Review
BibTex RIS Cite

MONOLİTİK ZİRKONYA SERAMİK SİSTEMLERİNİN ÜRETİM TİPLERİ İLE AŞINMA, OPTİK VE ESTETİK ÖZELLİKLERİ

Year 2018, Volume: 28 Issue: 2, 263 - 270, 22.04.2018
https://doi.org/10.17567/ataunidfd.419064

Abstract



Monolitik
zirkonya seramik restorasyonlar, mükemmel mekanik özellikleri ve tek parça
olarak yapılması ile ve- neer seramik ayrılmalarının olmadığı ve bilgisayar des-
tekli tasarım ve bilgisayar destekli üretim (BDT/BDÜ) teknolojileri
kullanılarak üretilen sistemlerdir. Bu sis- temler aşınmaya karşı direnci ve
estetik özellikleri ile son yıllarda birçok üretim tipi ile daha geniş kullanım
alanı bulmaktadır.



Restorasyonların uzun yıllar ağızda kalabilmesi için me- kanik
dayanıklılığı oldukça önemlidir. Monolitik zirkon- ya restorasyonların yüksek
aşınma dayanımı olduğu bilinmesine rağmen konvansiyonel zirkonyaya karşı üs- tünlükleri
ve karşıt minede oluşturdukları etkiler kanıt- lanamamıştır.



Opak-beyazımsı görüntüsü olan konvansiyonel zirkon- ya
seramik sistemlere oranla yüksek translusensi gös- teren monolitik zirkonyada
doğal görünüm oluşturmak için sinterizasyon öncesi renklendirme yapılabilmek- tedir.
Ayrıca yüzey parlaklığı ve estetik için parlatma ve glazür işlemleri de
yapılabilmektedir. Estetik ve optik özelliklerin artırılmasında zirkonya
seramik materyal tipi, translusensi özelliği ve yüzey işlemleri oldukça önemli
parametrelerdir. Doğal dişler translusent oldu- ğu için zirkonya
restorasyonlarda translusensi aranan önemli bir özelliktir.



Anahtar Kelimeler: Monolitik
zirkonya, estetik, aşınma direnci



PRODUCTION TYPES OF MONOLITHIC ZIRCONIA
CERAMIC SYSTEMS WITH WEAR RESISTANCE, OPTICAL AND AESTETHIC PROPERTIES



ABSTRACT



Monolithic zirconia ceramic restorations are excellent
mechanical properties in which it is not encountered veneers chipping since it
is produced in one piece by using computer-aided design and computer-aided manufacturing
technology (CAD /CAM).
These
systems with wear resistance and aesthetic properties are in widely use in
recent years with many generic forms.



Mechanical strength of restoration is very important to
remain in the mouth for many years. Monolithic zirconia restorations could not
be proved superiority against conventional zirconia and the effects they
produce in the opposite enamel despite their high wear resistance known.



In order to create a natural appearance for monoblock
zirconia with high translucency compared to standard zirconia ceramic systems
with opaque appearance, it can be applied coloring before sintering. In
addition, glazing and polishing for surface gloss and aesthetic procedures can
be performed.  Zirconia ceramic material
type, translucency property and surface treatments are important parameters in
improving the aesthetic and optical properties. The translucency of zirconia
restorations is an important requisite property since natural teeth is
translucent.



Keywords: Monolithic zirconia, aesthetic, wear
resistance



References

  • 1. Nakamura K, Harada A, Inagaki R, Kanno T, Niwano Y, Milleding P, Örtengren U. Fracture resistance of monolithic zirconia molar crowns with reduced thickness. Acta Odontol Scand 2015;73:602-8.
  • 2. Beuer F, Edelhoff D, Gernet W, Naumann M. Effect of preparation angles on the precision of zirconia crown copings fabricated by CAD/CAM system. Dent Mater J 2008;27:814–20.
  • 3. Preis V, Behr M, Kolbeck C, Hahnel S, Handel G, Rosentritt M. Wear performance of substructure ceramics and veneering porcelains. Dent Mater 2011;27:796-804.
  • 4. Kim HK, Kim SH. Effect of the number of coloring liquid applications on the optical properties of monolithic zirconia. Dent Mater 2014;30:229-37.
  • 5. Cardelli P, Manobianco FP, Serafini N, Murmura G, Beuer F. Full-arch, implant-supported monolithic zirconia rehabilitations: pilot clinical evaluation of wear against natural or composite teeth. J Prosthet Dent 2015;10.1111:1-5.
  • 6. Stober T, Bermejo JL, Rammelsberg P, Schmıtter M. Enamel wear caused by monolithic zirconia crowns after 6 months of clinical use. J Oral Rehabil 2014;41:314-22.
  • 7. Preis V, Weiser F, Handel G, Rosentritt M. Wear performance of monolithic dental ceramics with different surface treatments. Quintessence Int 2013;44:393-405.
  • 8. Bindl A, Lüthy H, Mörmann WH. Strength and fracture pattern of monolithic CAD/CAM-generated posterior crowns. Dent Mater 2006;22:29-36.
  • 9. Park JH, Park S, Lee K, Yun KD, Lim HP. Antagonist wear of three CAD/CAM anatomic contour zirconia ceramics. J Prosthet Dent 2014;111:20-9.
  • 10. Oh WS, Delong R, Anusavice KJ. Factors affecting enamel and ceramic wear: a literature review. J Prosthet Dent 2002;87:451-9.
  • 11. Harianawala HH, Kheur, MG, Apte SK, Kale BB, Sethı TS, Kheur SM. Comperative analyse of transmittance for different types of commercially avaible zirconia and lithium disilicate materials. J Adv Prosthodont 2014;6:456-61.
  • 12. Sulaiman TA, Abdulmajeed AA, Donovan TE, Ritter AV, Vallittu PK, Närhi TO, Lassila LV. Optical properties and light irradiance of monolithic zirconia at variable thicknesses. Dent Mater 2015;31:1180-7.
  • 13. Ueda K, Güth JF, Erdelt K, Stimmelmayr M, Kappert H, Beuer F. Light transmittance by a multi-coloured zirconia material. Dent Mater J 2015;34:310-4.
  • 14. Matsuzaki F, Sekine H, Honma S, Takanashi T, Furuya K, Yajima Y, Yoshinari M. Translucency and flexural strength of monolithic translucent zirconia and porcelain-layered zirconia. Dent Mater J 2015;34:910-7.
  • 15. Nordahl N, Vult von Steyern P, Larsson C. Fracture strength of ceramic monolithic crown systems of different thickness. J Oral Sci 2015;57:255-61.
  • 16. Zhang F, Vanmeensel K, Batuk M, Hadermann J, Inokoshi M, Van Meerbeek B, Naert I, Vleugels J. Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation. Acta Biomater 2015;16:215-22.
  • 17. Kim HK, Kim SH, Lee JB, Han JS. Effect of polishing and glazing on the color and spectral distribution of monolithic zirconia. J Adv Prosthodont 2013;5:296-304.
  • 18. Sadid-Zadeh R, Lıu PR, Aponte-Wesson R, O'neal SJ. Maxillary cement retained implant supported monolithic zirconia prosthesis in a full mouth rehabilitation: a clinical report. J Adv Prosthodont 2013;5:209-17.
  • 19. Stawarczyk B, Ozcan M, Hallmann L, Ender A, Mehl A, Hammerlet CH. The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clin Oral Investig 2013a;17:269-74.
  • 20. Bavbek NC, Roulet JF, Ozcan M. Evaluation of microshear bond strength of orthodontic resin cement to monolithic zirconium oxide as a function of surface conditioning method. J Adhes Dent 2014;16:473-80.
  • 21. Majić Renjo M, Curkovıc L, Stefancıc S, Corıc D. Indentation size effect of Y-TZP dental ceramics. Dent Mater 2014;30:371-6.
  • 22. Sripetchdanond J, Leevailoj C. Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: an in vitro study. J Prosthet Dent 2014;112:1141-50.
  • 23. Sun T, Zhou S, Lai R, Liu R, Ma S, Zhou Z, Longquan S. Load-bearing capacity and the recommended thickness of dental monolithic zirconia single crowns. J Mech Behav Biomed Mater 2014;35:93-101.
  • 24. Zesewitz TF, Knauber AW, Northdurft FP. Fracture resistance of a selection of full-contour all-ceramic crowns: an in vitro study. Int J Prosthodont 2014;27:264-6.
  • 25. Qeblawi DM, Campillo-Funollet M, Muñoz CA. In vitro shear bond strength of two self-adhesive resin cements to zirconia. J Prosthet Dent 2015;113:122-7.
  • 26. Sulaiman TA, Abdulmajeed AA, Donovan TE, Ritter AV, Lassila LV, Vallittu PK, Närhi TO. Degree of conversion of dual-polymerizing cements light polymerized through monolithic zirconia of different thicknesses and types. J Prosthet Dent 2015;114:103-8.
  • 27. Venezia P, Torsello F, Cavalcanti R, D'Amato S. Retrospective analysis of 26 complete-arch implant-supported monolithic zirconia prostheses with feldspathic porcelain veneering limited to the facial surface. J Prosthet Dent 2015;114:506-12.
  • 28. Preis V, Schmalzbauer M, Bougeard D, Schneider-Feyrer S, Rosentritt M. Surface properties of monolithic zirconia after dental adjustment treatments and in vitro wear simulation. J Dent 2015;43:133-9.
  • 29. Jung YS, Lee JW, Choi YJ, Ahn JS, Shin SW, Huh JB. A study on the in-vitro wear of the natural tooth structure by opposing zirconia or dental porcelain. J Adv Prosthodont 2010;2:111–5.
  • 30. Stawarczyk B, Frevert K, Ender A, Roos M, Sener B, Wimmer T. Comparison of four monolithic zirconia materials with conventional ones: Contrast ratio, grain size, four-point flexural strength and two-body wear. J Mech Behav Biomed Mater 2015;59:128-38.
  • 31. Mundhe K, Jain V, Pruthi G, Shah N. Clinical study to evaluate the wear of natural enamel antagonist to zirconia and metal ceramic crowns. J Prosthet Dent 2015;114:358-63.
  • 32. Cheng CW, Chien CH, Chen CJ, Papaspyridakos, P. Complete-mouth implant rehabilitation with modified monolithic zirconia implant-supported fixed dental prostheses and an immediate-loading protocol: a clinical report. J Prosthet Dent 2013;109:347-52.
  • 33. Amer R, Kürklü D, Johnston W. Effect of simulated mastication on the surface roughness of three ceramic systems. J Prosthet Dent 2015;114:260-5.
  • 34. Cattani-Lorente M, Durual S, Amez-Droz M, Wiskott HW, Scherrer SS. Hydrothermal degradation of a 3Y-TZP translucent dental ceramic: A comparison of numerical predictions with experimental data after 2 years of aging. 2016;32:394-402.
  • 35. Janyavula S, Lawson N, Cakir D, Beck P, Ramp LC, Burgess JO. The wear of polished and glazed zirconia against enamel. J Prosthet Dent 2013;109:22-9.
  • 36. Amer R, Kurklu D, Kateeb E, Seghi RR. Three body wear potential of dental yttrium-stabilized zirconia ceramic after grinding, polishing, and glazing treatments. J Prosthet Dent 2014;112:1151-5.
  • 37. Mitov G, Heintze SD, Walz S, Woll K, Muecklıch F, Pospıech P. Wear behavior of dental Y-TZP ceramic against natural enamel after different finishing procedures. Dent Mater 2012;28:909–18.
  • 38. Kontos L, Schille C, Schweizer E, Geis-Gerstorfer J. Influence of surface treatment on the wear of solid zirconia. Acta Odontol Scand 2013;71:482–7.
  • 39. Sabrah AH, Cook NB, Luangruangrong P, Hara AT, Bottino MC. Full-contour Y-TZP ceramic surface roughness effect on synthetic hydroxyapatite wear. Dent Mater 2013;29:666-73.
  • 40. Johansson C, Kmet G, Rivera J, Larsson C, Vult Von Steyern P. Fracture strength of monolithic all-ceramic crowns made of high translucent yttrium oxide-stabilized zirconium dioxide compared to porcelain-veneered crowns and lithium disilicate crowns. Acta Odontol Scand 2014;72:145–153.
  • 41. Ha SR. Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement type. J Adv Prosthodont 2015;7:475-83.
  • 42. Kim HK, Kim SH, Lee JB, Ha SR. Effects of surface treatments on the translucency, opalescence, and surface texture of dental monolithic zirconia ceramics. J Prosthet Dent 2016;115;773-9.
  • 43. Sulaiman TA, Abdulmajeed AA, Donovan TE, Vallittu PK, Närhi TO, Lassila LV. The effect of staining and vacuum sintering on optical and mechanical properties of partially and fully stabilized monolithic zirconia. Dent Mater J 2015;34:605-10.
  • 44. Kurtulmus-Yılmaz S, Ulusoy M. Comparison of the translucency of shaded zirconia all-ceramic systems. J Adv Prosthodont 2014;6:415-22.
  • 45. Denry I, Kelly JR. State of the art o zirconia for dental applications. Dent Mater 2008;24:299-307.
  • 46. Sulaiman TA, Abdulmajeed AA, Shahramian K, Hupa L, Donovan TE, Vallittu P, Närhi TO. Impact of gastric acidic challenge on surface topography and optical properties of monolithic zirconia. Dent Mater 2015;31:1445-52.
  • 47. Srikanth R, Kosmac T, Della Bona A, Yin L, Zhang Y. Effects of cementation surface modifications on fracture resistance of zirconia. Dent Mater 2015;31:435-42.
  • 48. Heffernan MJ, Aquilino SA, Diaz-Arnold, AM, Haselton DR, Stanford, CM, Vargas MA. Relative translucency of six all-ceramic systems. Part I: core materials. J Prosthet Dent 2002;88:4-9.
  • 49. Herrguth M, Wichmann M, Reich S. The aesthetics of all-ceramic venered and monolithic CAD/CAM crowns. J Oral Rehabil 2005;32:747-52.
  • 50. Ilie N, Stawarczyk B. Quantification of the amount of blue light passing through monolithic zirconia with respect to thickness and polymerization conditions. J Prosthet Dent 2015;113:114-21.
  • 51. Heffernan MJ, Aquilino SA, Diaz-Arnold, AM, Haselton DR, Stanford, CM, Vargas MA. Relative translucency of six all-ceramic systems. Part II: core and veneer materials. J Prosthet Dent 2002;88:10-5.
  • 52. Klimke J, Trunec M, Krell A. Transparent tetragonal yttria-stabilized zirconia ceramics: influence of scattering caused by birefringence. J Am Ceram Soc 2011;94:1850-8.
  • 53. Ebeid K, Wille S, Hamdy A, Salah T, El-Etreby A, Kern M. Effect of changes in sintering parameters on monolithic translucent zirconia. Dent Mater 2014;30:419-24.
  • 54. Yu Zhang. Making yttria-stabilized tetragonal zirconia translucent. Dent Mater 2014;30:1195-203.
  • 55. Heather JC, Seong WJ, Peson IJ. Current ceramic materials and systems with clinical recommendations: A systematic review. J Prosthet Dent 2007;98:389-404.
  • 56. Vichi A, Louca C, Corciolani G, Ferrari M. Color related to ceramic and zirconia restorations: a review. Dent Mater 2011;27:97-108.
  • 57. Akar GC, Pekkan G, Cal E, Eskitaşçıoğlu G, Ozcan M. Effects of surface-finishing protocols on the roughness, color change, and translucency of different ceramic systems. J Prosthet Dent 2014;112:314-21.
  • 58. Wang F, Takahashi H, Iwasaki N. Translucency of dental ceramics with different thicknesses. J Prosthet Dent 2013;110:14-20.
  • 59. Sinmazisik G, Tarcın B, Demirbas B, Gulmez T, Bor E, Ozer F. The effect of zirconia thickness on the biaxial flexural strenght of zirconia ceramic bilayered discs. Dent Mater J 2015;34:640-7.
  • 60. Bayramoğlu E, Özkan Y. Comparing of glass ceramic restorations and zirconia based ceramic restorations. J Dent Fac Atatürk Uni Supplement. 2012;5:110-123.
Year 2018, Volume: 28 Issue: 2, 263 - 270, 22.04.2018
https://doi.org/10.17567/ataunidfd.419064

Abstract

References

  • 1. Nakamura K, Harada A, Inagaki R, Kanno T, Niwano Y, Milleding P, Örtengren U. Fracture resistance of monolithic zirconia molar crowns with reduced thickness. Acta Odontol Scand 2015;73:602-8.
  • 2. Beuer F, Edelhoff D, Gernet W, Naumann M. Effect of preparation angles on the precision of zirconia crown copings fabricated by CAD/CAM system. Dent Mater J 2008;27:814–20.
  • 3. Preis V, Behr M, Kolbeck C, Hahnel S, Handel G, Rosentritt M. Wear performance of substructure ceramics and veneering porcelains. Dent Mater 2011;27:796-804.
  • 4. Kim HK, Kim SH. Effect of the number of coloring liquid applications on the optical properties of monolithic zirconia. Dent Mater 2014;30:229-37.
  • 5. Cardelli P, Manobianco FP, Serafini N, Murmura G, Beuer F. Full-arch, implant-supported monolithic zirconia rehabilitations: pilot clinical evaluation of wear against natural or composite teeth. J Prosthet Dent 2015;10.1111:1-5.
  • 6. Stober T, Bermejo JL, Rammelsberg P, Schmıtter M. Enamel wear caused by monolithic zirconia crowns after 6 months of clinical use. J Oral Rehabil 2014;41:314-22.
  • 7. Preis V, Weiser F, Handel G, Rosentritt M. Wear performance of monolithic dental ceramics with different surface treatments. Quintessence Int 2013;44:393-405.
  • 8. Bindl A, Lüthy H, Mörmann WH. Strength and fracture pattern of monolithic CAD/CAM-generated posterior crowns. Dent Mater 2006;22:29-36.
  • 9. Park JH, Park S, Lee K, Yun KD, Lim HP. Antagonist wear of three CAD/CAM anatomic contour zirconia ceramics. J Prosthet Dent 2014;111:20-9.
  • 10. Oh WS, Delong R, Anusavice KJ. Factors affecting enamel and ceramic wear: a literature review. J Prosthet Dent 2002;87:451-9.
  • 11. Harianawala HH, Kheur, MG, Apte SK, Kale BB, Sethı TS, Kheur SM. Comperative analyse of transmittance for different types of commercially avaible zirconia and lithium disilicate materials. J Adv Prosthodont 2014;6:456-61.
  • 12. Sulaiman TA, Abdulmajeed AA, Donovan TE, Ritter AV, Vallittu PK, Närhi TO, Lassila LV. Optical properties and light irradiance of monolithic zirconia at variable thicknesses. Dent Mater 2015;31:1180-7.
  • 13. Ueda K, Güth JF, Erdelt K, Stimmelmayr M, Kappert H, Beuer F. Light transmittance by a multi-coloured zirconia material. Dent Mater J 2015;34:310-4.
  • 14. Matsuzaki F, Sekine H, Honma S, Takanashi T, Furuya K, Yajima Y, Yoshinari M. Translucency and flexural strength of monolithic translucent zirconia and porcelain-layered zirconia. Dent Mater J 2015;34:910-7.
  • 15. Nordahl N, Vult von Steyern P, Larsson C. Fracture strength of ceramic monolithic crown systems of different thickness. J Oral Sci 2015;57:255-61.
  • 16. Zhang F, Vanmeensel K, Batuk M, Hadermann J, Inokoshi M, Van Meerbeek B, Naert I, Vleugels J. Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation. Acta Biomater 2015;16:215-22.
  • 17. Kim HK, Kim SH, Lee JB, Han JS. Effect of polishing and glazing on the color and spectral distribution of monolithic zirconia. J Adv Prosthodont 2013;5:296-304.
  • 18. Sadid-Zadeh R, Lıu PR, Aponte-Wesson R, O'neal SJ. Maxillary cement retained implant supported monolithic zirconia prosthesis in a full mouth rehabilitation: a clinical report. J Adv Prosthodont 2013;5:209-17.
  • 19. Stawarczyk B, Ozcan M, Hallmann L, Ender A, Mehl A, Hammerlet CH. The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clin Oral Investig 2013a;17:269-74.
  • 20. Bavbek NC, Roulet JF, Ozcan M. Evaluation of microshear bond strength of orthodontic resin cement to monolithic zirconium oxide as a function of surface conditioning method. J Adhes Dent 2014;16:473-80.
  • 21. Majić Renjo M, Curkovıc L, Stefancıc S, Corıc D. Indentation size effect of Y-TZP dental ceramics. Dent Mater 2014;30:371-6.
  • 22. Sripetchdanond J, Leevailoj C. Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: an in vitro study. J Prosthet Dent 2014;112:1141-50.
  • 23. Sun T, Zhou S, Lai R, Liu R, Ma S, Zhou Z, Longquan S. Load-bearing capacity and the recommended thickness of dental monolithic zirconia single crowns. J Mech Behav Biomed Mater 2014;35:93-101.
  • 24. Zesewitz TF, Knauber AW, Northdurft FP. Fracture resistance of a selection of full-contour all-ceramic crowns: an in vitro study. Int J Prosthodont 2014;27:264-6.
  • 25. Qeblawi DM, Campillo-Funollet M, Muñoz CA. In vitro shear bond strength of two self-adhesive resin cements to zirconia. J Prosthet Dent 2015;113:122-7.
  • 26. Sulaiman TA, Abdulmajeed AA, Donovan TE, Ritter AV, Lassila LV, Vallittu PK, Närhi TO. Degree of conversion of dual-polymerizing cements light polymerized through monolithic zirconia of different thicknesses and types. J Prosthet Dent 2015;114:103-8.
  • 27. Venezia P, Torsello F, Cavalcanti R, D'Amato S. Retrospective analysis of 26 complete-arch implant-supported monolithic zirconia prostheses with feldspathic porcelain veneering limited to the facial surface. J Prosthet Dent 2015;114:506-12.
  • 28. Preis V, Schmalzbauer M, Bougeard D, Schneider-Feyrer S, Rosentritt M. Surface properties of monolithic zirconia after dental adjustment treatments and in vitro wear simulation. J Dent 2015;43:133-9.
  • 29. Jung YS, Lee JW, Choi YJ, Ahn JS, Shin SW, Huh JB. A study on the in-vitro wear of the natural tooth structure by opposing zirconia or dental porcelain. J Adv Prosthodont 2010;2:111–5.
  • 30. Stawarczyk B, Frevert K, Ender A, Roos M, Sener B, Wimmer T. Comparison of four monolithic zirconia materials with conventional ones: Contrast ratio, grain size, four-point flexural strength and two-body wear. J Mech Behav Biomed Mater 2015;59:128-38.
  • 31. Mundhe K, Jain V, Pruthi G, Shah N. Clinical study to evaluate the wear of natural enamel antagonist to zirconia and metal ceramic crowns. J Prosthet Dent 2015;114:358-63.
  • 32. Cheng CW, Chien CH, Chen CJ, Papaspyridakos, P. Complete-mouth implant rehabilitation with modified monolithic zirconia implant-supported fixed dental prostheses and an immediate-loading protocol: a clinical report. J Prosthet Dent 2013;109:347-52.
  • 33. Amer R, Kürklü D, Johnston W. Effect of simulated mastication on the surface roughness of three ceramic systems. J Prosthet Dent 2015;114:260-5.
  • 34. Cattani-Lorente M, Durual S, Amez-Droz M, Wiskott HW, Scherrer SS. Hydrothermal degradation of a 3Y-TZP translucent dental ceramic: A comparison of numerical predictions with experimental data after 2 years of aging. 2016;32:394-402.
  • 35. Janyavula S, Lawson N, Cakir D, Beck P, Ramp LC, Burgess JO. The wear of polished and glazed zirconia against enamel. J Prosthet Dent 2013;109:22-9.
  • 36. Amer R, Kurklu D, Kateeb E, Seghi RR. Three body wear potential of dental yttrium-stabilized zirconia ceramic after grinding, polishing, and glazing treatments. J Prosthet Dent 2014;112:1151-5.
  • 37. Mitov G, Heintze SD, Walz S, Woll K, Muecklıch F, Pospıech P. Wear behavior of dental Y-TZP ceramic against natural enamel after different finishing procedures. Dent Mater 2012;28:909–18.
  • 38. Kontos L, Schille C, Schweizer E, Geis-Gerstorfer J. Influence of surface treatment on the wear of solid zirconia. Acta Odontol Scand 2013;71:482–7.
  • 39. Sabrah AH, Cook NB, Luangruangrong P, Hara AT, Bottino MC. Full-contour Y-TZP ceramic surface roughness effect on synthetic hydroxyapatite wear. Dent Mater 2013;29:666-73.
  • 40. Johansson C, Kmet G, Rivera J, Larsson C, Vult Von Steyern P. Fracture strength of monolithic all-ceramic crowns made of high translucent yttrium oxide-stabilized zirconium dioxide compared to porcelain-veneered crowns and lithium disilicate crowns. Acta Odontol Scand 2014;72:145–153.
  • 41. Ha SR. Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement type. J Adv Prosthodont 2015;7:475-83.
  • 42. Kim HK, Kim SH, Lee JB, Ha SR. Effects of surface treatments on the translucency, opalescence, and surface texture of dental monolithic zirconia ceramics. J Prosthet Dent 2016;115;773-9.
  • 43. Sulaiman TA, Abdulmajeed AA, Donovan TE, Vallittu PK, Närhi TO, Lassila LV. The effect of staining and vacuum sintering on optical and mechanical properties of partially and fully stabilized monolithic zirconia. Dent Mater J 2015;34:605-10.
  • 44. Kurtulmus-Yılmaz S, Ulusoy M. Comparison of the translucency of shaded zirconia all-ceramic systems. J Adv Prosthodont 2014;6:415-22.
  • 45. Denry I, Kelly JR. State of the art o zirconia for dental applications. Dent Mater 2008;24:299-307.
  • 46. Sulaiman TA, Abdulmajeed AA, Shahramian K, Hupa L, Donovan TE, Vallittu P, Närhi TO. Impact of gastric acidic challenge on surface topography and optical properties of monolithic zirconia. Dent Mater 2015;31:1445-52.
  • 47. Srikanth R, Kosmac T, Della Bona A, Yin L, Zhang Y. Effects of cementation surface modifications on fracture resistance of zirconia. Dent Mater 2015;31:435-42.
  • 48. Heffernan MJ, Aquilino SA, Diaz-Arnold, AM, Haselton DR, Stanford, CM, Vargas MA. Relative translucency of six all-ceramic systems. Part I: core materials. J Prosthet Dent 2002;88:4-9.
  • 49. Herrguth M, Wichmann M, Reich S. The aesthetics of all-ceramic venered and monolithic CAD/CAM crowns. J Oral Rehabil 2005;32:747-52.
  • 50. Ilie N, Stawarczyk B. Quantification of the amount of blue light passing through monolithic zirconia with respect to thickness and polymerization conditions. J Prosthet Dent 2015;113:114-21.
  • 51. Heffernan MJ, Aquilino SA, Diaz-Arnold, AM, Haselton DR, Stanford, CM, Vargas MA. Relative translucency of six all-ceramic systems. Part II: core and veneer materials. J Prosthet Dent 2002;88:10-5.
  • 52. Klimke J, Trunec M, Krell A. Transparent tetragonal yttria-stabilized zirconia ceramics: influence of scattering caused by birefringence. J Am Ceram Soc 2011;94:1850-8.
  • 53. Ebeid K, Wille S, Hamdy A, Salah T, El-Etreby A, Kern M. Effect of changes in sintering parameters on monolithic translucent zirconia. Dent Mater 2014;30:419-24.
  • 54. Yu Zhang. Making yttria-stabilized tetragonal zirconia translucent. Dent Mater 2014;30:1195-203.
  • 55. Heather JC, Seong WJ, Peson IJ. Current ceramic materials and systems with clinical recommendations: A systematic review. J Prosthet Dent 2007;98:389-404.
  • 56. Vichi A, Louca C, Corciolani G, Ferrari M. Color related to ceramic and zirconia restorations: a review. Dent Mater 2011;27:97-108.
  • 57. Akar GC, Pekkan G, Cal E, Eskitaşçıoğlu G, Ozcan M. Effects of surface-finishing protocols on the roughness, color change, and translucency of different ceramic systems. J Prosthet Dent 2014;112:314-21.
  • 58. Wang F, Takahashi H, Iwasaki N. Translucency of dental ceramics with different thicknesses. J Prosthet Dent 2013;110:14-20.
  • 59. Sinmazisik G, Tarcın B, Demirbas B, Gulmez T, Bor E, Ozer F. The effect of zirconia thickness on the biaxial flexural strenght of zirconia ceramic bilayered discs. Dent Mater J 2015;34:640-7.
  • 60. Bayramoğlu E, Özkan Y. Comparing of glass ceramic restorations and zirconia based ceramic restorations. J Dent Fac Atatürk Uni Supplement. 2012;5:110-123.
There are 60 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Derleme
Authors

Rukiye Durkan

Gdnca Deste This is me

Hatice Şimşek This is me

Publication Date April 22, 2018
Published in Issue Year 2018 Volume: 28 Issue: 2

Cite

APA Durkan, R., Deste, G., & Şimşek, H. (2018). MONOLİTİK ZİRKONYA SERAMİK SİSTEMLERİNİN ÜRETİM TİPLERİ İLE AŞINMA, OPTİK VE ESTETİK ÖZELLİKLERİ. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 28(2), 263-270. https://doi.org/10.17567/ataunidfd.419064
AMA Durkan R, Deste G, Şimşek H. MONOLİTİK ZİRKONYA SERAMİK SİSTEMLERİNİN ÜRETİM TİPLERİ İLE AŞINMA, OPTİK VE ESTETİK ÖZELLİKLERİ. Ata Diş Hek Fak Derg. April 2018;28(2):263-270. doi:10.17567/ataunidfd.419064
Chicago Durkan, Rukiye, Gdnca Deste, and Hatice Şimşek. “MONOLİTİK ZİRKONYA SERAMİK SİSTEMLERİNİN ÜRETİM TİPLERİ İLE AŞINMA, OPTİK VE ESTETİK ÖZELLİKLERİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 28, no. 2 (April 2018): 263-70. https://doi.org/10.17567/ataunidfd.419064.
EndNote Durkan R, Deste G, Şimşek H (April 1, 2018) MONOLİTİK ZİRKONYA SERAMİK SİSTEMLERİNİN ÜRETİM TİPLERİ İLE AŞINMA, OPTİK VE ESTETİK ÖZELLİKLERİ. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 28 2 263–270.
IEEE R. Durkan, G. Deste, and H. Şimşek, “MONOLİTİK ZİRKONYA SERAMİK SİSTEMLERİNİN ÜRETİM TİPLERİ İLE AŞINMA, OPTİK VE ESTETİK ÖZELLİKLERİ”, Ata Diş Hek Fak Derg, vol. 28, no. 2, pp. 263–270, 2018, doi: 10.17567/ataunidfd.419064.
ISNAD Durkan, Rukiye et al. “MONOLİTİK ZİRKONYA SERAMİK SİSTEMLERİNİN ÜRETİM TİPLERİ İLE AŞINMA, OPTİK VE ESTETİK ÖZELLİKLERİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 28/2 (April 2018), 263-270. https://doi.org/10.17567/ataunidfd.419064.
JAMA Durkan R, Deste G, Şimşek H. MONOLİTİK ZİRKONYA SERAMİK SİSTEMLERİNİN ÜRETİM TİPLERİ İLE AŞINMA, OPTİK VE ESTETİK ÖZELLİKLERİ. Ata Diş Hek Fak Derg. 2018;28:263–270.
MLA Durkan, Rukiye et al. “MONOLİTİK ZİRKONYA SERAMİK SİSTEMLERİNİN ÜRETİM TİPLERİ İLE AŞINMA, OPTİK VE ESTETİK ÖZELLİKLERİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, vol. 28, no. 2, 2018, pp. 263-70, doi:10.17567/ataunidfd.419064.
Vancouver Durkan R, Deste G, Şimşek H. MONOLİTİK ZİRKONYA SERAMİK SİSTEMLERİNİN ÜRETİM TİPLERİ İLE AŞINMA, OPTİK VE ESTETİK ÖZELLİKLERİ. Ata Diş Hek Fak Derg. 2018;28(2):263-70.

Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır. Tıklayınız.