: 317-22.
  • Al-Musallam TA, Evans CA, Drummond JL, Matasa C, Wu CD. Antimicrobial properties of an orthodontic adhesive combined with cetylpyridinium chloride. Am J Orthod Dentofacial Orthop 2006; 129: 245-51.
  • Saito K, Hayakawa T, Kawabata R, Meguro D, Kasai K. In vitro antibacterial and cytotoxicity assessments of an orthodontic bonding agent containing benzalkonium chloride. Angle Orthod 2009; 79: 331-7.
  • Othman HF, Wu CD, Evans CA, Drummond JL, Matasa CG. Evaluation of antimicrobial properties of orthodontic composite resins combined with benzalkonium chloride. Am J Orthod Dentofacial Orthop 2002; 122: 288-94.
  • Bulut H, Türkün M, Türkün LS, Işiksal E. Evaluation of the shear bond strength of 3 curing bracket bonding systems combined with an antibacterial adhesive. Am J Orthod Dentofacial Orthop 2007; 132: 77-83.
  • Saito K, Hayakawa T, Kawabata R, Meguro D, Kasai K. Antibacterial activity and shear bond strength of 4-methacryloxyethyl trimellitate anhydride/methyl methacrylate-tri-n-butyl borane resin containing an antibacterial agent. Angle Orthod 2007; 77: 532-6.
  • Ahn SJ, Lee SJ, Kook JK, Lim BS. Experimental antimicrobial orthodontic adhesives using nanofillers and silver nanoparticles. Dent Mater 2009; 25: 206-13.
  • Fox NA, McCabe JF, Gordon PH. Bond strengths of orthodontic bonding materials: an in vitro study. Br J Orthod 1990; 18: 125-30.
  • Bishara SE, Vonwald L, Olsen ME, Laffoon JF. Effect of time on the shear bond strength of glass ionomer and composite orthodontic adhesives. Am J Orthod Dentofacial Orthop 1999; 116: 616-20.
  • Uysal T, Amasyali M, Özcan S, Koyuturk AE, Akyol M, Sagdic D. In vivo effects of amorphous calcium phosphate-containing orthodontic composite on enamel demineralization around orthodontic brackets. Aust Dent J 2010; 55: 285-91.
  • Minick GT, Oesterle LJ, Newman SM, Shellhart WC. Bracket bond strengths of new adhesive systems. Am J Orthod Dentofacial Orthop 2009; 135: 771-6.
  • Imazato S, Kinomoto Y, Tarumi H, Torii M, Russell RR, McCabe JF. Incorporation of antibacterial monomer MDPB into dentin primer. J Dent Res 1997;76:768-72.
  • Bishara SE, Soliman M, Laffoon J,Warren JJ. Effect of antimicrobial monomer-containing adhesive on shear bond strength of orthodontic brackets. Angle Orthod 2005;75:397-9.
  • Arhun N, Arman A, Sesen C, Karabulut E, Korkmaz Y, Gokalp S. Shear bond strength of orthodontic brackets with 3 self-etch adhesives. Am J Orthod Dentofacial Orthop 2006;129:547-50.
  • Versteeg PA, Rosema NAM, Hoenderdos NL, Slot DE, Van der Weijden GA. The plaque inhibitory effect of a CPC mouthrinse in a 3-day plaque accumulation model- a cross-over study. Int J Dent Hygiene 2010; 8: 269-75.
  • Schroeder HE, Hirzel HC. A method of studying dental plaque morphology. Helv Odontol Acta 1969; 3:22-7.
  • Scheie AA. Models of action of currently known chemical antiplaque agents other than chlorhexidine. J Dent Res 1989; 68: 1609-16.
  • Botelho MG. Inhibitory effects on selected oral bacteria of antibacterial agents incorporated in a glass ionomer cement. Caries Res 2003; 37: 108
  • Botelho MG. Compressive strength of glass ionomer cements with dental antibacterial agents. SADJ 2004; 59: 51-3.
  • Namba N, Yoshida Y, Nagaoka N, Takashima S, Matsuura-Yoshimoto K, Maeda H, Van Meerbek B, Suzuki K, Takashiba S. Antibacterial effect of bactericide immobilized in resin matrix. Dent Mater 2009; 25: 424-30.
  • Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fievet F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Letters 2006; 6: 866-70.
  • Ferracane JL. Current trends in dental composites. Crit Rev Oral Biol Med 1995; 6: 302-18.
  • Jones N, Ray B, Ranjit KT, Manna AC. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiology Letters 2008; 279: 71-6.
  • Giertsen E. Effects of mouthrinses with triclosan, zinc ions, copolymer and sodium lauryl sulphate combined with fluoride on acid formation by dental plaque in vivo. Caries Res 2004; 38: 430-5.
  • Aydin Sevinç B, Hanley L. Antibacterial activity of dental composites containing zinc oxide nanoparticles. J Biomed Mater Res Part B: Appl Biomater 2010; 94B: 22-31.
  • Saleh S, Haddadin RNS, Baillie S, Collier PJ. Triclosan-an update. Lett Appl Microbiol 2010; 52: 87Escalada MG, Harwood JL, Maillard JY, Ochs DJ. Triclosan inhibition of fatty acid synthesis and its effect on growth in Escherichia coli and Pseudomonas aeruginosa . J Antimicrob Chemother 2005; 55: 879-82.
  • Imazato S, Torii M, Tsuchitani Y, McCabe JF, Russell RRB. Incorporation of bacterial inhibitor into resin composite. J Dent Res 1994; 73: 1437
  • Sehgal V, Shetty VS, Mogra S, Bhat G, Eipe M, Jacob S, Prabu L. Evaluation of antimicrobial and physical properties of orthodontic composite resin modified by addition of antimicrobial agents- an invitro study. Am J Orthod Dentofacial Orthop 2007; 131: 525-9.
  • Marple B, Roland P, Benninger M. Safety review of benzalkonium chloride used as a preservative in intranasal solutions: an overview of conflicting data and opinions. Otolaryngol Head Neck Surg 2004; 130: 131-41.
  • Hamilton WA. The mechanism of the bacteriostatic action of tetrachlorosalicylanilide: a membraneactive antibacterial compound. J Gen Microbiol 1968; 50:441-58.
  • Modak SM, Fox CLJ. Binding of silver sulfadiazine to the cellular components of Pseudomonas aeruginosa . Biochem Pharmac 1973; 22: 2391 40
  • Yamamoto K, Ohashi S, Aono M, Kokubo T, Yamada J, Yamauchi J. Antibacterial activity of silver ions implanted in SiO 2 filler on oral streptococci. Dent Mater 1996; 12: 227-9.
  • Hernández-Sierra JF, Ruiz F, Pena DC, MartínezGutiérrez F, Martínez AE, Guillén Ade J, TapiaPérez H, Castañón GM. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine: NBM 2008; 4:237-40.
  • Quirynen M, Bollen CM. The influence of surface roughness and surface free-energy on supra- and subgingival plaque formation in man. J Clin Periodontol 1995; 22: 1-14.
  • Kudou Y, Obara K, Kawashima T, Kubota M, Abe S, Endo T, Komatsu M, Okuda R. Addition of antibacterial agents to MMA-TBB dentin bonding systems-influence on tensile bond strength and antibacterial effect. Dent Mater J 2000; 19: 65-74. Kazuno T, Fukushima T, Hayakawa T, Inove Y, Ogura R, Kaminishi H, Miyazaki K. Antibacterial activities and bonding of MMSA/TBB resin containing amphiphilic lipids. Dent Mater J 2005; 24: 244-50.
  • Du X, Huang X, Huang C, Wang Y, Zhang Y. Epigallocatechin-3-gallate(EGCG) enhances the therapeutic activity of a dental adhesive. Journal of Dentistry (2010), doi:10.1016/j.jdent.2012.02.013. Tuncer S, Demirci M. Dental materyallerde biyouyumluluk değerlendirmeleri. Atatürk Üniv. Diş Hek. Fak. Derg. 2011; 21: 141-9. Yazışma Adresi: Yrd. Doç. Dr. Banu Sağlam Aydınatay
  • Hacettepe Üniversitesi Dişhekimliği Fakültesi Ortodonti A D 06100, ANKARA TÜRKİYE 0.33052290 e-mail: banusaglam@hotmail.com

Güncel Lehimleme Tekniği: Lazer Lehimleme

Year 2013, Volume: 23 Issue: 1, - , 01.01.2013

Abstract

Ortodontik ataçmanların etrafında görülen mine demineralizasyonu sabit apareylerle yapılan ortodontik tedavinin en yaygın komplikasyonudur. Demineralizasyonda rol oynayan faktörler arasında plak birikimi ve olgunlaşması, ortodontik ataçmanların etrafındabakteri kolonizasyonu, demineralizasyona yatkın diş yüzeyi bulunması ve ortodontik tedavinin süresi sayılmaktadır. Mineye braketleri yapıştırmak için kullanılan ortodontik adeziv rezinler de mine dekalsifikasyonuna yol açabilecek olası risk faktörleri arasındadır. Bu nedenle antibakteriyal özellikleri olan bazı ajanlar ortodontik adeziv rezinlere eklenmeye başlanmıştır. Bu antibakteriyel maddelerden setilpiridinium klorid, çinko oksit, triklosan, benzalkonyum klorid ve gümüş restoratif kompozit rezinlerin dışında yaygın kullanılan ortodontik adeziv rezinlere de eklenerek özellikleri incelenmiştir. Eğer kullanımlarının uygun olduğu gösterilebilirse, bu yeni ortodontik adezivler topikal florür uygulaması ve mekanik plak kontrolü gibi diğer koruyucu önlemlerle beraber beyaz nokta lezyonlarının önlenmesine yardımcı olabilirler. Bu derlemenin amacı, demineralizasyonun önlenmesinde yardımcı olabilecek bu yeni katkı maddeleriyle ilgili mevcut literatürü antimikrobiyal aktivite ve adeziv özellikleri üzerindeki etkileri yönünden değerlendirmektir.

References

  • Buonocore MG. A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J Dent Res 1955; 34: 849-53.
  • Rossouw PE. A Historical Overview of the Development of the Acid-Etch Bonding System in Orthodontics. Semin Orthod 2010; 16: 2-23.
  • Gorelick L, Geiger A, Gwinnett A. Incidence of white spot formation after bonding and banding. Am J Orthod 1982; 81: 93-8.
  • Sudjalim TR, Woods MG, Manton DJ, Reynolds EC. Prevention of demineralization around orthodontic brackets in vitro. Am J Orthod Dentofacial Orthop 2007; 131: 705.e1-705.e9.
  • Wenderoth CJ, Weinstein M, Borislow AJ. Effectiveness of a fluoride-releasing sealant in reducing decalcification during orthodontic treatment. Am J Orthod Dentofacial Orthop 1999; 116: 629-34.
  • Ahn SJ, Lee SJ, Lee DY, Lim BS. Effects of different fluoride recharging protocols on fluoride ion release from various orthodontic adhesives. J Dent 2011; 39: 196-201.
  • Hess E, Campbell PM, Honeyman AL, Buschang PH. Determinants of enamel decalcification during simulated orthodontic treatment. Angle Orthod 2011; 81: 836-42.
  • Matasa CG. Microbial attack of orthodontic adhesives. Am J Orthod Dentofacial Orthop 1995; 108: 132-41.
  • Guzmán-Armstrong S, Chalmers J, Warren JJ. White spot lesions: Prevention and treatment. Am J Orthod Dentofacial Orthop 2010; 138: 690-6.
  • Geiger AM, Gorelick L, Gwinnett AJ, Benson BJ. Reducing white spot lesions in orthodontic populations with fluoride rinsing. Am J Orthod Dentofacial Orthop 1992; 101: 403-7.
  • Acun G, Nalbantgil D, Arun T. İki yüzey koruyucunun mine demineralizasyonuna etkilerinin in-vitro değerlendirilmesi. Türk Ortodonti Dergisi 2009; 22: 5-15.
  • Chung CK, Millett DT, Creanor SL, Gilmour WH, Foye RH. Fluoride release and cariostatic ability of a compomer and a resin-modified glass ionomer cement used for orthodontic bonding. J Dent 1998; 26: 533-8.
  • Trimpeneers LM, Dermaut LR. A clinical evaluation of the effectiveness of a fluoride-releasing visible light-activated bonding system to reduce demineralization around orthodontic brackets. Am J Orthod Dentofacial Orthop 1996; 110: 218-22.
  • Benson PE, Shah AA, Millett DT, Dyer F, Parkin N, Vine RS. Fluorides, orthodontics, and demineralization: a systematic review. J Orthod 2005; 32: 102-14.
  • Spencer CG, Campbell PM, Buschang PH, Cai J, Honeyman AL. Antimicrobial effects of zinc oxide in an orthodontic bonding agent. Angle Orthod 2009; 79: 317-22.
  • Al-Musallam TA, Evans CA, Drummond JL, Matasa C, Wu CD. Antimicrobial properties of an orthodontic adhesive combined with cetylpyridinium chloride. Am J Orthod Dentofacial Orthop 2006; 129: 245-51.
  • Saito K, Hayakawa T, Kawabata R, Meguro D, Kasai K. In vitro antibacterial and cytotoxicity assessments of an orthodontic bonding agent containing benzalkonium chloride. Angle Orthod 2009; 79: 331-7.
  • Othman HF, Wu CD, Evans CA, Drummond JL, Matasa CG. Evaluation of antimicrobial properties of orthodontic composite resins combined with benzalkonium chloride. Am J Orthod Dentofacial Orthop 2002; 122: 288-94.
  • Bulut H, Türkün M, Türkün LS, Işiksal E. Evaluation of the shear bond strength of 3 curing bracket bonding systems combined with an antibacterial adhesive. Am J Orthod Dentofacial Orthop 2007; 132: 77-83.
  • Saito K, Hayakawa T, Kawabata R, Meguro D, Kasai K. Antibacterial activity and shear bond strength of 4-methacryloxyethyl trimellitate anhydride/methyl methacrylate-tri-n-butyl borane resin containing an antibacterial agent. Angle Orthod 2007; 77: 532-6.
  • Ahn SJ, Lee SJ, Kook JK, Lim BS. Experimental antimicrobial orthodontic adhesives using nanofillers and silver nanoparticles. Dent Mater 2009; 25: 206-13.
  • Fox NA, McCabe JF, Gordon PH. Bond strengths of orthodontic bonding materials: an in vitro study. Br J Orthod 1990; 18: 125-30.
  • Bishara SE, Vonwald L, Olsen ME, Laffoon JF. Effect of time on the shear bond strength of glass ionomer and composite orthodontic adhesives. Am J Orthod Dentofacial Orthop 1999; 116: 616-20.
  • Uysal T, Amasyali M, Özcan S, Koyuturk AE, Akyol M, Sagdic D. In vivo effects of amorphous calcium phosphate-containing orthodontic composite on enamel demineralization around orthodontic brackets. Aust Dent J 2010; 55: 285-91.
  • Minick GT, Oesterle LJ, Newman SM, Shellhart WC. Bracket bond strengths of new adhesive systems. Am J Orthod Dentofacial Orthop 2009; 135: 771-6.
  • Imazato S, Kinomoto Y, Tarumi H, Torii M, Russell RR, McCabe JF. Incorporation of antibacterial monomer MDPB into dentin primer. J Dent Res 1997;76:768-72.
  • Bishara SE, Soliman M, Laffoon J,Warren JJ. Effect of antimicrobial monomer-containing adhesive on shear bond strength of orthodontic brackets. Angle Orthod 2005;75:397-9.
  • Arhun N, Arman A, Sesen C, Karabulut E, Korkmaz Y, Gokalp S. Shear bond strength of orthodontic brackets with 3 self-etch adhesives. Am J Orthod Dentofacial Orthop 2006;129:547-50.
  • Versteeg PA, Rosema NAM, Hoenderdos NL, Slot DE, Van der Weijden GA. The plaque inhibitory effect of a CPC mouthrinse in a 3-day plaque accumulation model- a cross-over study. Int J Dent Hygiene 2010; 8: 269-75.
  • Schroeder HE, Hirzel HC. A method of studying dental plaque morphology. Helv Odontol Acta 1969; 3:22-7.
  • Scheie AA. Models of action of currently known chemical antiplaque agents other than chlorhexidine. J Dent Res 1989; 68: 1609-16.
  • Botelho MG. Inhibitory effects on selected oral bacteria of antibacterial agents incorporated in a glass ionomer cement. Caries Res 2003; 37: 108
  • Botelho MG. Compressive strength of glass ionomer cements with dental antibacterial agents. SADJ 2004; 59: 51-3.
  • Namba N, Yoshida Y, Nagaoka N, Takashima S, Matsuura-Yoshimoto K, Maeda H, Van Meerbek B, Suzuki K, Takashiba S. Antibacterial effect of bactericide immobilized in resin matrix. Dent Mater 2009; 25: 424-30.
  • Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fievet F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Letters 2006; 6: 866-70.
  • Ferracane JL. Current trends in dental composites. Crit Rev Oral Biol Med 1995; 6: 302-18.
  • Jones N, Ray B, Ranjit KT, Manna AC. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiology Letters 2008; 279: 71-6.
  • Giertsen E. Effects of mouthrinses with triclosan, zinc ions, copolymer and sodium lauryl sulphate combined with fluoride on acid formation by dental plaque in vivo. Caries Res 2004; 38: 430-5.
  • Aydin Sevinç B, Hanley L. Antibacterial activity of dental composites containing zinc oxide nanoparticles. J Biomed Mater Res Part B: Appl Biomater 2010; 94B: 22-31.
  • Saleh S, Haddadin RNS, Baillie S, Collier PJ. Triclosan-an update. Lett Appl Microbiol 2010; 52: 87Escalada MG, Harwood JL, Maillard JY, Ochs DJ. Triclosan inhibition of fatty acid synthesis and its effect on growth in Escherichia coli and Pseudomonas aeruginosa . J Antimicrob Chemother 2005; 55: 879-82.
  • Imazato S, Torii M, Tsuchitani Y, McCabe JF, Russell RRB. Incorporation of bacterial inhibitor into resin composite. J Dent Res 1994; 73: 1437
  • Sehgal V, Shetty VS, Mogra S, Bhat G, Eipe M, Jacob S, Prabu L. Evaluation of antimicrobial and physical properties of orthodontic composite resin modified by addition of antimicrobial agents- an invitro study. Am J Orthod Dentofacial Orthop 2007; 131: 525-9.
  • Marple B, Roland P, Benninger M. Safety review of benzalkonium chloride used as a preservative in intranasal solutions: an overview of conflicting data and opinions. Otolaryngol Head Neck Surg 2004; 130: 131-41.
  • Hamilton WA. The mechanism of the bacteriostatic action of tetrachlorosalicylanilide: a membraneactive antibacterial compound. J Gen Microbiol 1968; 50:441-58.
  • Modak SM, Fox CLJ. Binding of silver sulfadiazine to the cellular components of Pseudomonas aeruginosa . Biochem Pharmac 1973; 22: 2391 40
  • Yamamoto K, Ohashi S, Aono M, Kokubo T, Yamada J, Yamauchi J. Antibacterial activity of silver ions implanted in SiO 2 filler on oral streptococci. Dent Mater 1996; 12: 227-9.
  • Hernández-Sierra JF, Ruiz F, Pena DC, MartínezGutiérrez F, Martínez AE, Guillén Ade J, TapiaPérez H, Castañón GM. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine: NBM 2008; 4:237-40.
  • Quirynen M, Bollen CM. The influence of surface roughness and surface free-energy on supra- and subgingival plaque formation in man. J Clin Periodontol 1995; 22: 1-14.
  • Kudou Y, Obara K, Kawashima T, Kubota M, Abe S, Endo T, Komatsu M, Okuda R. Addition of antibacterial agents to MMA-TBB dentin bonding systems-influence on tensile bond strength and antibacterial effect. Dent Mater J 2000; 19: 65-74. Kazuno T, Fukushima T, Hayakawa T, Inove Y, Ogura R, Kaminishi H, Miyazaki K. Antibacterial activities and bonding of MMSA/TBB resin containing amphiphilic lipids. Dent Mater J 2005; 24: 244-50.
  • Du X, Huang X, Huang C, Wang Y, Zhang Y. Epigallocatechin-3-gallate(EGCG) enhances the therapeutic activity of a dental adhesive. Journal of Dentistry (2010), doi:10.1016/j.jdent.2012.02.013. Tuncer S, Demirci M. Dental materyallerde biyouyumluluk değerlendirmeleri. Atatürk Üniv. Diş Hek. Fak. Derg. 2011; 21: 141-9. Yazışma Adresi: Yrd. Doç. Dr. Banu Sağlam Aydınatay
  • Hacettepe Üniversitesi Dişhekimliği Fakültesi Ortodonti A D 06100, ANKARA TÜRKİYE 0.33052290 e-mail: banusaglam@hotmail.com
There are 51 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Dt.ezgi Atik This is me

Prof.dr.semra Ciğer This is me

Publication Date January 1, 2013
Published in Issue Year 2013 Volume: 23 Issue: 1

Cite

APA Atik, D., & Ciğer, P. (2013). Güncel Lehimleme Tekniği: Lazer Lehimleme. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 23(1).
AMA Atik D, Ciğer P. Güncel Lehimleme Tekniği: Lazer Lehimleme. Ata Diş Hek Fak Derg. January 2013;23(1).
Chicago Atik, Dt.ezgi, and Prof.dr.semra Ciğer. “Güncel Lehimleme Tekniği: Lazer Lehimleme”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 23, no. 1 (January 2013).
EndNote Atik D, Ciğer P (January 1, 2013) Güncel Lehimleme Tekniği: Lazer Lehimleme. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 23 1
IEEE D. Atik and P. Ciğer, “Güncel Lehimleme Tekniği: Lazer Lehimleme”, Ata Diş Hek Fak Derg, vol. 23, no. 1, 2013.
ISNAD Atik, Dt.ezgi - Ciğer, Prof.dr.semra. “Güncel Lehimleme Tekniği: Lazer Lehimleme”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 23/1 (January 2013).
JAMA Atik D, Ciğer P. Güncel Lehimleme Tekniği: Lazer Lehimleme. Ata Diş Hek Fak Derg. 2013;23.
MLA Atik, Dt.ezgi and Prof.dr.semra Ciğer. “Güncel Lehimleme Tekniği: Lazer Lehimleme”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, vol. 23, no. 1, 2013.
Vancouver Atik D, Ciğer P. Güncel Lehimleme Tekniği: Lazer Lehimleme. Ata Diş Hek Fak Derg. 2013;23(1).

Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır. Tıklayınız.