Research Article
BibTex RIS Cite

ALÇI MODELLERİN BOYUTSAL DEĞİŞİKLİKLERİNİN BELİRLENMESİNDE KULLANILAN ÖLÇÜM METODLARININ KARŞILAŞTIRILMASI

Year 2019, Volume: 29 Issue: 2, 287 - 294, 22.03.2019
https://doi.org/10.17567/ataunidfd.428910

Abstract



Amaç: Bu çalışmanın amacı, dental alçı modeller üzerinde yapılan manuel ve dijital lineer ölçümleri karşılaştırmak ve bilgisayar destekli 3
boyutlu ölçüm yönteminin etkinliğini göstermektir.



Gereç ve Yöntemler:
Üzerinde 5 adet prepare edilmiş diş bulunan (sağ-sol I. molarlar, sağ-sol
kaninler ve 1 keisici diş) mandibulayı temsil eden ark şeklinde bir ana model,
bilgisayar destekli tasarım ile tasarlanmış ve bilgisayar destekli
üretim (CAD/CAM) teknolojisi ile CoCr alaşım tozundan üretilmiştir. Ana modelden vinil siloksan
eter (VSE) ile ölçü alınmış ve toplamda 10 alçı model elde edilmiştir. Ana
model ve çalışma modelleri optik ekstraoral tarayıcı ile dijitalleştirilmiştir.
Alçı çalışma modelleri üzerindeki
manuel lineer ölçümler (VSE
Manuel) dijital kumpas ile dijital modeller üzerindeki lineer ölçümler (VSE
Dijital) ise 3 boyutlu (3D) analiz yazılımı ile yapılmıştır. Ayrıca çalışma
modelleri üzerinde 3D analizler de yine aynı yazılım ile yapılmış ve renk kodlu
haritalar oluşturulmuştur. Tek değişkenli varyans analizi kullanılarak
farklılıklar analiz edilmiş ve çoklu karşılaştırmalar için post hoc testleri
kullanılmıştır.



Bulgular: VSE Manuel ve Dijital grupları
arasında istatistiksel olarak anlamlı farklılıklar bulunmuştur
(p<.001, p=.001, p=.037, p=.022). Dijital ölçümlerde ana modele göre farklılıklar 0.018-0.146
mm arasında değişirken, manuel ölçümlerde 0.059-0.168 mm çıkmıştır.
3D analizlerde ise çalışma modellerinin hassasiyeti ortalama 0.0142 mm olarak ölçülmüş ve çalışma modelleri ana modele
göre daha küçük çıkmıştır.



Sonuç: Çalışmamızda;
3D analizler ve dijital ölçümler,
manuel ölçümlere göre daha hassas sonuçlar vermiş ve bulunan farklar istatistiksel olarak
anlamlı çıkmıştır.
Çalışma modellerinin değerlendirilmesinde, boyutları bilinen bir ana
model ile bilgisayar destekli ölçüm yönteminin, objektif ve standart bir yöntem
olarak kullanılabileceği düşünülmektedir.



Anahtar Kelimeler: Lineer
ölçüm
, dijital model, hassasiyet, bilgisayar destekli ölçüm



 



COMPARISON
OF MEASUREMENT METHODS TO DETERMINE DIMENSIONAL DIFFERENCES ON
DENTAL CASTS



ABSTRACT



Purpose: The purpose of this study
is to compare the linear measurements with the digital measurements on
dental casts and to demonstrate the effectiveness of the computer-aided 3-dimensional measurement method.



Material and
Methods:
An
arc-shaped master model consisting of 5
prepared teeth (right-left first molars, right-left canines and one incisor) was
designed with computer-aided design and fabricated with
CoCr alloy powder using computer-aided manufacturing (CAD/CAM)
technology. A total of 10 impressions were made with vinyl siloxanether (VSE)
impression material from the master model. The master model and definitive
casts were digitized with an optical extraoral scanner. Measurements on
definitive casts (VSE Manuel) were made with digital micrometer and
measurements on digitized casts (VSE Digital) with 3-dimensional (3D) analysis
software. In addition, model analyzes were done with the same software and
color-coded maps were created. Differences were analyzed using univariate
analysis of variance and Tukey HSD post hoc tests were used for multiple
comparisons.



Results: Statistically significant
differences were found between
Manuel and Digital groups (p<.001, p=.001, p=.037, p=.022). With digital measurements differences ranged between 0.018-0.146 mm and with manuel measurements differences ranged between 0.059-0.168 mm. According
to the 3D analysis, the
accuracy of the digital models was 0.0142
mm
for average
values and definitive casts were smaller than the master model.



Conclusion: In
this study; 3D analysis and digital measurements
shows more accurate results than manuel measurements and the differences were
statistically significant. In the evaluation of the definitive casts, it is
considered that computer aided measurement with a master model with known
dimensions can be used as an objective and standard method.



Key words: Linear measurement; digital model; accuracy; computer-aided measurement

References

  • 1. Cole MA, Jankousky KC, Bowman CN. Thiol-ene functionalized siloxanes for use as elastomeric dental impression materials. Dent Mater 2014;30(4):449-55.
  • 2. Wadhwani CP, Johnson GH, Lepe X, Raigrodski AJ. Accuracy of newly formulated fast-setting elastomeric impression materials. J Prosthet Dent 2005;93(6):530-9.
  • 3. Chen SY, Liang WM, Chen FN. Factors affecting the accuracy of elastometric impression materials. J Dent 2004;32(8):603-9.
  • 4. Çağlar İ, Yeşil Duymuş Z, Ateş SM. Diş hekimliğinde kullanılan ölçü sistemlerinde güncel yaklaşımlar: dijital ölçü. J Dent Fac Atatürk Uni
2015;10:135-40.
  • 5. Rudolph H, Graf MRS, Kuhn K, Rupf-Köhler S, Eirich A, Edelmann C, Quaas S, Luthardt RG. Performance of dental impression materials: Benchmarking of materials and techniques by three-dimensional analysis. Dent Mater J 2015(5);34:572-84.
  • 6. O’Brien, WJ. Dental Materials and Their Selection. 3 ed. Illnois; Quintessence Publishing: 2002. p. 90-113.
  • 7. McCabe JF, Walls AWG. Applied Dental Materials. 9 ed. Oxford; Blackwell Publishing: 2008. p. 136-46.
  • 8. Rosentiel SF, Land M, Fujimoto J. Contemporary Fixed Prosthodontics. 4 ed. St Louis; Mosby Elsevier: 2006. p. 431-65.
  • 9. Brosky ME, Major RJ, DeLong R, Hodges JS. Evaluation of dental arch reproduction using three-dimensional optical digitization. J Prosthet Dent 2003;32(5):434-40.
  • 10. Shah S, Sundaram G, Bartlett D, Sherriff M. The use of a 3D laser scanner using superimpositional software to assess the accuracy of impression techniques. J Dent 2004;32(8):653-58.
  • 11. Meral YE, Akça K. İki Farklı Polivinil Silikon Ölçü Maddesinin Boyutsal Hassasiyetlerinin Karșılaștırılması Hacettepe Diş Hekimliği Fakültesi Dergisi 2010;34:21-8.
  • 12. Lamis AH. Accuracy of Optimized Rubber Base Impression Materials (Linear and Surface Analysis). Aust J Basic Appl Sci 2014;8(1):543-51.
  • 13. Kang AH, Johnson GH, Lepe X, Wataha JC. Accuracy of a reformulated fast-set vinyl polysiloxane impression material using dual-arch trays. J Prosthet Dent 2009;101(5):332-41.
  • 14. Johnson GH, Mancl LA, Schwedhelm ER, Verhoef DR, Lepe X. Clinical trial investigating success rates for polyether and vinyl polysiloxane impressions made with full-arch and dual-arch plastic trays. J Prosthet Dent 2010;103(1):13-22.
  • 15. Luthardt RG, Walter MH, Weber A, Koch R, Rudolph H. Clinical parameters influencing the accuracy of 1 and 2-stage impressions: a randomized controlled trial. Int J Prosthodont 2008;21(4):322-7.
  • 16. Kambhampati S, Subhash V, Vijay C, Das A. Effect of temperature changes on the dimensional stability of elastomeric impression materials. J Int Oral Health 2014;6(1):12-9.
  • 17. Nassar U, Oko A, Adeeb S, El-Rich M, Flores-Mir C. An in vitro study on the dimensional stability of a vinyl polyether silicone impression material over a prolonged storage period. J Prosthet Dent 2013;109(3):172-8.
  • 18. Dugal R, Railkar B, Musani S. Comparative evaluation of dimensional accuracy of different polyvinyl siloxane putty-wash impression techniques-in vitro study. J Int Oral Health 2013;5(5):85-94.
  • 19. Wee AG, Cheng AC, Eskridge RN. Accuracy of 3 conceptually different die systems used for implant casts. J Prosthet Dent 2002;87(1):23-9.
  • 20. Chandran DT, Jagger DC, Jagger RG, Barbour ME. Two- and three-dimensional accuracy of dental impression materials: effects of storage time and moisture contamination. Biomed Mater Eng 2010;20(5):243-49.
  • 21. Güth JF, Keul C, Stimmelmayr M, Beuer F, Edelhoff D. Accuracy of digital models obtained by direct and indirect data capturing. Clin Oral Invest 2013;17(4):1201-8.
  • 22. Ender A, Mehl A. Accuracy of complete-arch dental impressions: a new method of measuring trueness and precision. J Prosthet Dent. 2013;109(2):121-8. 
 23. Jeon JH, Lee KT, Kim HY, Kim JH, Kim WC. White light scanner-based repeatability of 3- dimensional digitizing of silicon rubber abutment teeth impressions. J Adv Prosthodont 2013;5(4):452-6.
 24. Emir F, Piskin B, Sipahi C. Effect of dental technician disparities on the 3-dimensional accuracyof definitive casts. J Prosthet Dent 2017;117(3):410-18.
  • 25. Cho SH, Schaefer O, Thompson GA, Arndt G. Comparison of accuracy and reproducibility of casts made by digital and conventional methods. J Prosthet Dent 2015;113(4):310-5.
  • 26. Potran M, Strbac B, Puskar T, Hadzistevic M, Hodolic J, Trifkovic B. Measurement of accuracy of dental working casts using a coordinate measuring machine. Vojnosanit Pregled 2016;73(10):895-903.
  • 27. Brosky ME, Pesun IJ, Lowder PD, Delong R, Hodges JS. Laser digitization of casts to determine the effect of tray selection and formation technique on accuracy. J Prosthet Dent 2002;87(2):204-9.
  • 28. Queiroz DA, Cunha LG, Duarte JLP, Neves ACC, Silva-Concílio LR. Influence of the casting material on the dimensional accuracy of dental dies. Braz Oral Res 2011;25(4):357-61.
  • 29. Luthardt RG, Kühmstedt P, Walter MH. A new method for the computer-aided evaluation of three-dimensional changes in gypsum materials. Dent Mater 2003;19(1):19-24.
  • 30. Kenyon BJ, Hagge MS, Leknius C, Daniels WC, Weed SC. Dimensional accuracy of 7 die materials. J Prosthodont 2005;14(1):25-31.
  • 31. Pandey A, Mehtra A. Comparative study of dimensional stability and accuracy of various elastomeric materials. J Dent Med Sci 2014;13(3):40-5.
  • 32. Ahmad M, Balakrishnan D, Narayan AI. A comparative evaluation of linear dimensional accuracy of the dies obtained using three conceptually different die systems in the fabrication of implant prosthesis: an in vitro study. Indian J Dent Res 2014;25(2):197-203.
  • 33. Vigolo P, Millstein PL. Evaluation of master cast techniques for multiple abutment implant prostheses. Int J Oral Maxillofac Implants 1993;8(4):439-46.
  • 34. Persson AS, Odén A, Andersson M, Sandborgh-Englund G. Digitization of simulated clinical dental impressions: virtual three-dimensional analysis of exactness. Dent Mater 2009;25(7):929-36.
  • 35. de Avila ED, Barros LA, Del'Acqua MA, Castanharo SM, Molo F de A. Comparison of the accuracy for three dental impression techniques and index: an in vitro study, J Prosthet Res 2013;57(4):268-74.
  • 36. Stober T, Johnson GH, Schmitter M. Accuracy of the newly formulated vinyl siloxanether elastomeric impression material. J Prosthet Dent 2010;103(4):228-39.
  • 37. Ender A, Mehl A. Full-arch scans: conventional versus digital impressions— an in-vitro study. Int J Comput Dent 2011;14(1):11-21.
  • 38. DeLong R, Heinzen M, Hodges JS, Ko CC, Douglas WH. Accuracy of a system for creating 3D computer models of dental arches. J Dent Res 2003;82(6):438-42.
  • 39. Güth JF, Keul C, Stimmelmayr M, Beuer F, Edelhoff D. Accuracy of digital models obtained by direct and indirect data capturing. Clin Oral Invest 2013;17(4):1201-8.
  • 40. Shembesh M, Ali A, Finkelman M, Weber HP, Zandparsa R. An in vitro comparison of the marginal adaptation accuracy of CAD/CAM restorations using different impression systems. J Prosthodont. 2017;26(7):581-86.
  • 41. Vandeweghe S, Vervack V, Vanhove C, Dierens M, Jimbo R, De Bruyn H. Accuracy of optical dental digitizers: an in vitro study. Int J Periodontics Restor Dent 2015;35(1):115-21.
  • 42. Martins LM, Lorenzoni FC, Melo AO, Silva LM, Oliveira JL, Oliveira PC, Bonfante G. Internal fit of two all-ceramic systems and metal-ceramic crowns. J Appl Oral Sci 2012;20(2):235-40.
Year 2019, Volume: 29 Issue: 2, 287 - 294, 22.03.2019
https://doi.org/10.17567/ataunidfd.428910

Abstract

References

  • 1. Cole MA, Jankousky KC, Bowman CN. Thiol-ene functionalized siloxanes for use as elastomeric dental impression materials. Dent Mater 2014;30(4):449-55.
  • 2. Wadhwani CP, Johnson GH, Lepe X, Raigrodski AJ. Accuracy of newly formulated fast-setting elastomeric impression materials. J Prosthet Dent 2005;93(6):530-9.
  • 3. Chen SY, Liang WM, Chen FN. Factors affecting the accuracy of elastometric impression materials. J Dent 2004;32(8):603-9.
  • 4. Çağlar İ, Yeşil Duymuş Z, Ateş SM. Diş hekimliğinde kullanılan ölçü sistemlerinde güncel yaklaşımlar: dijital ölçü. J Dent Fac Atatürk Uni
2015;10:135-40.
  • 5. Rudolph H, Graf MRS, Kuhn K, Rupf-Köhler S, Eirich A, Edelmann C, Quaas S, Luthardt RG. Performance of dental impression materials: Benchmarking of materials and techniques by three-dimensional analysis. Dent Mater J 2015(5);34:572-84.
  • 6. O’Brien, WJ. Dental Materials and Their Selection. 3 ed. Illnois; Quintessence Publishing: 2002. p. 90-113.
  • 7. McCabe JF, Walls AWG. Applied Dental Materials. 9 ed. Oxford; Blackwell Publishing: 2008. p. 136-46.
  • 8. Rosentiel SF, Land M, Fujimoto J. Contemporary Fixed Prosthodontics. 4 ed. St Louis; Mosby Elsevier: 2006. p. 431-65.
  • 9. Brosky ME, Major RJ, DeLong R, Hodges JS. Evaluation of dental arch reproduction using three-dimensional optical digitization. J Prosthet Dent 2003;32(5):434-40.
  • 10. Shah S, Sundaram G, Bartlett D, Sherriff M. The use of a 3D laser scanner using superimpositional software to assess the accuracy of impression techniques. J Dent 2004;32(8):653-58.
  • 11. Meral YE, Akça K. İki Farklı Polivinil Silikon Ölçü Maddesinin Boyutsal Hassasiyetlerinin Karșılaștırılması Hacettepe Diş Hekimliği Fakültesi Dergisi 2010;34:21-8.
  • 12. Lamis AH. Accuracy of Optimized Rubber Base Impression Materials (Linear and Surface Analysis). Aust J Basic Appl Sci 2014;8(1):543-51.
  • 13. Kang AH, Johnson GH, Lepe X, Wataha JC. Accuracy of a reformulated fast-set vinyl polysiloxane impression material using dual-arch trays. J Prosthet Dent 2009;101(5):332-41.
  • 14. Johnson GH, Mancl LA, Schwedhelm ER, Verhoef DR, Lepe X. Clinical trial investigating success rates for polyether and vinyl polysiloxane impressions made with full-arch and dual-arch plastic trays. J Prosthet Dent 2010;103(1):13-22.
  • 15. Luthardt RG, Walter MH, Weber A, Koch R, Rudolph H. Clinical parameters influencing the accuracy of 1 and 2-stage impressions: a randomized controlled trial. Int J Prosthodont 2008;21(4):322-7.
  • 16. Kambhampati S, Subhash V, Vijay C, Das A. Effect of temperature changes on the dimensional stability of elastomeric impression materials. J Int Oral Health 2014;6(1):12-9.
  • 17. Nassar U, Oko A, Adeeb S, El-Rich M, Flores-Mir C. An in vitro study on the dimensional stability of a vinyl polyether silicone impression material over a prolonged storage period. J Prosthet Dent 2013;109(3):172-8.
  • 18. Dugal R, Railkar B, Musani S. Comparative evaluation of dimensional accuracy of different polyvinyl siloxane putty-wash impression techniques-in vitro study. J Int Oral Health 2013;5(5):85-94.
  • 19. Wee AG, Cheng AC, Eskridge RN. Accuracy of 3 conceptually different die systems used for implant casts. J Prosthet Dent 2002;87(1):23-9.
  • 20. Chandran DT, Jagger DC, Jagger RG, Barbour ME. Two- and three-dimensional accuracy of dental impression materials: effects of storage time and moisture contamination. Biomed Mater Eng 2010;20(5):243-49.
  • 21. Güth JF, Keul C, Stimmelmayr M, Beuer F, Edelhoff D. Accuracy of digital models obtained by direct and indirect data capturing. Clin Oral Invest 2013;17(4):1201-8.
  • 22. Ender A, Mehl A. Accuracy of complete-arch dental impressions: a new method of measuring trueness and precision. J Prosthet Dent. 2013;109(2):121-8. 
 23. Jeon JH, Lee KT, Kim HY, Kim JH, Kim WC. White light scanner-based repeatability of 3- dimensional digitizing of silicon rubber abutment teeth impressions. J Adv Prosthodont 2013;5(4):452-6.
 24. Emir F, Piskin B, Sipahi C. Effect of dental technician disparities on the 3-dimensional accuracyof definitive casts. J Prosthet Dent 2017;117(3):410-18.
  • 25. Cho SH, Schaefer O, Thompson GA, Arndt G. Comparison of accuracy and reproducibility of casts made by digital and conventional methods. J Prosthet Dent 2015;113(4):310-5.
  • 26. Potran M, Strbac B, Puskar T, Hadzistevic M, Hodolic J, Trifkovic B. Measurement of accuracy of dental working casts using a coordinate measuring machine. Vojnosanit Pregled 2016;73(10):895-903.
  • 27. Brosky ME, Pesun IJ, Lowder PD, Delong R, Hodges JS. Laser digitization of casts to determine the effect of tray selection and formation technique on accuracy. J Prosthet Dent 2002;87(2):204-9.
  • 28. Queiroz DA, Cunha LG, Duarte JLP, Neves ACC, Silva-Concílio LR. Influence of the casting material on the dimensional accuracy of dental dies. Braz Oral Res 2011;25(4):357-61.
  • 29. Luthardt RG, Kühmstedt P, Walter MH. A new method for the computer-aided evaluation of three-dimensional changes in gypsum materials. Dent Mater 2003;19(1):19-24.
  • 30. Kenyon BJ, Hagge MS, Leknius C, Daniels WC, Weed SC. Dimensional accuracy of 7 die materials. J Prosthodont 2005;14(1):25-31.
  • 31. Pandey A, Mehtra A. Comparative study of dimensional stability and accuracy of various elastomeric materials. J Dent Med Sci 2014;13(3):40-5.
  • 32. Ahmad M, Balakrishnan D, Narayan AI. A comparative evaluation of linear dimensional accuracy of the dies obtained using three conceptually different die systems in the fabrication of implant prosthesis: an in vitro study. Indian J Dent Res 2014;25(2):197-203.
  • 33. Vigolo P, Millstein PL. Evaluation of master cast techniques for multiple abutment implant prostheses. Int J Oral Maxillofac Implants 1993;8(4):439-46.
  • 34. Persson AS, Odén A, Andersson M, Sandborgh-Englund G. Digitization of simulated clinical dental impressions: virtual three-dimensional analysis of exactness. Dent Mater 2009;25(7):929-36.
  • 35. de Avila ED, Barros LA, Del'Acqua MA, Castanharo SM, Molo F de A. Comparison of the accuracy for three dental impression techniques and index: an in vitro study, J Prosthet Res 2013;57(4):268-74.
  • 36. Stober T, Johnson GH, Schmitter M. Accuracy of the newly formulated vinyl siloxanether elastomeric impression material. J Prosthet Dent 2010;103(4):228-39.
  • 37. Ender A, Mehl A. Full-arch scans: conventional versus digital impressions— an in-vitro study. Int J Comput Dent 2011;14(1):11-21.
  • 38. DeLong R, Heinzen M, Hodges JS, Ko CC, Douglas WH. Accuracy of a system for creating 3D computer models of dental arches. J Dent Res 2003;82(6):438-42.
  • 39. Güth JF, Keul C, Stimmelmayr M, Beuer F, Edelhoff D. Accuracy of digital models obtained by direct and indirect data capturing. Clin Oral Invest 2013;17(4):1201-8.
  • 40. Shembesh M, Ali A, Finkelman M, Weber HP, Zandparsa R. An in vitro comparison of the marginal adaptation accuracy of CAD/CAM restorations using different impression systems. J Prosthodont. 2017;26(7):581-86.
  • 41. Vandeweghe S, Vervack V, Vanhove C, Dierens M, Jimbo R, De Bruyn H. Accuracy of optical dental digitizers: an in vitro study. Int J Periodontics Restor Dent 2015;35(1):115-21.
  • 42. Martins LM, Lorenzoni FC, Melo AO, Silva LM, Oliveira JL, Oliveira PC, Bonfante G. Internal fit of two all-ceramic systems and metal-ceramic crowns. J Appl Oral Sci 2012;20(2):235-40.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Dentistry
Journal Section Araştırma Makalesi
Authors

Faruk Emir 0000-0003-3538-2582

Simel Ayyıldız This is me 0000-0003-4679-0629

Bülent Pişkin This is me 0000-0003-4233-2858

Publication Date March 22, 2019
Published in Issue Year 2019 Volume: 29 Issue: 2

Cite

APA Emir, F., Ayyıldız, S., & Pişkin, B. (2019). ALÇI MODELLERİN BOYUTSAL DEĞİŞİKLİKLERİNİN BELİRLENMESİNDE KULLANILAN ÖLÇÜM METODLARININ KARŞILAŞTIRILMASI. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 29(2), 287-294. https://doi.org/10.17567/ataunidfd.428910
AMA Emir F, Ayyıldız S, Pişkin B. ALÇI MODELLERİN BOYUTSAL DEĞİŞİKLİKLERİNİN BELİRLENMESİNDE KULLANILAN ÖLÇÜM METODLARININ KARŞILAŞTIRILMASI. Ata Diş Hek Fak Derg. March 2019;29(2):287-294. doi:10.17567/ataunidfd.428910
Chicago Emir, Faruk, Simel Ayyıldız, and Bülent Pişkin. “ALÇI MODELLERİN BOYUTSAL DEĞİŞİKLİKLERİNİN BELİRLENMESİNDE KULLANILAN ÖLÇÜM METODLARININ KARŞILAŞTIRILMASI”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 29, no. 2 (March 2019): 287-94. https://doi.org/10.17567/ataunidfd.428910.
EndNote Emir F, Ayyıldız S, Pişkin B (March 1, 2019) ALÇI MODELLERİN BOYUTSAL DEĞİŞİKLİKLERİNİN BELİRLENMESİNDE KULLANILAN ÖLÇÜM METODLARININ KARŞILAŞTIRILMASI. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 29 2 287–294.
IEEE F. Emir, S. Ayyıldız, and B. Pişkin, “ALÇI MODELLERİN BOYUTSAL DEĞİŞİKLİKLERİNİN BELİRLENMESİNDE KULLANILAN ÖLÇÜM METODLARININ KARŞILAŞTIRILMASI”, Ata Diş Hek Fak Derg, vol. 29, no. 2, pp. 287–294, 2019, doi: 10.17567/ataunidfd.428910.
ISNAD Emir, Faruk et al. “ALÇI MODELLERİN BOYUTSAL DEĞİŞİKLİKLERİNİN BELİRLENMESİNDE KULLANILAN ÖLÇÜM METODLARININ KARŞILAŞTIRILMASI”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 29/2 (March 2019), 287-294. https://doi.org/10.17567/ataunidfd.428910.
JAMA Emir F, Ayyıldız S, Pişkin B. ALÇI MODELLERİN BOYUTSAL DEĞİŞİKLİKLERİNİN BELİRLENMESİNDE KULLANILAN ÖLÇÜM METODLARININ KARŞILAŞTIRILMASI. Ata Diş Hek Fak Derg. 2019;29:287–294.
MLA Emir, Faruk et al. “ALÇI MODELLERİN BOYUTSAL DEĞİŞİKLİKLERİNİN BELİRLENMESİNDE KULLANILAN ÖLÇÜM METODLARININ KARŞILAŞTIRILMASI”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, vol. 29, no. 2, 2019, pp. 287-94, doi:10.17567/ataunidfd.428910.
Vancouver Emir F, Ayyıldız S, Pişkin B. ALÇI MODELLERİN BOYUTSAL DEĞİŞİKLİKLERİNİN BELİRLENMESİNDE KULLANILAN ÖLÇÜM METODLARININ KARŞILAŞTIRILMASI. Ata Diş Hek Fak Derg. 2019;29(2):287-94.

Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır. Tıklayınız.