Research Article
BibTex RIS Cite

GÜMÜŞ ZEOLİT İLAVE EDİLEN AKRİLİK REZİNLERİN EĞİLME DAYANIMLARININ İN-VİTRO DEĞERLENDİRİLMESİ

Year 2018, Volume: 28 Issue: 4, 539 - 544, 14.10.2018
https://doi.org/10.17567/ataunidfd.473930

Abstract





Amaç: Bu çalışmanın amacı, antimikrobiyal ajan olarak farklı ağırlık
yüzdeleriyle ilave edilen gümüş-zeolitin ısıyla polymerize olan polimetilmetakrilat
protez kaidesinin eğilme dayanımına etkisinin ısıl işlem öncesi ve sonrası
değerlendirilmesidir.
 



Gereç ve Yöntem: 64x10x3,3mm ebatlarında standart test örnekleri
gümüş-zeolitin (Zeomic
@) % 0, % 0,5, % 2 ve % 4 kuru ağırlık
yüzdelerinde ısı ile polimerize olan akrilik tozuna ilave edilmesiyle
hazırlanmıştır. Her grup için toplam 20 örnek hazırlanmıştır. Kontrol grubu
olarak gümüş-zeolit ilave edilmeyen örnekler kullanılmıştır (n=20). Bu gruplar
daha sonra ısıl işlem uygulanmayan ve uygulanan olmak üzere 2 alt gruba (n=10)
daha ayrılmıştır. Isıl döngü uygulanan gruptaki örnekler 10000 döngülük ısıl
döngü işlemine (5 °C ve 55 °C’de, 30 sn aralıkla) tabii tutulmuşlardır. Eğilme
dayanımlarının hesaplanmasında universal test cihazında 3 nokta eğme testi
yapılmıştır. Verilerin istatistiksel analizi için Minitab Release 15 yazılım
programı ile ANOVA ve bağımlı örneklem t-testi kullanılmıştır. Anlamlılık
p<0.05 düzeyinde değerlendirilmiştir.



Bulgular: Isıl döngü işlemi uygulanmayan ve uygulanan grupların
her ikisinde de; kontrol grubu (% 0 ağırlık yüzdesi) diğer üç gruptan
istatistiksel olarak anlamlı şekilde daha yüksek eğilme dayanımı gösterirken,
ağırlık yüzdesi arttıkça (% 0,5, % 2, % 4) eğilme dayanımı azalmıştır
(p<0.05). Bütün gruplar arasındaki farklılık istatistiksel olarak anlamlı
bulunmuştur (p>0.05). Ayrıca ısıl döngü işlemi bütün gruplarda eğilme
dayanımını istatistiksel olarak anlamlı şekilde azaltmıştır (p<0.05).



Sonuç: Çalışmamızda gümüş-zeolitin ağırlık
yüzdesinin artması ve ısıl döngü işlemi uygulanması ile eğilme dayanımının
azalmasına rağmen bulunan değerler ISO 20795-1:2013(E) no’lu standartta
belirtilen 65 MPa’ dan daha yüksek bulunmuştur.



Anahtar Kelimeler: Akrilik, Eğilme dayanımı,
Gümüş-zeolit, Isıl döngü işlemi



IN-VITRO EVALUATION
OF FLEXURAL STRENGTHS OF ACRYLIC RESINS INCORPORATED SILVER ZEOLITE



ABSTRACT



Aim: 
The aim of this study was to evaluate the effect of silver-zeolite on
flexural strength, which was added into heat polymerized polymethylmethacrylate
(PMMA) denture base resin with different percentages as antimicrobial agent
before and after thermal cycling.



Material and method: Standard test specimens in sizes of
64x10x3.3 mm were prepared by adding silver-zeolite (Zeomic
@) into
heat polymerized acrylic powder with 0 %, 0.5 %, 2 %, and 4 % dry weight
percentages. A total of 20 samples were prepared for each group. A total of 20
samples without silver-zeolite served as the control group. These groups were
then divided into 2 subgroups (n = 10), a not-thermal cycled and thermal cycled
group. Samples in thermal cycled group were subjected to 10000 thermal cycling
(5 °C-55 °C). Three-point FS of the specimens was tested in a universal testing
machine and the flexural strength data (σ) was calculated (MPa). Statistical
analysis of the data was performed using the Minitab Release 15 software
program by ANOVA and paired t-test. Significance was set at p<0.05.



Results: For both groups (non-thermal cycled
and thermal cycled), the flexural strength of the control group (0% weight
percentage) was significantly higher than the other three groups (0.5 %, 2 %, 4
%) (p<0.05). The differences between other 3 groups were also statistically
significant (p<0.05). In addition, for all groups the flexural strength
decreased statistically significantly with thermal cycling (p<0.05).



Conclusion: Although an increase in the
percentage of silver-zeolite and the application of thermal cycling reduced the
flexural strength, our results are still higher than the 65 MPa which is
specified in the standard ISO 20795-1: 2013 (E).



Keywords: Acrylic, Flexural strength, Silver-zeolite, Thermal cycling




References

  • 1. Goiato M, Santos D, Haddad M, Pesqueira A. Effect of accelerated aging on the micro hardness and color stability of flexible resins for dentures. Braz Oral Res 2010;24:114-9.
  • 2. Korkmaz FM, Bağış B, Ayaz EA, Turgut S, Ateş SM, Tuzumer T: Effect of lazer treatments on the strenght of denture base repair. J Dent Fac Atatürk Uni 2014;24:74-80.
  • 3. Jagger D, Harrison A, Jagger R, Milward P. The effect of the addition of poly (methyl methacrylate) fibres on some properties of high strength heat-cured acrylic resin denture base material. J Oral Rehabil 2003;30:231-5.
  • 4. Radford DR, Challacombe SJ, Walter JD. Denture plaque and adherence of Candida albicans to denture-base materials in vivo and in vitro. Crit Rev Oral Biol Med 1999;10:99-116.
  • 5. Keng SB, Lim M. Denture plaque distribution and the effectiveness of a perborate-containing denture cleanser. Quintessence Int 1996;27:341-5.
  • 6. Milenkovic J, Hrenovic J, Matijasevic D, Niksic M, Rajic N: Bactericidal activity of Cu-, Zn-, and Ag-containing zeolites toward Escherichia coli isolates. Environ Sci Pollut Res Int 2017;24:20273-81.
  • 7. Abe Y, Ishii M, Takeuchi M, Ueshige S, Tanaka S, Akagawa Y. Effect of saliva on an antimicrobial tissue conditioner containing silver-zeolite. J Oral Rehabil 2004;31:568–73.
  • 8. Jo JK, El-Fiqi A, Lee JH, Kim DA, Kim HW, Lee HH. Rechargeable microbial anti-adhesive polymethyl methacrylate incorporating silver sulfadiazine-loaded mesoporous silica nanocarriers. Dent Mater 2017;33:e361-e72.
  • 9. Chen R, Han Z, Huang Z, Karki J, Wang C, Zhu B, Zhang X. Antibacterial activity, cytotoxicity and mechanical behavior of nano-enhanced denture base resin with different kinds of inorganic antibacterial agents. Dent Mater J 2017;36:693-99.
  • 10. Oyar P. Nanoparticles in dentistry, their applications, and biocompatibility. J Dent Fac Atatürk Uni 2014;24:125-133.
  • 11. Casemiro LA1, Gomes Martins CH, Pires-de-Souza Fde C, Panzeri H. Antimicrobial and mechanical properties of acrylic resins with incorporated silver-zinc zeolite - part I. Gerodontology 2008;25:187-94.
  • 12. Kassaee M, Akhavan A, Sheikh N, Sodagar A. Antibacterial effects of a new dental acrylic resin containing silver nanoparticles. J Appl Polym Sci 2008;110:1699-703.
  • 13. Ghaffari T1, Hamedi-Rad F. Effect of Silver Nano-particles on Tensile Strength of Acrylic Resins. J Dent Res Dent Clin Dent Prospects 2015;9:40-3.
  • 14. Feng D, Gong H, Zhang J, Guo X, Yan M, Zhu S. Effects of antibacterial coating on monomer exudation and the mechanical properties of denture base resins. J Prosthet Dent 2017;117:171-7.
  • 15. de Castro DT, Valente ML, Agnelli JA, Lovato da Silva CH, Watanabe E, Siqueira RL, Alves OL, Holtz RD, dos Reis AC. In vitro study of the antibacterial properties and impact strength of dental acrylic resins modified with a nanomaterial. J Prosthet Dent 2016;115:238-46.
  • 16. Wady AF, Machado AL, Zucolotto V, Zamperini CA, Berni E, Vergani CE. Evaluation of Candida albicans adhesion and biofilm formation on a denture base acrylic resin containing silver nanoparticles. J Appl Microbiol 2012;112:1163-72.
  • 17. Ferreira L, Guedes JF, Almeida-Aguiar C, Fonseca AM, Neves IC. Microbial growth inhibition caused by Zn/Ag-Y zeolite materials with different amounts of silver. Colloids Surf B Biointerfaces 2016;142:141-7.
  • 18. International Organization for Standards. Dentistry-Base polymers -Part 1: Denture base polymers. ISO 20795.
  • 19. Sato S, Cavalcante MRS, Orsi IA, Zaniquelli O. Assessment of flexural strength and color alteration of heat-polymerized acrylic resins after simulated use of denture cleansers. Braz Dent J 2005;16:124-8.
  • 20. Sodagar A, Khalil S, Kassaee MZ, Shahroudi AS, Pourakbari B, Bahador A. Antimicrobial properties of poly (methyl methacrylate) acrylic resins incorporated with silicon dioxide and titanium dioxide nanoparticles on cariogenic bacteria. J Orthod Sci 2016;5:7-13.
  • 21. Addy M, Handley R. The effects of the incorporation of chlorhexidine acetate on some physical properties of polymerized and plasticized acrylics. J Oral Rehabil 1981;8:155-63.
  • 22. Yadav NS, Saraf S, Mishra SK, Hazari P. Effects of fluconazole, chlorhexidine gluconate, and silver-zinc zeolite on flexural strength of heat-cured polymethyl methacrylate resin. J Nat Sci Biol Med 2015;6:340-2.
  • 23. Shibata T, Hamada N, Kimoto K, Sawada T, Sawada T, Kumada H, Umemoto T, Toyoda M. Antifungal effect of acrylic resin containing apatite-coated TiO2 photocatalyst. Dent Mater J 2007;26:437-44.
  • 24. Sodagar A, Kassaee M, Akhavan A, Javadi N, Arab S, Kharazifard M. Effect of silver nano particles on flexural strength of acrylic resins. J Prosthodont Res 2012;56:120-4.
  • 25. Sodagar A, Bahador A, Khalil S, Shahroudi AS, Kassaee MZ. The effect of TiO2 and SiO2 nanoparticles on flexural strength of poly (methyl methacrylate) acrylic resins. J Prosthodont Res 2013;57:15-9.
  • 26. Han Y, Kiat-amnuay S, Powers JM, Zhao Y. Effect of nanooxide concentration on the mechanical properties of a maxillofacial silicone elastomer. J Prosthet Dent 2008;100:465-73.
  • 27. Mutneja P. Flexural strength of heat cure acrylic resin after incorporating different pertentages of silver zinc zeolite an in-vitro study. Int J Clin Cases Investig 2012;25:31.
  • 28. Takahashi Y, Hamanaka I, Shimizu H: Effect of thermal shock on mechanical properties of injection-molded thermoplastic denture base resins. Acta Odontol Scand 2012;70:297-302.
  • 29. Singh RD, Gautam R, Siddhartha R, Singh BP, Chand P, Sharma VP, Jurel SK. High performance liquid chromatographic determination of residual monomer released from heat-cured acrylic resin. An in vivo study. J Prosthodont. 2013;22:358-61.
  • 30. Kawaguchi T, Lassila LV, Sasaki H, Takahashi Y, Vallittu PK. Effect of heat treatment of polymethyl methacrylate powder on mechanical properties of denture base resin. J Mech Behav Biomed Mater 2014;39:73-8.
  • 31. Machado AL, Puckett AD, Breeding LC, Wady AF, Vergani CE. Effect of thermocycling on the flexural and impact strength of urethane-based and high-impact denture base resins. Gerodontology 2012;29:e318-23.
  • 32. Ayaz EA, Bağış B, Turgut S. Effects of thermal cycling on surface roughness, hardness and flexural strength of polymethyl methacrylate and polyamide denture base resins. J Appl Biomater Funct Mater 2015;13:e80-6.
  • 33. Silva Cde S, Machado AL, Chaves Cde A, Pavarina AC, Vergani CE. Effect of thermal cycling on denture base and autopolymerizing reline resins. J Appl Oral Sci 2013;21:219-24.
  • 34. Köroğlu A, Şahin O, Kürkçüoğlu I, Dede DÖ, Özdemir T, Hazer B. Silver nanoparticle incorporation effect on mechanical and thermal properties of denture base acrylic resins. J Appl Oral Sci 2016;24:590-6.
  • 35. Sato S, Cavalcante MRS, Orsi IA, Zaniquelli O. Assessment of flexural strength and color alteration of heat-polymerized acrylic resins after simulated use of denture cleansers. Braz Dent J 2005;16:124-8.
Year 2018, Volume: 28 Issue: 4, 539 - 544, 14.10.2018
https://doi.org/10.17567/ataunidfd.473930

Abstract

References

  • 1. Goiato M, Santos D, Haddad M, Pesqueira A. Effect of accelerated aging on the micro hardness and color stability of flexible resins for dentures. Braz Oral Res 2010;24:114-9.
  • 2. Korkmaz FM, Bağış B, Ayaz EA, Turgut S, Ateş SM, Tuzumer T: Effect of lazer treatments on the strenght of denture base repair. J Dent Fac Atatürk Uni 2014;24:74-80.
  • 3. Jagger D, Harrison A, Jagger R, Milward P. The effect of the addition of poly (methyl methacrylate) fibres on some properties of high strength heat-cured acrylic resin denture base material. J Oral Rehabil 2003;30:231-5.
  • 4. Radford DR, Challacombe SJ, Walter JD. Denture plaque and adherence of Candida albicans to denture-base materials in vivo and in vitro. Crit Rev Oral Biol Med 1999;10:99-116.
  • 5. Keng SB, Lim M. Denture plaque distribution and the effectiveness of a perborate-containing denture cleanser. Quintessence Int 1996;27:341-5.
  • 6. Milenkovic J, Hrenovic J, Matijasevic D, Niksic M, Rajic N: Bactericidal activity of Cu-, Zn-, and Ag-containing zeolites toward Escherichia coli isolates. Environ Sci Pollut Res Int 2017;24:20273-81.
  • 7. Abe Y, Ishii M, Takeuchi M, Ueshige S, Tanaka S, Akagawa Y. Effect of saliva on an antimicrobial tissue conditioner containing silver-zeolite. J Oral Rehabil 2004;31:568–73.
  • 8. Jo JK, El-Fiqi A, Lee JH, Kim DA, Kim HW, Lee HH. Rechargeable microbial anti-adhesive polymethyl methacrylate incorporating silver sulfadiazine-loaded mesoporous silica nanocarriers. Dent Mater 2017;33:e361-e72.
  • 9. Chen R, Han Z, Huang Z, Karki J, Wang C, Zhu B, Zhang X. Antibacterial activity, cytotoxicity and mechanical behavior of nano-enhanced denture base resin with different kinds of inorganic antibacterial agents. Dent Mater J 2017;36:693-99.
  • 10. Oyar P. Nanoparticles in dentistry, their applications, and biocompatibility. J Dent Fac Atatürk Uni 2014;24:125-133.
  • 11. Casemiro LA1, Gomes Martins CH, Pires-de-Souza Fde C, Panzeri H. Antimicrobial and mechanical properties of acrylic resins with incorporated silver-zinc zeolite - part I. Gerodontology 2008;25:187-94.
  • 12. Kassaee M, Akhavan A, Sheikh N, Sodagar A. Antibacterial effects of a new dental acrylic resin containing silver nanoparticles. J Appl Polym Sci 2008;110:1699-703.
  • 13. Ghaffari T1, Hamedi-Rad F. Effect of Silver Nano-particles on Tensile Strength of Acrylic Resins. J Dent Res Dent Clin Dent Prospects 2015;9:40-3.
  • 14. Feng D, Gong H, Zhang J, Guo X, Yan M, Zhu S. Effects of antibacterial coating on monomer exudation and the mechanical properties of denture base resins. J Prosthet Dent 2017;117:171-7.
  • 15. de Castro DT, Valente ML, Agnelli JA, Lovato da Silva CH, Watanabe E, Siqueira RL, Alves OL, Holtz RD, dos Reis AC. In vitro study of the antibacterial properties and impact strength of dental acrylic resins modified with a nanomaterial. J Prosthet Dent 2016;115:238-46.
  • 16. Wady AF, Machado AL, Zucolotto V, Zamperini CA, Berni E, Vergani CE. Evaluation of Candida albicans adhesion and biofilm formation on a denture base acrylic resin containing silver nanoparticles. J Appl Microbiol 2012;112:1163-72.
  • 17. Ferreira L, Guedes JF, Almeida-Aguiar C, Fonseca AM, Neves IC. Microbial growth inhibition caused by Zn/Ag-Y zeolite materials with different amounts of silver. Colloids Surf B Biointerfaces 2016;142:141-7.
  • 18. International Organization for Standards. Dentistry-Base polymers -Part 1: Denture base polymers. ISO 20795.
  • 19. Sato S, Cavalcante MRS, Orsi IA, Zaniquelli O. Assessment of flexural strength and color alteration of heat-polymerized acrylic resins after simulated use of denture cleansers. Braz Dent J 2005;16:124-8.
  • 20. Sodagar A, Khalil S, Kassaee MZ, Shahroudi AS, Pourakbari B, Bahador A. Antimicrobial properties of poly (methyl methacrylate) acrylic resins incorporated with silicon dioxide and titanium dioxide nanoparticles on cariogenic bacteria. J Orthod Sci 2016;5:7-13.
  • 21. Addy M, Handley R. The effects of the incorporation of chlorhexidine acetate on some physical properties of polymerized and plasticized acrylics. J Oral Rehabil 1981;8:155-63.
  • 22. Yadav NS, Saraf S, Mishra SK, Hazari P. Effects of fluconazole, chlorhexidine gluconate, and silver-zinc zeolite on flexural strength of heat-cured polymethyl methacrylate resin. J Nat Sci Biol Med 2015;6:340-2.
  • 23. Shibata T, Hamada N, Kimoto K, Sawada T, Sawada T, Kumada H, Umemoto T, Toyoda M. Antifungal effect of acrylic resin containing apatite-coated TiO2 photocatalyst. Dent Mater J 2007;26:437-44.
  • 24. Sodagar A, Kassaee M, Akhavan A, Javadi N, Arab S, Kharazifard M. Effect of silver nano particles on flexural strength of acrylic resins. J Prosthodont Res 2012;56:120-4.
  • 25. Sodagar A, Bahador A, Khalil S, Shahroudi AS, Kassaee MZ. The effect of TiO2 and SiO2 nanoparticles on flexural strength of poly (methyl methacrylate) acrylic resins. J Prosthodont Res 2013;57:15-9.
  • 26. Han Y, Kiat-amnuay S, Powers JM, Zhao Y. Effect of nanooxide concentration on the mechanical properties of a maxillofacial silicone elastomer. J Prosthet Dent 2008;100:465-73.
  • 27. Mutneja P. Flexural strength of heat cure acrylic resin after incorporating different pertentages of silver zinc zeolite an in-vitro study. Int J Clin Cases Investig 2012;25:31.
  • 28. Takahashi Y, Hamanaka I, Shimizu H: Effect of thermal shock on mechanical properties of injection-molded thermoplastic denture base resins. Acta Odontol Scand 2012;70:297-302.
  • 29. Singh RD, Gautam R, Siddhartha R, Singh BP, Chand P, Sharma VP, Jurel SK. High performance liquid chromatographic determination of residual monomer released from heat-cured acrylic resin. An in vivo study. J Prosthodont. 2013;22:358-61.
  • 30. Kawaguchi T, Lassila LV, Sasaki H, Takahashi Y, Vallittu PK. Effect of heat treatment of polymethyl methacrylate powder on mechanical properties of denture base resin. J Mech Behav Biomed Mater 2014;39:73-8.
  • 31. Machado AL, Puckett AD, Breeding LC, Wady AF, Vergani CE. Effect of thermocycling on the flexural and impact strength of urethane-based and high-impact denture base resins. Gerodontology 2012;29:e318-23.
  • 32. Ayaz EA, Bağış B, Turgut S. Effects of thermal cycling on surface roughness, hardness and flexural strength of polymethyl methacrylate and polyamide denture base resins. J Appl Biomater Funct Mater 2015;13:e80-6.
  • 33. Silva Cde S, Machado AL, Chaves Cde A, Pavarina AC, Vergani CE. Effect of thermal cycling on denture base and autopolymerizing reline resins. J Appl Oral Sci 2013;21:219-24.
  • 34. Köroğlu A, Şahin O, Kürkçüoğlu I, Dede DÖ, Özdemir T, Hazer B. Silver nanoparticle incorporation effect on mechanical and thermal properties of denture base acrylic resins. J Appl Oral Sci 2016;24:590-6.
  • 35. Sato S, Cavalcante MRS, Orsi IA, Zaniquelli O. Assessment of flexural strength and color alteration of heat-polymerized acrylic resins after simulated use of denture cleansers. Braz Dent J 2005;16:124-8.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Araştırma Makalesi
Authors

Sema Murat This is me 0000-0003-0632-5095

Publication Date October 14, 2018
Published in Issue Year 2018 Volume: 28 Issue: 4

Cite

APA Murat, S. (2018). GÜMÜŞ ZEOLİT İLAVE EDİLEN AKRİLİK REZİNLERİN EĞİLME DAYANIMLARININ İN-VİTRO DEĞERLENDİRİLMESİ. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 28(4), 539-544. https://doi.org/10.17567/ataunidfd.473930
AMA Murat S. GÜMÜŞ ZEOLİT İLAVE EDİLEN AKRİLİK REZİNLERİN EĞİLME DAYANIMLARININ İN-VİTRO DEĞERLENDİRİLMESİ. Ata Diş Hek Fak Derg. October 2018;28(4):539-544. doi:10.17567/ataunidfd.473930
Chicago Murat, Sema. “GÜMÜŞ ZEOLİT İLAVE EDİLEN AKRİLİK REZİNLERİN EĞİLME DAYANIMLARININ İN-VİTRO DEĞERLENDİRİLMESİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 28, no. 4 (October 2018): 539-44. https://doi.org/10.17567/ataunidfd.473930.
EndNote Murat S (October 1, 2018) GÜMÜŞ ZEOLİT İLAVE EDİLEN AKRİLİK REZİNLERİN EĞİLME DAYANIMLARININ İN-VİTRO DEĞERLENDİRİLMESİ. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 28 4 539–544.
IEEE S. Murat, “GÜMÜŞ ZEOLİT İLAVE EDİLEN AKRİLİK REZİNLERİN EĞİLME DAYANIMLARININ İN-VİTRO DEĞERLENDİRİLMESİ”, Ata Diş Hek Fak Derg, vol. 28, no. 4, pp. 539–544, 2018, doi: 10.17567/ataunidfd.473930.
ISNAD Murat, Sema. “GÜMÜŞ ZEOLİT İLAVE EDİLEN AKRİLİK REZİNLERİN EĞİLME DAYANIMLARININ İN-VİTRO DEĞERLENDİRİLMESİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 28/4 (October 2018), 539-544. https://doi.org/10.17567/ataunidfd.473930.
JAMA Murat S. GÜMÜŞ ZEOLİT İLAVE EDİLEN AKRİLİK REZİNLERİN EĞİLME DAYANIMLARININ İN-VİTRO DEĞERLENDİRİLMESİ. Ata Diş Hek Fak Derg. 2018;28:539–544.
MLA Murat, Sema. “GÜMÜŞ ZEOLİT İLAVE EDİLEN AKRİLİK REZİNLERİN EĞİLME DAYANIMLARININ İN-VİTRO DEĞERLENDİRİLMESİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, vol. 28, no. 4, 2018, pp. 539-44, doi:10.17567/ataunidfd.473930.
Vancouver Murat S. GÜMÜŞ ZEOLİT İLAVE EDİLEN AKRİLİK REZİNLERİN EĞİLME DAYANIMLARININ İN-VİTRO DEĞERLENDİRİLMESİ. Ata Diş Hek Fak Derg. 2018;28(4):539-44.

Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır. Tıklayınız.