Research Article
BibTex RIS Cite

AKRİLİK KAİDEYE İLAVE EDİLEN GÜÇLENDİRME MATERYALLERİNİN MİKROORGANİZMA TUTULUMUNA ETKİSİNİN İNCELENMESİ

Year 2019, Volume: 29 Issue: 4, 637 - 641, 15.10.2019
https://doi.org/10.17567/ataunidfd.443436

Abstract



Amaç:  Farklı yöntemlerle güçlendirilen protez kaide
materyallerinin  mikroorganizma  tutulumunun incelenmesi amaçlanmıştır



Gereç ve Yöntemler:  Bu PMMA
kaide materyali kullanılmıştır. Kaide materyali 4 farklı materyal ile
güçlendirilmiştir. Bu materyaller alüminyum oksit  , karbon, cam fiber ve aramid dir. Her grup
için 8 örnek, toplamda 40 örnek 10 mm × 10 mm × 3 mm boyutlarında üretici
firmaların önerisi doğrultusunda 
hazırlanarak  etilen  oksit 
gaz sterilizasyonu ile steril edilmiştir. S. mutans için kanlı agar besiyerine, C.albicans  için  Saburoud 
Dekstroz  Agar  (SDA) besiyerine ekim yapılmış ve 37 °C de 1
gün boyunca inkübasyona bırakılmıştır. İnkübasyon sonunda petri kapları  çıkartılarak 
koloni  sayımı  yapılmıştır. Protez kaide materyalleri
üzerinde biriken S.mutans ve C.albicans koloni sayıları ANOVA ve
Tukey çok yönlü karşılaştırma testi kullanılarak istatistiksel olarak
değerlendirilmiştir..



Bulgular: Yapılan
istatistiksel değerlendirme sonucu kontrol grubu ile akrilik+karbon, akrilik
+cam fiber , akrilik+aramid arasında anlamlı bir fark bulunmazken kontrol grubu
ile akrilik +alüminyum oksit grubu arasında anlamlı bir fark olduğu
(p<0.001) saptanmıştır.



Sonuç: Farklı
güçlendirme yöntemlerinin  kaide
materyallerinin mikroorganizma tutulumunun üzerinde etkisi olmadığı
saptanmıştır.



 Anahtar
kelimeler:
Mikroorganizma, kaide
materyali, yapışma, cam fiber, aramid fiber, aluminium oksit, cam fiber



Investigation of the effect on the adhesion of
microorganisms of reinforcement materials added to the acrylic denture base



Abstract



Aim: To investigate
microorganism involvement of prosthetic base materials strengthened by
different methods.



Material and methods:PMMA
base material (Meliodent Heraus Kluzer, Germany) was used in the study.The base
material is reinforced with 4 different materials. These materials are aluminum
oxide (Sigma-Aldrich, United Kingdom), carbon (Sigma-Aldrich, United Kingdom),
glass fiber (glass fiber industry AŞ, Turkey) and aramid (Qafco, Qatar). For
each group, 8 specimens, 40 specimens in total, were prepared in the dimensions
of 10 mm × 10 mm × 3 mm according to the manufacturer's recommendations and
sterilized with ethylene oxide gas sterilization. Sera were sown on
bloody agar medium for S. mutans and Saburoud Dextrose Agar (SDA) medium for C.
albicans and left to incubate for 1 day at 37 ° C. At the end of incubation,
petri dishes were removed and colony counting. The numbers of S. mutans
and C. albicans colony accumulating on prosthetic base materials were evaluated
statistically using the ANOVA and Tukey multivariate comparison test.



Results: There was a
significant difference between control group and acrylic + aluminum oxide group
(p <0.001), while there was no statistically significant difference between
control group and acrylic + carbon, acrylic + glass fiber, acrylic + aramid.



Conclusion: It has been
determined that the different reinforcement methods have no effect on the
microorganism involvement of the base materials.



Key
Words:

Microorganism, acrylic resin dental base , adhesion, glass fiber, carbon fiber,
aramid fiber, aluminum oxide



References

  • 1-Craig RG, O' Brien WJ, Powers JM. Dental materials properties and manipulation. 4 th ed St Louis The CV Mosby Co p: 272-286, 1987.
  • 2-Dixon DL, Breeding LC. The transverse strengths of three denture base resins reinforced with polyethylene fibers. J Proshet Dent 1992; 67: 417-419.
  • 3-John J, Gangadhar SA, Shah I. Flexural strength of heat-polymerized polymethyl methacrylate denture resin reinforced with glass, aramid, or nylon fibers, J Prosthet Dent 2001; 86: 424-427.
  • 4-Kim SH, Watts DC. The effect of reinforcement eith woven E-glass fibers on the impact strength of complete dentures fabricated with high-impact acrylic resin. J Prosthet Dent 2004; 91: 274-280.
  • 5-Chen SY, Liang WM, Yen PS. Reinforcement of acrylic denture base resin by incorporation of various fibers. J Biomed Mater Res 2001;58: 203-208.
  • 6-Bayraktar G, Duran Ö, Güvener B. Effect of glass fiber reinforcement on residual methyl methacrylate content of denture base polymers. J Dent 2003;31: 297-302.
  • 7-Belvedere PC. Single-sitting, fiber-reinforced fixed bridges for the missing lateral or central incisors in adolescent patients. Dent Clin North Am 1998;42: 665-682.
  • 8-Çelebi N, Yüzügüllü B, Canay Ş, Yücel Ü. Effect of polymerization methods on the residual monomer level of acrylic resin denture base polymers. Polymers for Advanced Technologies 2008;19:201-206.
  • 9-Miller TE, Hakimzadeh F, Rudo DN. Immediate and indirect woven polyethylene ribbon-reinforced periodontal-prosthetic splint: a case report. Quintessence Int 1995;26: 267-271.
  • 10-Gutteridge DL. Reinforcement of poly (methyl methacrylate)with ultra-high-modulus polyethylene fiber. J Dent 1992; 20: 50-54.
  • 11-Doğan OM, Karacaer Ö, Tinçer T. Çok yüksek molekül ağırlıklı örgü polietilen fiber ile güçlendirilen akrilik rezinlerin çarpma dayanımı ve adezyonunun değerlendirilmesi. Turkiye Klinikleri J Dental Sci 2005;11(1):12-9.
  • 12-Karacaer Ö, DoğanA, Doğan OM, UsanmazA. Dynamic mechanical properties of dental base material reinforced with glass fiber. Appli Polym Sci 2002;85: 1683-1697.
  • 13-Ladizesky NH, Chow TW, Cheng YY. Denture base reinforcementusing woven polyethylene fiber. Int J Prosthodont 1994;7: 307-312.
  • 14-Miettinen VM, Vallittu PK. Release of residual methyl methacrylate into water from glass fibre-poly methyl methacrylate) composite used in denture. Biomaterials 1997;18: 181-185.
  • 15-Vallittu PK. Ultra-high-modulus polyethylene ribbon as reinforcement for denture polymethyl metacrylate:Ashort communication. Dent Mater 1997;13: 381-382.
  • 16-Hensten –PettersenA. Comparison of the methods available for assessing cytotoxicity. Int Endod J 1988;21: 89-99.
  • 17-Issa Y, Watts DC, Brunton PA, Waters CM, Duxbury AJ. Resin composite monomers alterMTT and LDH activity of human gingival fibroblasts in vitro. Dent Mater 2004; 20: 12-20.
  • 18-Schmalz G. Concepts in biocompatibility testing of dental restorative materials. Clin Oral Invest 1997; 1:154-162.
  • 19-Schmalz G. Use of cell cultures for toxicity testing of dental materials-advantages and limitations. J Dent 1997;22: 6-11.
  • 20- Naik AVand Pai RC. A study of factors contributing to denture stomatitis in a North Indian community. Int. Jour. Denst. 2011; doi:10.1155/2011/589064
  • 21-Jeganathan S, Lin CC. Denture stomatitis: A review of the aetiology, diagnosis and management. Aust Dent J 1992; 37:107-114.
  • 22-Atay A. Ağız Dokularına CandidaYapışması. Atatürk Üniv. Diş Hek. Fak. Derg. 2007; 17;(1): 46-50
  • 23- İnan H, Turgut S, Tamam E, Bağış B. Farklı Kaide Materyallerine Mikrobiyal Tutunmanin Değerlendirilmesi (Evaluation Of Microbial Accumulation Of Different Base Materials). Cumhuriyet Dental Journal 2014;17(2):151-158.
  • 24- Ghaffari T, Hamedirad F, Ezzati B. In Vitro Comparison of Compressive and Tensile Strengths ofAcrylic Resins Reinforced by Silver Nanoparticles at 2% and0.2% Concentrations. J Dent Res Dent Clin Dent Prospects. 2014;8(4):204-9. doi: 10.5681/joddd.2014.037.
  • 25- Hamouda IM, Beyari MM. Addition of glass fibers and titanium dioxide nanoparticles to the acrylic resin denture base material: comparative study with the conventional and high impact types. Oral Health Dent Manag. 2014;13(1):107-12.
  • 26-Gad MM, Abualsaud R, Rahoma A, Al-Thobity AM, Al-Abidi KS, Akhtar S. Effect of zirconium oxide nanoparticles addition on the optical and tensile properties of polymethyl methacrylate denture base material. Int J Nanomedicine. 2018;9(13):283-292. doi: 10.2147/IJN.S152571. eCollection 2018
  • 27-Dhole RI, Srivatsa G, Shetty R, Huddar D, Sankeshwari B, Chopade S. Reinforcement of Aluminum Oxide Filler on the Flexural Strength of Different Types of Denture Base Resins: An In vitro Study.J Clin Diagn Res. 2017;11(4): ZC101-ZC104. doi: 10.7860/JCDR/2017/23893.9735.
  • 28-Ellakwa AE, Morsy MA, El-Sheikh AM. Effect of aluminum oxide addition on the flexural strength and thermal diffusivity of heat-polymerized acrylic resin. J Prosthodont. 2008;17:439–44.
  • 29- Akalın Evren B, Kulak Özkan Y, Özcan M, Kadir T. Candida albicans adhesion on reinforced polymethylmethacrylate denture resin: effect of fibre architecture and exposure to saliva. Gerodontology 2014;31(3):194-201.
  • 30- IA Al-Bakri, D Harty, WM Al-Omari, MV Swain, W Chrzanowski, A Ellakwa. Surface characteristics and microbial adherence ability of modified polymethylmethacrylate by fluoridated glass fillers. Australian Den J 2014; 59: 482–489.
  • 31- Waltimo T, Tanner J, Vallittu P, et al. Adherence of Candida albicans to the surface of polymethylmethacrylate-E glass fiber composite used in dentures. Int J Prosthodont 1999; 12: 83-86.
  • 32-Karaagaclioglu L, Can G, Yilmaz B, Ayhan N, Semiz O, Levent H. The adherence of Candida albicans to acrylic resin reinforced with different fibers. J Mater Sci Mater Med. 2008 ;19(2):959-63.
  • 33- Tsutsumi C, Takakuda K, Wakabayashi N. Reduction of Candida biofilm adhesion by incorporation of prereacted glass ionomer filler in denture base resin. J Dent. 2016;44:37-43. doi: 10.1016/j.jdent.2015.11.010. Epub 2015 Dec 2.
  • 34-Laura Susana Acosta-Torres, Irasema Mendieta, Rosa Elvira Nuñez-Anita, Marcos Cajero-Juárez, Víctor M Castaño Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures Int J Nanomedicine. 2012; 7: 4777–4786. Published online 2012 Sep 3. doi: 10.2147/IJN.S32391
  • 35-Kuzu YR , Kesim B. PVD Yöntemi İle Kaplanan Akrilik Rezine Candida Albicans Tutulumunun Değerlendirilmesi (An Investigation of Adherence of Candida Albicans to Acrylic Resin Materials coated with PVD Method). Sağlık Bilimleri Dergisi (Journal of Health Sciences) 2012; 21(2): 95-102.
  • 36- Gad MM, Al-Thobity AM, Shahin SY, Alsaqer BT, Ali AA. Inhibitory effect of zirconium oxide nanoparticles on Candida albicans adhesionto repaired polymethyl methacrylate denture bases and interim removable prostheses:a new approach for denture stomatitis prevention. Int J Nanomedicine. 2017 Jul 28;12:5409-5419.
Year 2019, Volume: 29 Issue: 4, 637 - 641, 15.10.2019
https://doi.org/10.17567/ataunidfd.443436

Abstract

References

  • 1-Craig RG, O' Brien WJ, Powers JM. Dental materials properties and manipulation. 4 th ed St Louis The CV Mosby Co p: 272-286, 1987.
  • 2-Dixon DL, Breeding LC. The transverse strengths of three denture base resins reinforced with polyethylene fibers. J Proshet Dent 1992; 67: 417-419.
  • 3-John J, Gangadhar SA, Shah I. Flexural strength of heat-polymerized polymethyl methacrylate denture resin reinforced with glass, aramid, or nylon fibers, J Prosthet Dent 2001; 86: 424-427.
  • 4-Kim SH, Watts DC. The effect of reinforcement eith woven E-glass fibers on the impact strength of complete dentures fabricated with high-impact acrylic resin. J Prosthet Dent 2004; 91: 274-280.
  • 5-Chen SY, Liang WM, Yen PS. Reinforcement of acrylic denture base resin by incorporation of various fibers. J Biomed Mater Res 2001;58: 203-208.
  • 6-Bayraktar G, Duran Ö, Güvener B. Effect of glass fiber reinforcement on residual methyl methacrylate content of denture base polymers. J Dent 2003;31: 297-302.
  • 7-Belvedere PC. Single-sitting, fiber-reinforced fixed bridges for the missing lateral or central incisors in adolescent patients. Dent Clin North Am 1998;42: 665-682.
  • 8-Çelebi N, Yüzügüllü B, Canay Ş, Yücel Ü. Effect of polymerization methods on the residual monomer level of acrylic resin denture base polymers. Polymers for Advanced Technologies 2008;19:201-206.
  • 9-Miller TE, Hakimzadeh F, Rudo DN. Immediate and indirect woven polyethylene ribbon-reinforced periodontal-prosthetic splint: a case report. Quintessence Int 1995;26: 267-271.
  • 10-Gutteridge DL. Reinforcement of poly (methyl methacrylate)with ultra-high-modulus polyethylene fiber. J Dent 1992; 20: 50-54.
  • 11-Doğan OM, Karacaer Ö, Tinçer T. Çok yüksek molekül ağırlıklı örgü polietilen fiber ile güçlendirilen akrilik rezinlerin çarpma dayanımı ve adezyonunun değerlendirilmesi. Turkiye Klinikleri J Dental Sci 2005;11(1):12-9.
  • 12-Karacaer Ö, DoğanA, Doğan OM, UsanmazA. Dynamic mechanical properties of dental base material reinforced with glass fiber. Appli Polym Sci 2002;85: 1683-1697.
  • 13-Ladizesky NH, Chow TW, Cheng YY. Denture base reinforcementusing woven polyethylene fiber. Int J Prosthodont 1994;7: 307-312.
  • 14-Miettinen VM, Vallittu PK. Release of residual methyl methacrylate into water from glass fibre-poly methyl methacrylate) composite used in denture. Biomaterials 1997;18: 181-185.
  • 15-Vallittu PK. Ultra-high-modulus polyethylene ribbon as reinforcement for denture polymethyl metacrylate:Ashort communication. Dent Mater 1997;13: 381-382.
  • 16-Hensten –PettersenA. Comparison of the methods available for assessing cytotoxicity. Int Endod J 1988;21: 89-99.
  • 17-Issa Y, Watts DC, Brunton PA, Waters CM, Duxbury AJ. Resin composite monomers alterMTT and LDH activity of human gingival fibroblasts in vitro. Dent Mater 2004; 20: 12-20.
  • 18-Schmalz G. Concepts in biocompatibility testing of dental restorative materials. Clin Oral Invest 1997; 1:154-162.
  • 19-Schmalz G. Use of cell cultures for toxicity testing of dental materials-advantages and limitations. J Dent 1997;22: 6-11.
  • 20- Naik AVand Pai RC. A study of factors contributing to denture stomatitis in a North Indian community. Int. Jour. Denst. 2011; doi:10.1155/2011/589064
  • 21-Jeganathan S, Lin CC. Denture stomatitis: A review of the aetiology, diagnosis and management. Aust Dent J 1992; 37:107-114.
  • 22-Atay A. Ağız Dokularına CandidaYapışması. Atatürk Üniv. Diş Hek. Fak. Derg. 2007; 17;(1): 46-50
  • 23- İnan H, Turgut S, Tamam E, Bağış B. Farklı Kaide Materyallerine Mikrobiyal Tutunmanin Değerlendirilmesi (Evaluation Of Microbial Accumulation Of Different Base Materials). Cumhuriyet Dental Journal 2014;17(2):151-158.
  • 24- Ghaffari T, Hamedirad F, Ezzati B. In Vitro Comparison of Compressive and Tensile Strengths ofAcrylic Resins Reinforced by Silver Nanoparticles at 2% and0.2% Concentrations. J Dent Res Dent Clin Dent Prospects. 2014;8(4):204-9. doi: 10.5681/joddd.2014.037.
  • 25- Hamouda IM, Beyari MM. Addition of glass fibers and titanium dioxide nanoparticles to the acrylic resin denture base material: comparative study with the conventional and high impact types. Oral Health Dent Manag. 2014;13(1):107-12.
  • 26-Gad MM, Abualsaud R, Rahoma A, Al-Thobity AM, Al-Abidi KS, Akhtar S. Effect of zirconium oxide nanoparticles addition on the optical and tensile properties of polymethyl methacrylate denture base material. Int J Nanomedicine. 2018;9(13):283-292. doi: 10.2147/IJN.S152571. eCollection 2018
  • 27-Dhole RI, Srivatsa G, Shetty R, Huddar D, Sankeshwari B, Chopade S. Reinforcement of Aluminum Oxide Filler on the Flexural Strength of Different Types of Denture Base Resins: An In vitro Study.J Clin Diagn Res. 2017;11(4): ZC101-ZC104. doi: 10.7860/JCDR/2017/23893.9735.
  • 28-Ellakwa AE, Morsy MA, El-Sheikh AM. Effect of aluminum oxide addition on the flexural strength and thermal diffusivity of heat-polymerized acrylic resin. J Prosthodont. 2008;17:439–44.
  • 29- Akalın Evren B, Kulak Özkan Y, Özcan M, Kadir T. Candida albicans adhesion on reinforced polymethylmethacrylate denture resin: effect of fibre architecture and exposure to saliva. Gerodontology 2014;31(3):194-201.
  • 30- IA Al-Bakri, D Harty, WM Al-Omari, MV Swain, W Chrzanowski, A Ellakwa. Surface characteristics and microbial adherence ability of modified polymethylmethacrylate by fluoridated glass fillers. Australian Den J 2014; 59: 482–489.
  • 31- Waltimo T, Tanner J, Vallittu P, et al. Adherence of Candida albicans to the surface of polymethylmethacrylate-E glass fiber composite used in dentures. Int J Prosthodont 1999; 12: 83-86.
  • 32-Karaagaclioglu L, Can G, Yilmaz B, Ayhan N, Semiz O, Levent H. The adherence of Candida albicans to acrylic resin reinforced with different fibers. J Mater Sci Mater Med. 2008 ;19(2):959-63.
  • 33- Tsutsumi C, Takakuda K, Wakabayashi N. Reduction of Candida biofilm adhesion by incorporation of prereacted glass ionomer filler in denture base resin. J Dent. 2016;44:37-43. doi: 10.1016/j.jdent.2015.11.010. Epub 2015 Dec 2.
  • 34-Laura Susana Acosta-Torres, Irasema Mendieta, Rosa Elvira Nuñez-Anita, Marcos Cajero-Juárez, Víctor M Castaño Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures Int J Nanomedicine. 2012; 7: 4777–4786. Published online 2012 Sep 3. doi: 10.2147/IJN.S32391
  • 35-Kuzu YR , Kesim B. PVD Yöntemi İle Kaplanan Akrilik Rezine Candida Albicans Tutulumunun Değerlendirilmesi (An Investigation of Adherence of Candida Albicans to Acrylic Resin Materials coated with PVD Method). Sağlık Bilimleri Dergisi (Journal of Health Sciences) 2012; 21(2): 95-102.
  • 36- Gad MM, Al-Thobity AM, Shahin SY, Alsaqer BT, Ali AA. Inhibitory effect of zirconium oxide nanoparticles on Candida albicans adhesionto repaired polymethyl methacrylate denture bases and interim removable prostheses:a new approach for denture stomatitis prevention. Int J Nanomedicine. 2017 Jul 28;12:5409-5419.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Dentistry
Journal Section Araştırma Makalesi
Authors

Firas Süleyman This is me

Nuran Dinçkal Yanıkoğlu This is me 0000-0001-7677-1248

Zeynep Yeşil Duymuş 0000-0002-9767-0080

Publication Date October 15, 2019
Published in Issue Year 2019 Volume: 29 Issue: 4

Cite

APA Süleyman, F., Dinçkal Yanıkoğlu, N., & Yeşil Duymuş, Z. (2019). AKRİLİK KAİDEYE İLAVE EDİLEN GÜÇLENDİRME MATERYALLERİNİN MİKROORGANİZMA TUTULUMUNA ETKİSİNİN İNCELENMESİ. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 29(4), 637-641. https://doi.org/10.17567/ataunidfd.443436
AMA Süleyman F, Dinçkal Yanıkoğlu N, Yeşil Duymuş Z. AKRİLİK KAİDEYE İLAVE EDİLEN GÜÇLENDİRME MATERYALLERİNİN MİKROORGANİZMA TUTULUMUNA ETKİSİNİN İNCELENMESİ. Ata Diş Hek Fak Derg. October 2019;29(4):637-641. doi:10.17567/ataunidfd.443436
Chicago Süleyman, Firas, Nuran Dinçkal Yanıkoğlu, and Zeynep Yeşil Duymuş. “AKRİLİK KAİDEYE İLAVE EDİLEN GÜÇLENDİRME MATERYALLERİNİN MİKROORGANİZMA TUTULUMUNA ETKİSİNİN İNCELENMESİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 29, no. 4 (October 2019): 637-41. https://doi.org/10.17567/ataunidfd.443436.
EndNote Süleyman F, Dinçkal Yanıkoğlu N, Yeşil Duymuş Z (October 1, 2019) AKRİLİK KAİDEYE İLAVE EDİLEN GÜÇLENDİRME MATERYALLERİNİN MİKROORGANİZMA TUTULUMUNA ETKİSİNİN İNCELENMESİ. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 29 4 637–641.
IEEE F. Süleyman, N. Dinçkal Yanıkoğlu, and Z. Yeşil Duymuş, “AKRİLİK KAİDEYE İLAVE EDİLEN GÜÇLENDİRME MATERYALLERİNİN MİKROORGANİZMA TUTULUMUNA ETKİSİNİN İNCELENMESİ”, Ata Diş Hek Fak Derg, vol. 29, no. 4, pp. 637–641, 2019, doi: 10.17567/ataunidfd.443436.
ISNAD Süleyman, Firas et al. “AKRİLİK KAİDEYE İLAVE EDİLEN GÜÇLENDİRME MATERYALLERİNİN MİKROORGANİZMA TUTULUMUNA ETKİSİNİN İNCELENMESİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 29/4 (October 2019), 637-641. https://doi.org/10.17567/ataunidfd.443436.
JAMA Süleyman F, Dinçkal Yanıkoğlu N, Yeşil Duymuş Z. AKRİLİK KAİDEYE İLAVE EDİLEN GÜÇLENDİRME MATERYALLERİNİN MİKROORGANİZMA TUTULUMUNA ETKİSİNİN İNCELENMESİ. Ata Diş Hek Fak Derg. 2019;29:637–641.
MLA Süleyman, Firas et al. “AKRİLİK KAİDEYE İLAVE EDİLEN GÜÇLENDİRME MATERYALLERİNİN MİKROORGANİZMA TUTULUMUNA ETKİSİNİN İNCELENMESİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, vol. 29, no. 4, 2019, pp. 637-41, doi:10.17567/ataunidfd.443436.
Vancouver Süleyman F, Dinçkal Yanıkoğlu N, Yeşil Duymuş Z. AKRİLİK KAİDEYE İLAVE EDİLEN GÜÇLENDİRME MATERYALLERİNİN MİKROORGANİZMA TUTULUMUNA ETKİSİNİN İNCELENMESİ. Ata Diş Hek Fak Derg. 2019;29(4):637-41.

Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır. Tıklayınız.