Research Article
BibTex RIS Cite

HİBRİT SİLİKA İLAVESİNİN AKRİLİK KAİDE MATERYALİNİN MEKANİK ÖZELLİKLERİNE ETKİSİ

Year 2018, Volume: 28 Issue: 1, 33 - 38, 28.03.2018
https://doi.org/10.17567/ataunidfd.410364

Abstract



Amaç: Bu in
vitro
pilot çalışmanın amacı akrilik rezin kaide materyalinin
nanopartiküllü hibrit silika ilavesi sonrası bükülme dayanımı ve reziliens
özelliklerinin incelenmesidir.



Gereç ve Yöntem: Yirmi adet bar
şeklinde (65x 10x3 mm3) hazırlanan akrilik örnek iki ana test
grubuna ay- rılmıştır. Grup 1 kontrol grubudur. Grup 2 silika grubu olup
akrilik karışım içerisine ağırlıkça % 5 oranında si- lanlanmış hibrit silika
ilave edilmiştir. Akrilik örnekler ısı ile polimerize olan akrilik kaide
materyalinden toz/likit oranı 25 gr/10 ml olacak şekilde üretici talimatları
doğ- rultusunda hazırlanmıştır. Silika partikülleri akrilik mo- nomere manuel olarak
ilave edilmiştir. Polimerizasyon sürecini takiben akrilik örnekler, 1 mm/
dakika hızında kuvvet uygulayan üniversal test cihazı yardımıyla üç nokta
bükülme dayanımı testine tabi tutulmuştur. Bü- külme dayanımı ve reziliens
verilerine ait değerler ci- haza bağlı bir bilgisayar tarafından Megapaskal
(MPa) ve Joul (J) olarak kaydedilmiştir. İstatistiksel analizin bağımsız
gruplar T-testi ile değerlendirildiği
çalışmada, anlamlılık düzeyi p<0.05 olarak belirlenmiştir.



Bulgular: Bükülme dayanımı değerleri gruplar
için sı- rasıyla; Grup 1 (223.44 MPa±26.9) ve Grup 2 (109.01 MPa±20.07)’dir.
Bükülme dayanımı bakımından grup- lar arasındaki fark istatistiksel olarak
anlamlı bulu- nurken, reziliens değerleri açısından kontrol grubu (0.024
J±0.01) ile silika grubu (0.015 J±0.01) arasın- da istatistiksel olarak anlamlı
bir fark bulunamamıştır.



Sonuç: Akrilik rezin içerisine ağırlıkça % 5
oranında hibrit silika ilavesi akriliğin bükülme dayanımı ve reziliens
değerlerini düşürmüştür. Gelecek çalışma- larda, farklı yüzdeliklerdeki hibrit nanosilika
ilavesinin akrilik rezin materyalinin sertlik ve yüzey özellikleri gibi farklı mekanik
özelliklerine etkisi araştırılabilir.



Anahtar Kelimeler: Akrilik rezinleri, nanopartüküller, silikon dioksit


EFFECT OF HYBRID SILICA INCORPORATION ON THE MECHANICAL PROPERTIES OF
DENTURE BASE ACRYLIC RESIN


Aim: The purpose of this in vitro
pilot study is to assess the flexural strength and the resilience of denture
base acrylic resin after hybrid nanoparticulated silica incorporation.

Material and
Methods:
Twenty bar shaped (65x 10x3 mm3) acrylic
blocks were fabricated and divided into two test groups as follows: Group 1 was
acted as control, while Group 2 acted as silica group in which the silane
treated hybrid silica nanoparticles were incorporated into the acrylic mixture
5% by weight. A heat cure acrylic resin was used with a powder: liquid ratio as
25 gr/10 ml. Silica nanoparticles were added to the acrylic monomer manually
while mixing. After polymerrization process, three-point bending flexural
strength test was conducted to the acrylic specimens with a universal testing
device at a crosshead speed of 1 mm/minute. The flexural strength and the
resilience values were derived from the computer system connected to universal
test device. The data were recorded as Megapascals (MPa) and Joul (J). An
unpaired T-test was used for the
statistical analysis (p<0.05).

Results: The flexural strength values of the groups are as follows: Group 1 (223.44 MPa±26.9) and
Group 2 (109.01 MPa±20.07), respectively.
While the difference between groups was statistically significant for
the flexural strength test, the difference between control
(0.024 J±0.01) and silica group (0.015
J±0.01)
was significant for the resilience results.

Conclusion: The addition of hybrid nano-silica at 5 % by weight was reduced the
flexural strength and the resilience of the denture base acrylic resin. Further
studies could investigate the hardness and surface characteristics of the
denture base acrylic resin after adding silica nanoparticles with different
percentages.



Keywords: Acrylic resins, nanoparticles, silicon dioxide





References

  • 1. Vallittu P.K. A review of methods used to reinforced denture base resins. J Prosthodont 1995;4:183-7.
  • 2. Kim SH, Watts DC. The effect of reinforcement with woven E-glass fibers on the impact strength of complete dentures fabricated with high impact acrylic resin. J Prosthet Dent 2004;91:274-80.
  • 3. Alla RK, Sajjan S, Alluri VR, Ginjupalli K, Upadhya N. Influence of fiber reinforcement on the properties of denture base resins. J Biomater Nanobiotechnol 2013;4:91-7.
  • 4. Balos S, Pilic B, Markovic D, Pavlicevic J, Luzanin O. Poly(methyl-methacrylate) nanocomposites with low silica addition. J Prosthet Dent 2014;111:327-34
  • 5. Bellamy K, Limbert G, Waters MG, Middleton J. An elastomeric material for facial prostheses: synthesis, experimental and numerical testing aspects. Biomaterials 2003;24:5061-6.
  • 6. Darbar UR, Huggett R, Harrison A. Denture fracture-a survey. Br Dent J 1994;176:342-5.
  • 7. Asar VN, Albayrak H, Korkmaz T, Turkyilmaz I. Influence of various metal oxides on mechanical and physical properties of heat-cured polymethyl methacrylate denture base resins. J Adv Prosthodont 2013;5:241-7.
  • 8. Jagger DC, Harrison A, Jandth A. The reinforcement of dentures. J Oral Rehabil 1999; 26: 185-94.
  • 9. Faot F, Costa MA, Del Bel Cury AA, Rodrigues Garcia RC. Impact strength and fracture morphology of denture acrylic resins. J Prosthet Dent 2006;96:367–73.
  • 10. Kaplan R, Özçelik B, Gürbüz A. Tam protezlerin yapımında kullanılan akrilik rezinleri güçlendirme yöntemleri. Atatürk Üniv Diş Hek Fak Derg 2006;1:70-6.
  • 11. Hong YR, Fu HP, Zhang YJ, Wang J, Li HZ, Zheng Y. Surface-Modified Silica Nanoparticles for Reinforcement o PMMA. J Appl Polym Sci 2007; 105: 2176-84.
  • 12. Zheng YP, Zheng Y, Ning RC. Effects of nanoparticles SiO2 on the performance of nanocomposites. Mater Lett 2003;57:2940-44.
  • 13. Karayazgan-Saraçoğlu B. Silika ile güçlendirilmiş maksillofasiyal silikon elastomerlerin fiziksel özelliklerinin değerlendirilmesi. CÜ Diş Hek Fak Derg 2010;13:34-9.
  • 14. Han Y, Kiat-amnuay S, Powers JM, Zhao Y. Effect of nano-oxide concentration on the mechanical properties of a maxillofacial silicone elastomer. J Prosthet Dent 2008;100:465-73.
  • 15. Jalham IS, Maita IJ. Testing and evaluation of rubberbase composites reinforced with silica sand. J Compos Mater 2006;23:2099-112.
  • 16. Botti A, Pyckhout-Hintzen W, Richter D, Urban V, Straube E. A microscopic look at the reinforcement of silica-filled rubbers. J Chem Phys 2006; 124: 174908-13.
  • 17. Ab Rahman I and Padavettan V. Synthesis of Silica Nanoparticles by Sol-Gel: Size dependent properties, surface modification and applications in silica polymer nanocomposites-A review. J Nanomater 2012;2012:1-15.
  • 18. Johnston EP, Nicholls JI, Smith DE: Flexural fatigue of 10 commonly used denture base resins. J Prosthet Dent 1981;46:478-83.
  • 19. Manley TR, Bowman AJ, Cook M: Denture bases reinforced with carbon fibers. Br Dent J 1979; 146: 25.
  • 20. Mansour MM, Wagner WC, Chu TM. Effect of mica reinforcement on the flexural strength and microhardness of polymethyl methacrylate denture resin. J Prosthodont 2013; 22:179-83.
  • 21. Karayazgan B, Gunay Y, Evlioglu G. Improved edge strength in a facial prosthesis by incorporation of tulle: a clinical report. J Prosthet Dent 2003; 90: 526-9.
  • 22. Esfandeh M, Mirabedini SM, Pazokifard S, Tari M. Study of silicone coating adhesion to an epoxy undercoat using silane compounds: Effect of silane type and application method. Colloids Surf A Physicochem Eng Asp 2007; 302:11-6.
  • 23. Kanie T, Arikawa H, Fujii K, Inoue K. Physical and mechanical properties of PMMA resins containing gamma-methacryloxypropyltrimethoxysilane. J Oral Rehabil 2004; 31:166-71.
  • 24. Mc Nally L, O’Sullivan DJ, Jagger DC. An in vitro investigation of the effect of the addition of untreated and surface treated silica on the transverse and impact strength of poly (methylmethacrylate) acrylic resin. Biomed Mater Eng 2006; 16:93-100.
  • 25. da Silva LH, Feitosa SA, Valera MC, de Araujo MA, Tango RN. Effect of the addition of silanated silica on the mechanical properties of microwave heat-cured acrylic resin. Gerodontology 2012; 29:1019-23.
  • 26. Sodagar A, Bahador A, Khalil S, Shahroudi AS, Kassaee MZ. The effect of TiO2 and SiO2 nanoparticles on flexural strength of poly (methylmethacrylate) acrylic resins. J Prosthodont Res 2013;57:15-9.
  • 27. Zuccari AG, Oshida Y, Moore BK. Reinforcement of acrylic resins for provisional fixed restorations. Part I: mechanical properties. Biomed Mater Eng 1997;7:327–43.
  • 28. Cevik P, Yildirim Bicer AZ. The effect of silica and prepolymer nanoparticles on the mechanical properties of denture base acrylic resin. J Prosthodont 2016. doi: 10.1111/jopr.12573.
Year 2018, Volume: 28 Issue: 1, 33 - 38, 28.03.2018
https://doi.org/10.17567/ataunidfd.410364

Abstract

References

  • 1. Vallittu P.K. A review of methods used to reinforced denture base resins. J Prosthodont 1995;4:183-7.
  • 2. Kim SH, Watts DC. The effect of reinforcement with woven E-glass fibers on the impact strength of complete dentures fabricated with high impact acrylic resin. J Prosthet Dent 2004;91:274-80.
  • 3. Alla RK, Sajjan S, Alluri VR, Ginjupalli K, Upadhya N. Influence of fiber reinforcement on the properties of denture base resins. J Biomater Nanobiotechnol 2013;4:91-7.
  • 4. Balos S, Pilic B, Markovic D, Pavlicevic J, Luzanin O. Poly(methyl-methacrylate) nanocomposites with low silica addition. J Prosthet Dent 2014;111:327-34
  • 5. Bellamy K, Limbert G, Waters MG, Middleton J. An elastomeric material for facial prostheses: synthesis, experimental and numerical testing aspects. Biomaterials 2003;24:5061-6.
  • 6. Darbar UR, Huggett R, Harrison A. Denture fracture-a survey. Br Dent J 1994;176:342-5.
  • 7. Asar VN, Albayrak H, Korkmaz T, Turkyilmaz I. Influence of various metal oxides on mechanical and physical properties of heat-cured polymethyl methacrylate denture base resins. J Adv Prosthodont 2013;5:241-7.
  • 8. Jagger DC, Harrison A, Jandth A. The reinforcement of dentures. J Oral Rehabil 1999; 26: 185-94.
  • 9. Faot F, Costa MA, Del Bel Cury AA, Rodrigues Garcia RC. Impact strength and fracture morphology of denture acrylic resins. J Prosthet Dent 2006;96:367–73.
  • 10. Kaplan R, Özçelik B, Gürbüz A. Tam protezlerin yapımında kullanılan akrilik rezinleri güçlendirme yöntemleri. Atatürk Üniv Diş Hek Fak Derg 2006;1:70-6.
  • 11. Hong YR, Fu HP, Zhang YJ, Wang J, Li HZ, Zheng Y. Surface-Modified Silica Nanoparticles for Reinforcement o PMMA. J Appl Polym Sci 2007; 105: 2176-84.
  • 12. Zheng YP, Zheng Y, Ning RC. Effects of nanoparticles SiO2 on the performance of nanocomposites. Mater Lett 2003;57:2940-44.
  • 13. Karayazgan-Saraçoğlu B. Silika ile güçlendirilmiş maksillofasiyal silikon elastomerlerin fiziksel özelliklerinin değerlendirilmesi. CÜ Diş Hek Fak Derg 2010;13:34-9.
  • 14. Han Y, Kiat-amnuay S, Powers JM, Zhao Y. Effect of nano-oxide concentration on the mechanical properties of a maxillofacial silicone elastomer. J Prosthet Dent 2008;100:465-73.
  • 15. Jalham IS, Maita IJ. Testing and evaluation of rubberbase composites reinforced with silica sand. J Compos Mater 2006;23:2099-112.
  • 16. Botti A, Pyckhout-Hintzen W, Richter D, Urban V, Straube E. A microscopic look at the reinforcement of silica-filled rubbers. J Chem Phys 2006; 124: 174908-13.
  • 17. Ab Rahman I and Padavettan V. Synthesis of Silica Nanoparticles by Sol-Gel: Size dependent properties, surface modification and applications in silica polymer nanocomposites-A review. J Nanomater 2012;2012:1-15.
  • 18. Johnston EP, Nicholls JI, Smith DE: Flexural fatigue of 10 commonly used denture base resins. J Prosthet Dent 1981;46:478-83.
  • 19. Manley TR, Bowman AJ, Cook M: Denture bases reinforced with carbon fibers. Br Dent J 1979; 146: 25.
  • 20. Mansour MM, Wagner WC, Chu TM. Effect of mica reinforcement on the flexural strength and microhardness of polymethyl methacrylate denture resin. J Prosthodont 2013; 22:179-83.
  • 21. Karayazgan B, Gunay Y, Evlioglu G. Improved edge strength in a facial prosthesis by incorporation of tulle: a clinical report. J Prosthet Dent 2003; 90: 526-9.
  • 22. Esfandeh M, Mirabedini SM, Pazokifard S, Tari M. Study of silicone coating adhesion to an epoxy undercoat using silane compounds: Effect of silane type and application method. Colloids Surf A Physicochem Eng Asp 2007; 302:11-6.
  • 23. Kanie T, Arikawa H, Fujii K, Inoue K. Physical and mechanical properties of PMMA resins containing gamma-methacryloxypropyltrimethoxysilane. J Oral Rehabil 2004; 31:166-71.
  • 24. Mc Nally L, O’Sullivan DJ, Jagger DC. An in vitro investigation of the effect of the addition of untreated and surface treated silica on the transverse and impact strength of poly (methylmethacrylate) acrylic resin. Biomed Mater Eng 2006; 16:93-100.
  • 25. da Silva LH, Feitosa SA, Valera MC, de Araujo MA, Tango RN. Effect of the addition of silanated silica on the mechanical properties of microwave heat-cured acrylic resin. Gerodontology 2012; 29:1019-23.
  • 26. Sodagar A, Bahador A, Khalil S, Shahroudi AS, Kassaee MZ. The effect of TiO2 and SiO2 nanoparticles on flexural strength of poly (methylmethacrylate) acrylic resins. J Prosthodont Res 2013;57:15-9.
  • 27. Zuccari AG, Oshida Y, Moore BK. Reinforcement of acrylic resins for provisional fixed restorations. Part I: mechanical properties. Biomed Mater Eng 1997;7:327–43.
  • 28. Cevik P, Yildirim Bicer AZ. The effect of silica and prepolymer nanoparticles on the mechanical properties of denture base acrylic resin. J Prosthodont 2016. doi: 10.1111/jopr.12573.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Araştırma Makalesi
Authors

Pınar Çevik

Publication Date March 28, 2018
Published in Issue Year 2018 Volume: 28 Issue: 1

Cite

APA Çevik, P. (2018). HİBRİT SİLİKA İLAVESİNİN AKRİLİK KAİDE MATERYALİNİN MEKANİK ÖZELLİKLERİNE ETKİSİ. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 28(1), 33-38. https://doi.org/10.17567/ataunidfd.410364
AMA Çevik P. HİBRİT SİLİKA İLAVESİNİN AKRİLİK KAİDE MATERYALİNİN MEKANİK ÖZELLİKLERİNE ETKİSİ. Ata Diş Hek Fak Derg. March 2018;28(1):33-38. doi:10.17567/ataunidfd.410364
Chicago Çevik, Pınar. “HİBRİT SİLİKA İLAVESİNİN AKRİLİK KAİDE MATERYALİNİN MEKANİK ÖZELLİKLERİNE ETKİSİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 28, no. 1 (March 2018): 33-38. https://doi.org/10.17567/ataunidfd.410364.
EndNote Çevik P (March 1, 2018) HİBRİT SİLİKA İLAVESİNİN AKRİLİK KAİDE MATERYALİNİN MEKANİK ÖZELLİKLERİNE ETKİSİ. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 28 1 33–38.
IEEE P. Çevik, “HİBRİT SİLİKA İLAVESİNİN AKRİLİK KAİDE MATERYALİNİN MEKANİK ÖZELLİKLERİNE ETKİSİ”, Ata Diş Hek Fak Derg, vol. 28, no. 1, pp. 33–38, 2018, doi: 10.17567/ataunidfd.410364.
ISNAD Çevik, Pınar. “HİBRİT SİLİKA İLAVESİNİN AKRİLİK KAİDE MATERYALİNİN MEKANİK ÖZELLİKLERİNE ETKİSİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 28/1 (March 2018), 33-38. https://doi.org/10.17567/ataunidfd.410364.
JAMA Çevik P. HİBRİT SİLİKA İLAVESİNİN AKRİLİK KAİDE MATERYALİNİN MEKANİK ÖZELLİKLERİNE ETKİSİ. Ata Diş Hek Fak Derg. 2018;28:33–38.
MLA Çevik, Pınar. “HİBRİT SİLİKA İLAVESİNİN AKRİLİK KAİDE MATERYALİNİN MEKANİK ÖZELLİKLERİNE ETKİSİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, vol. 28, no. 1, 2018, pp. 33-38, doi:10.17567/ataunidfd.410364.
Vancouver Çevik P. HİBRİT SİLİKA İLAVESİNİN AKRİLİK KAİDE MATERYALİNİN MEKANİK ÖZELLİKLERİNE ETKİSİ. Ata Diş Hek Fak Derg. 2018;28(1):33-8.

Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır. Tıklayınız.