Review
BibTex RIS Cite

PERİODONTOLOJİDE DENEY HAYVANI VE HASTALIK MODELLERİ

Year 2020, Volume: 30 Issue: 1, 148 - 155, 15.01.2020
https://doi.org/10.17567/ataunidfd.417173

Abstract



Deney
hayvanları, araştırmalarda ve biyolojik testlerde ilaç, madde, tedavi gibi
etkinliklerin, canlı organizmadaki sonuçlarının elde edilmesi için kullanılan
hayvanlardır. Deney hayvanlarının bilimsel deneylerde kullanılmaya başlamasıyla
birlikte araştırma verilerinin istenildiği kadar tekrarlanabildiği ve istenen
koşullar da yeniden elde edilebildiği görülmüştür. Bu hayvanlar sağlık
bilimleriyle ilgili birçok biyolojik testte kullanılabildiği gibi diş hekimliği
araştırmalarında da sıklıkla kullanılmaktadır. 
Hayvan çalışmaları periodontal araştırmalar için yeni tedavilerin
denenmesi öncesinde tamamlayıcı özelliktedir. Hayvan modelleri hipotezlerin
doğrulanmasını mümkün kılmalı ve yenilenen yaklaşımların güvenilirliğini ve
etkinliğini ispatlamalıdır. Uygun hayvan modelinin seçimi periodonsiyumun ve
hastalığın doğasının insanlardakine benzerliğine bağlıdır.  İnsanlardaki periodontitisi modellemek için;
kemirgenler, köpekler, insan olmayan primatlar, tavşanlar gibi farklı türlerde
birçok hayvan modeli kullanılmıştır. Ancak her deney hayvan modelinin kendine
özgü avantaj ve dezavantajı bulunmaktadır. Her bir türün, farklı beslenmeleri,
ömrü, doku yapısı, alışkanlıkları, genetik özellikleri ve konak savunma
mekanizmaları olduğundan uygun deneysel modeli belirleyebilmek
zorlaşabilmektedir. Araştırmacı deney hayvan modelini oluştururken planladığı
çalışmaya uygun hayvanı ve defekt modelini seçebilecek bilgiye sahip olmalıdır.
Çalışılacak hayvanın özellikleri dikkatle incelenmelidir. Bu derlemenin amacı
periodontoloji alanındaki araştırmalar için en uygun hayvan ve hastalık
modelini tanımlamaya yardımcı olmaktır.



Anahtar Kelimeler: Deney hayvanları, hastalık modelleri, defekt modeli






EXPERIMENTAL DISEASE AND ANIMAL MODELS IN
PERIODONTOLOGY



 ABSTRACT



Experimental
animals were used for obtaining results in living organisms of activities such
as medication, substance and treatment in research and biologic tests. It is
seen that research data as well as desired conditions can be repeated and
obtained as much as required since the beginning of use of experimental animals
in scientific experiments. While these animals can be used in many biologic
tests related to health sciences, they are also frequently used in dental
research.
Animal studies are
complementary before testing new therapies for periodontal investigations. Animal
models should allow validation of hypothesis, and prove reliability and
efficiency of new approaches. Selection of suitable animal model depends on
similarity of nature of periodontium and the disease with those of human. Many
animal models have been used in different species such as rodents, dogs,
non-human primates, rabbits. However, each experimental animal model has
specific advantages and disadvantages. Determining the suitable experimental
model becomes difficult as each species has different nutrition, lifetime,
tissue structures, habits, genetic features and host defense mechanisms.
Researchers must have the adequate knowledge to select the suitable experimental
animal and defect model. Characteristics of the animal to be studied should be
carefully examined. The aim of this review is to help defining the most
suitable animal and disease models for researches in periodontology.



Key Words: Experimental animals, disease models, defect models



References

  • 1. Struillou X, Boutigny, H., Soueidan, A.,Layrolle, P. Experimental animal models in periodontology: a review. The Open Dentistry Journal 2010;4:37-47.
  • 2. Bhardwaj A, Bhardjaw, S. Contribution of animal models in periodontal research. IJAVMS 2012;6:150-157.
  • 3. Oz H. PD. Animal Models for Periodontal Disease. Journal of Biomedicine and Biotechnology 2011;2011:8.
  • 4. Kantarcı A. HH, Dyke T. Animal models for periodontal regeneration and peri-implant responses. Periodontology 2000 2015;68:68-82.
  • 5. Navia JM. Animal models in dental research. University, Ala.: University of Alabama Press.: 1977. p. 466.
  • 6. Guessous F, Huynh C, N'Guyen H, et al. An animal model for the assessment of gingival lesions. Journal of pharmacological and toxicological methods 1994;32:161-167.
  • 7. Craig RG, Kamer AR, Kallur SP, Inoue M, Tarnow DP. Effects of periodontal cell grafts and enamel matrix proteins on the implant-connective tissue interface: a pilot study in the minipig. The Journal of oral implantology 2006;32:228-236.
  • 8. Graves DT, Fine D, Teng YT, Van Dyke TE, Hajishengallis G. The use of rodent models to investigate host-bacteria interactions related to periodontal diseases. Journal of clinical periodontology 2008;35:89-105.
  • 9. Yamasaki A, Nikai H, Niitani K, Ijuhin N. Ultrastructure of the junctional epithelium of germfree rat gingiva. Journal of periodontology 1979;50:641-648.
  • 10. Listgarten MA. Similarity of epithelial relationships in the gingiva of rat and man. Journal of periodontology 1975;46:677-680.
  • 11. Page RC, Schroeder HE. Periodontitis in man and other animals. A comparative review: S. karger; 1982.
  • 12. Arabaci T, Kermen E, Ozkanlar S, et al. Therapeutic Effects of Melatonin on Alveolar Bone Resorption After Experimental Periodontitis in Rats: A Biochemical and Immunohistochemical Study. Journal of periodontology 2015;86:874-881.
  • 13. Kose O, Arabaci T, Kara A, et al. Effects of Melatonin on Oxidative Stress Index and Alveolar Bone Loss in Diabetic Rats With Periodontitis. Journal of periodontology 2016;87:e82-90.
  • 14. Kose O, Arabaci T, Yemenoglu H, et al. Influences of Fucoxanthin on Alveolar Bone Resorption in Induced Periodontitis in Rat Molars. Marine drugs 2016;14.
  • 15. Klausen B. Microbiological and immunological aspects of experimental periodontal disease in rats: a review article. Journal of periodontology 1991;62:59-73.
  • 16. Irving JT, Socransky SS, Heeley JD. Histological changes in experimental periodontal disease in gnotobiotic rats and conventional hamsters. Journal of periodontal research 1974;9:73-80.
  • 17. Baer PN, Stephan RM, White CL. Studies on Experimental Calculus Formation in the Rat I. Effect of Age, Sex, Strain, High Carbohydrate, High Protein Diets. Journal of periodontology 1961;32:190-196.
  • 18. Heijl L, Wennstrom J, Lindhe J, Socransky SS. Periodontal disease in gnotobiotic rats. Journal of periodontal research 1980;15:405-419.
  • 19. Weinberg M, Bral, M. Laboratory animal models in periodontology. Journal of clinical periodontology 1999;26:335-340.
  • 20. Huang KK, Shen C, Chiang CY, Hsieh YD, Fu E. Effects of bone morphogenetic protein-6 on periodontal wound healing in a fenestration defect of rats. Journal of periodontal research 2005;40:1-10.
  • 21. Nemcovsky CE, Zahavi S, Moses O, et al. Effect of enamel matrix protein derivative on healing of surgical supra-infrabony periodontal defects in the rat molar: a histomorphometric study. Journal of periodontology 2006;77:996-1002.
  • 22. Stavropoulos A, Kostopoulos L, Nyengaard JR, Karring T. Deproteinized bovine bone (Bio-Oss) and bioactive glass (Biogran) arrest bone formation when used as an adjunct to guided tissue regeneration (GTR): an experimental study in the rat. Journal of clinical periodontology 2003;30:636-643.
  • 23. Donos N, Sculean A, Glavind L, Reich E, Karring T. Wound healing of degree III furcation involvements following guided tissue regeneration and/or Emdogain. A histologic study. Journal of clinical periodontology 2003;30:1061-1068.
  • 24. Donos N, Glavind L, Karring T, Sculean A. Clinical evaluation of an enamel matrix derivative in the treatment of mandibular degree II furcation involvement: a 36-month case series. International Journal of Periodontics & Restorative Dentistry 2003;23.
  • 25. Eggert FM, Germain JP, Cohen B. The gingival epithelium of rodent molars with limited eruption. Acta anatomica 1980;107:297-306.
  • 26. Lallam-Laroye C, Escartin Q, Zlowodzki AS, et al. Periodontitis destructions are restored by synthetic glycosaminoglycan mimetic. Journal of biomedical materials research Part A 2006;79:675-683.
  • 27. Baron R, Saffar J-L. A quantitative study of bone remodeling during experimental periodontal disease in the golden hamster. Journal of periodontal research 1978;13:309-315.
  • 28. Enwonwu CO. Interface of malnutrition and periodontal diseases. The American journal of clinical nutrition 1995;61:430S-436S.
  • 29. Kowashi Y, Jaccard F, Cimasoni G. Sulcular polymorphonuclear leucocytes and gingival exudate during experimental gingivitis in man. Journal of periodontal research 1980;15:151-158.
  • 30. Cutress TW. Histopathology of periodontal disease in sheep. Journal of periodontology 1976;47:643-650.
  • 31. Tyrrell KL, Citron DM, Jenkins JR, Goldstein EJ. Periodontal bacteria in rabbit mandibular and maxillary abscesses. Journal of clinical microbiology 2002;40:1044-1047.
  • 32. Aaboe M, Pinholt EM, Hjorting-Hansen E. Unicortical critical size defect of rabbit tibia is larger than 8 mm. The Journal of craniofacial surgery 1994;5:201-203.
  • 33. Schmitt JM, Buck DC, Joh SP, Lynch SE, Hollinger JO. Comparison of porous bone mineral and biologically active glass in critical-sized defects. Journal of periodontology 1997;68:1043-1053.
  • 34. Oortgiesen DA, Meijer GJ, Bronckers AL, Walboomers XF, Jansen JA. Fenestration defects in the rabbit jaw: an inadequate model for studying periodontal regeneration. Tissue engineering Part C, Methods 2010;16:133-140.
  • 35. Takahashi D, Odajima T, Morita M, Kawanami M, Kato H. Formation and resolution of ankylosis under application of recombinant human bone morphogenetic protein-2 (rhBMP-2) to class III furcation defects in cats. Journal of periodontal research 2005;40:299-305.
  • 36. Anthony J, Waldner C, Grier C, Laycock AR. A survey of equine oral pathology. Journal of veterinary dentistry 2010;27:12-15.
  • 37. Schliephake H, Aleyt J. Mandibular onlay grafting using prefabricated bone grafts with primary implant placement: an experimental study in minipigs. The International journal of oral & maxillofacial implants 1998;13:384-393.
  • 38. Romanos GE, Henze M, Banihashemi S, Parsanejad HR, Winckler J, Nentwig GH. Removal of epithelium in periodontal pockets following diode (980 nm) laser application in the animal model: an in vitro study. Photomedicine and laser surgery 2004;22:177-183.
  • 39. Zhang Y, Miron RJ, Li S, Shi B, Sculean A, Cheng X. Novel MesoPorous BioGlass/silk scaffold containing adPDGF-B and adBMP7 for the repair of periodontal defects in beagle dogs. Journal of clinical periodontology 2015;42:262-271.
  • 40. Gu XQ, Li YM, Guo J, Zhang LH, Li D, Gai XD. Effect of low intensity pulsed ultrasound on repairing the periodontal bone of Beagle canines. Asian Pacific journal of tropical medicine 2014;7:325-328.
  • 41. Nagayasu-Tanaka T, Anzai J, Takaki S, et al. Action Mechanism of Fibroblast Growth Factor-2 (FGF-2) in the Promotion of Periodontal Regeneration in Beagle Dogs. PloS one 2015;10:e0131870.
  • 42. Huang Z, Wang Z, Li C, Yin K, Hao D, Lan J. Application of Plasma Sprayed Zirconia Coating in Dental Implant: Study in Implant. The Journal of oral implantology 2018.
  • 43. Jing D, Yan Z, Cai J, et al. Low-1 level mechanical vibration improves bone microstructure, tissue mechanical properties and porous titanium implant osseointegration by promoting anabolic response in type 1 diabetic rabbits. Bone 2018;106:11-21.
  • 44. Pforringer D, Harrasser N, Muhlhofer H, et al. Osteoinduction and -conduction through absorbable bone substitute materials based on calcium sulfate: in vivo biological behavior in a rabbit model. Journal of materials science Materials in medicine 2018;29:17.
  • 45. Johnson-Delaney CA. Anatomy and Disorders of the Oral Cavity of Ferrets and Other Exotic Companion Carnivores. The veterinary clinics of North America Exotic animal practice 2016;19:901-928.
  • 46. Triantafyllou A, Harrison JD, Garrett JR. Microliths in the parotid of ferret investigated by electron microscopy and microanalysis. International journal of experimental pathology 2009;90:439-447.
  • 47. Chen CK, Chang NJ, Wu YT, et al. Bone Formation Using Cross-Linked Chitosan Scaffolds in Rat Calvarial Defects. European journal of oral sciences 2018;27:15-21.
  • 48. Wang S, Noda K, Yang Y, Shen Z, Chen Z, Ogata Y. Calcium hydroxide regulates transcription of the bone sialoprotein gene via a calcium-sensing receptor in osteoblast-like ROS 17/2.8 cells. 2018;126:13-23.
  • 49. Fernandes LA, Martins TM, de Almeida JM, Theodoro LH, Garcia VG. Radiographic assessment of photodynamic therapy as an adjunctive treatment on induced periodontitis in immunosuppressed rats. Journal of applied oral science : revista FOB 2010;18:237-243.
  • 50. Matheus HR, Ervolino E, Faleiros PL, et al. Cisplatin chemotherapy impairs the peri-implant bone repair around titanium implants: An in vivo study in rats. 2018;45:241-252.
  • 51. Matys J, Flieger R, Dominiak M. Effect of diode lasers with wavelength of 445 and 980 nm on a temperature rise when uncovering implants for second stage surgery: An ex-vivo study in pigs. Advances in clinical and experimental medicine : official organ Wroclaw Medical University 2017;26:687-693.
  • 52. Johansson P, Barkarmo S, Hawthan M, Peruzzi N, Kjellin P, Wennerberg A. Biomechanical, histological and computed X-ray tomographic analyses of hydroxyapatite coated PEEK implants in an extended healing model in rabbit. Journal of biomedical materials research Part A 2018.
  • 53. Ademhan O. KS, Cetiner S. Biomechnical comprasion of stresses generated through two different dental implants designs to be applied in augmented maxillary sinus. Atatürk Üniv. Diş Hek. Fak. Derg.2017;27:154-160.
  • 54. AlFarraj AA, Sukumaran A, Al Amri MD, Van Oirschot AB, Jansen JA. Erratum to: A comparative study of the bone contact to zirconium and titanium implants after 8 weeks of implantation in rabbit femoral condyles. Odontology 2018;106:45.
  • 55. Kurkcuoglu I. KA, Ozkır S. Dental implantlarda başarı kriterleri ve başarı değerlendirme yöntemleri. Atatürk Üniv. Diş Hek. Fak. Derg.2010;20.
  • 56. H. Y. Periodontoloji Alanında Hayvan Çalışmaları: Deneysel Periodontal ve Periimplant Hastalığın İndüksiyonu Cumhuriyet Dental Journal 2016;20:62-71.
  • 57. Kim HS, Lee JI, Yang SS, Kim BS, Kim BC, Lee J. The effect of alendronate soaking and ultraviolet treatment on bone-implant interface. Clinical oral implants research 2017;28:1164-1172.
  • 58. Cakir M. KI. İmplant uygulamaları için kret koruma teknikleri. Atatürk Üniv. Diş Hek. Fak. Derg. 2015;25:107-118.
Year 2020, Volume: 30 Issue: 1, 148 - 155, 15.01.2020
https://doi.org/10.17567/ataunidfd.417173

Abstract

References

  • 1. Struillou X, Boutigny, H., Soueidan, A.,Layrolle, P. Experimental animal models in periodontology: a review. The Open Dentistry Journal 2010;4:37-47.
  • 2. Bhardwaj A, Bhardjaw, S. Contribution of animal models in periodontal research. IJAVMS 2012;6:150-157.
  • 3. Oz H. PD. Animal Models for Periodontal Disease. Journal of Biomedicine and Biotechnology 2011;2011:8.
  • 4. Kantarcı A. HH, Dyke T. Animal models for periodontal regeneration and peri-implant responses. Periodontology 2000 2015;68:68-82.
  • 5. Navia JM. Animal models in dental research. University, Ala.: University of Alabama Press.: 1977. p. 466.
  • 6. Guessous F, Huynh C, N'Guyen H, et al. An animal model for the assessment of gingival lesions. Journal of pharmacological and toxicological methods 1994;32:161-167.
  • 7. Craig RG, Kamer AR, Kallur SP, Inoue M, Tarnow DP. Effects of periodontal cell grafts and enamel matrix proteins on the implant-connective tissue interface: a pilot study in the minipig. The Journal of oral implantology 2006;32:228-236.
  • 8. Graves DT, Fine D, Teng YT, Van Dyke TE, Hajishengallis G. The use of rodent models to investigate host-bacteria interactions related to periodontal diseases. Journal of clinical periodontology 2008;35:89-105.
  • 9. Yamasaki A, Nikai H, Niitani K, Ijuhin N. Ultrastructure of the junctional epithelium of germfree rat gingiva. Journal of periodontology 1979;50:641-648.
  • 10. Listgarten MA. Similarity of epithelial relationships in the gingiva of rat and man. Journal of periodontology 1975;46:677-680.
  • 11. Page RC, Schroeder HE. Periodontitis in man and other animals. A comparative review: S. karger; 1982.
  • 12. Arabaci T, Kermen E, Ozkanlar S, et al. Therapeutic Effects of Melatonin on Alveolar Bone Resorption After Experimental Periodontitis in Rats: A Biochemical and Immunohistochemical Study. Journal of periodontology 2015;86:874-881.
  • 13. Kose O, Arabaci T, Kara A, et al. Effects of Melatonin on Oxidative Stress Index and Alveolar Bone Loss in Diabetic Rats With Periodontitis. Journal of periodontology 2016;87:e82-90.
  • 14. Kose O, Arabaci T, Yemenoglu H, et al. Influences of Fucoxanthin on Alveolar Bone Resorption in Induced Periodontitis in Rat Molars. Marine drugs 2016;14.
  • 15. Klausen B. Microbiological and immunological aspects of experimental periodontal disease in rats: a review article. Journal of periodontology 1991;62:59-73.
  • 16. Irving JT, Socransky SS, Heeley JD. Histological changes in experimental periodontal disease in gnotobiotic rats and conventional hamsters. Journal of periodontal research 1974;9:73-80.
  • 17. Baer PN, Stephan RM, White CL. Studies on Experimental Calculus Formation in the Rat I. Effect of Age, Sex, Strain, High Carbohydrate, High Protein Diets. Journal of periodontology 1961;32:190-196.
  • 18. Heijl L, Wennstrom J, Lindhe J, Socransky SS. Periodontal disease in gnotobiotic rats. Journal of periodontal research 1980;15:405-419.
  • 19. Weinberg M, Bral, M. Laboratory animal models in periodontology. Journal of clinical periodontology 1999;26:335-340.
  • 20. Huang KK, Shen C, Chiang CY, Hsieh YD, Fu E. Effects of bone morphogenetic protein-6 on periodontal wound healing in a fenestration defect of rats. Journal of periodontal research 2005;40:1-10.
  • 21. Nemcovsky CE, Zahavi S, Moses O, et al. Effect of enamel matrix protein derivative on healing of surgical supra-infrabony periodontal defects in the rat molar: a histomorphometric study. Journal of periodontology 2006;77:996-1002.
  • 22. Stavropoulos A, Kostopoulos L, Nyengaard JR, Karring T. Deproteinized bovine bone (Bio-Oss) and bioactive glass (Biogran) arrest bone formation when used as an adjunct to guided tissue regeneration (GTR): an experimental study in the rat. Journal of clinical periodontology 2003;30:636-643.
  • 23. Donos N, Sculean A, Glavind L, Reich E, Karring T. Wound healing of degree III furcation involvements following guided tissue regeneration and/or Emdogain. A histologic study. Journal of clinical periodontology 2003;30:1061-1068.
  • 24. Donos N, Glavind L, Karring T, Sculean A. Clinical evaluation of an enamel matrix derivative in the treatment of mandibular degree II furcation involvement: a 36-month case series. International Journal of Periodontics & Restorative Dentistry 2003;23.
  • 25. Eggert FM, Germain JP, Cohen B. The gingival epithelium of rodent molars with limited eruption. Acta anatomica 1980;107:297-306.
  • 26. Lallam-Laroye C, Escartin Q, Zlowodzki AS, et al. Periodontitis destructions are restored by synthetic glycosaminoglycan mimetic. Journal of biomedical materials research Part A 2006;79:675-683.
  • 27. Baron R, Saffar J-L. A quantitative study of bone remodeling during experimental periodontal disease in the golden hamster. Journal of periodontal research 1978;13:309-315.
  • 28. Enwonwu CO. Interface of malnutrition and periodontal diseases. The American journal of clinical nutrition 1995;61:430S-436S.
  • 29. Kowashi Y, Jaccard F, Cimasoni G. Sulcular polymorphonuclear leucocytes and gingival exudate during experimental gingivitis in man. Journal of periodontal research 1980;15:151-158.
  • 30. Cutress TW. Histopathology of periodontal disease in sheep. Journal of periodontology 1976;47:643-650.
  • 31. Tyrrell KL, Citron DM, Jenkins JR, Goldstein EJ. Periodontal bacteria in rabbit mandibular and maxillary abscesses. Journal of clinical microbiology 2002;40:1044-1047.
  • 32. Aaboe M, Pinholt EM, Hjorting-Hansen E. Unicortical critical size defect of rabbit tibia is larger than 8 mm. The Journal of craniofacial surgery 1994;5:201-203.
  • 33. Schmitt JM, Buck DC, Joh SP, Lynch SE, Hollinger JO. Comparison of porous bone mineral and biologically active glass in critical-sized defects. Journal of periodontology 1997;68:1043-1053.
  • 34. Oortgiesen DA, Meijer GJ, Bronckers AL, Walboomers XF, Jansen JA. Fenestration defects in the rabbit jaw: an inadequate model for studying periodontal regeneration. Tissue engineering Part C, Methods 2010;16:133-140.
  • 35. Takahashi D, Odajima T, Morita M, Kawanami M, Kato H. Formation and resolution of ankylosis under application of recombinant human bone morphogenetic protein-2 (rhBMP-2) to class III furcation defects in cats. Journal of periodontal research 2005;40:299-305.
  • 36. Anthony J, Waldner C, Grier C, Laycock AR. A survey of equine oral pathology. Journal of veterinary dentistry 2010;27:12-15.
  • 37. Schliephake H, Aleyt J. Mandibular onlay grafting using prefabricated bone grafts with primary implant placement: an experimental study in minipigs. The International journal of oral & maxillofacial implants 1998;13:384-393.
  • 38. Romanos GE, Henze M, Banihashemi S, Parsanejad HR, Winckler J, Nentwig GH. Removal of epithelium in periodontal pockets following diode (980 nm) laser application in the animal model: an in vitro study. Photomedicine and laser surgery 2004;22:177-183.
  • 39. Zhang Y, Miron RJ, Li S, Shi B, Sculean A, Cheng X. Novel MesoPorous BioGlass/silk scaffold containing adPDGF-B and adBMP7 for the repair of periodontal defects in beagle dogs. Journal of clinical periodontology 2015;42:262-271.
  • 40. Gu XQ, Li YM, Guo J, Zhang LH, Li D, Gai XD. Effect of low intensity pulsed ultrasound on repairing the periodontal bone of Beagle canines. Asian Pacific journal of tropical medicine 2014;7:325-328.
  • 41. Nagayasu-Tanaka T, Anzai J, Takaki S, et al. Action Mechanism of Fibroblast Growth Factor-2 (FGF-2) in the Promotion of Periodontal Regeneration in Beagle Dogs. PloS one 2015;10:e0131870.
  • 42. Huang Z, Wang Z, Li C, Yin K, Hao D, Lan J. Application of Plasma Sprayed Zirconia Coating in Dental Implant: Study in Implant. The Journal of oral implantology 2018.
  • 43. Jing D, Yan Z, Cai J, et al. Low-1 level mechanical vibration improves bone microstructure, tissue mechanical properties and porous titanium implant osseointegration by promoting anabolic response in type 1 diabetic rabbits. Bone 2018;106:11-21.
  • 44. Pforringer D, Harrasser N, Muhlhofer H, et al. Osteoinduction and -conduction through absorbable bone substitute materials based on calcium sulfate: in vivo biological behavior in a rabbit model. Journal of materials science Materials in medicine 2018;29:17.
  • 45. Johnson-Delaney CA. Anatomy and Disorders of the Oral Cavity of Ferrets and Other Exotic Companion Carnivores. The veterinary clinics of North America Exotic animal practice 2016;19:901-928.
  • 46. Triantafyllou A, Harrison JD, Garrett JR. Microliths in the parotid of ferret investigated by electron microscopy and microanalysis. International journal of experimental pathology 2009;90:439-447.
  • 47. Chen CK, Chang NJ, Wu YT, et al. Bone Formation Using Cross-Linked Chitosan Scaffolds in Rat Calvarial Defects. European journal of oral sciences 2018;27:15-21.
  • 48. Wang S, Noda K, Yang Y, Shen Z, Chen Z, Ogata Y. Calcium hydroxide regulates transcription of the bone sialoprotein gene via a calcium-sensing receptor in osteoblast-like ROS 17/2.8 cells. 2018;126:13-23.
  • 49. Fernandes LA, Martins TM, de Almeida JM, Theodoro LH, Garcia VG. Radiographic assessment of photodynamic therapy as an adjunctive treatment on induced periodontitis in immunosuppressed rats. Journal of applied oral science : revista FOB 2010;18:237-243.
  • 50. Matheus HR, Ervolino E, Faleiros PL, et al. Cisplatin chemotherapy impairs the peri-implant bone repair around titanium implants: An in vivo study in rats. 2018;45:241-252.
  • 51. Matys J, Flieger R, Dominiak M. Effect of diode lasers with wavelength of 445 and 980 nm on a temperature rise when uncovering implants for second stage surgery: An ex-vivo study in pigs. Advances in clinical and experimental medicine : official organ Wroclaw Medical University 2017;26:687-693.
  • 52. Johansson P, Barkarmo S, Hawthan M, Peruzzi N, Kjellin P, Wennerberg A. Biomechanical, histological and computed X-ray tomographic analyses of hydroxyapatite coated PEEK implants in an extended healing model in rabbit. Journal of biomedical materials research Part A 2018.
  • 53. Ademhan O. KS, Cetiner S. Biomechnical comprasion of stresses generated through two different dental implants designs to be applied in augmented maxillary sinus. Atatürk Üniv. Diş Hek. Fak. Derg.2017;27:154-160.
  • 54. AlFarraj AA, Sukumaran A, Al Amri MD, Van Oirschot AB, Jansen JA. Erratum to: A comparative study of the bone contact to zirconium and titanium implants after 8 weeks of implantation in rabbit femoral condyles. Odontology 2018;106:45.
  • 55. Kurkcuoglu I. KA, Ozkır S. Dental implantlarda başarı kriterleri ve başarı değerlendirme yöntemleri. Atatürk Üniv. Diş Hek. Fak. Derg.2010;20.
  • 56. H. Y. Periodontoloji Alanında Hayvan Çalışmaları: Deneysel Periodontal ve Periimplant Hastalığın İndüksiyonu Cumhuriyet Dental Journal 2016;20:62-71.
  • 57. Kim HS, Lee JI, Yang SS, Kim BS, Kim BC, Lee J. The effect of alendronate soaking and ultraviolet treatment on bone-implant interface. Clinical oral implants research 2017;28:1164-1172.
  • 58. Cakir M. KI. İmplant uygulamaları için kret koruma teknikleri. Atatürk Üniv. Diş Hek. Fak. Derg. 2015;25:107-118.
There are 58 citations in total.

Details

Primary Language Turkish
Subjects Dentistry
Journal Section Derleme
Authors

Mustafa Özay Uslu

Ömer Alperen Kırmızıgül This is me

Umut Öğütücü This is me

Publication Date January 15, 2020
Published in Issue Year 2020 Volume: 30 Issue: 1

Cite

APA Uslu, M. Ö., Kırmızıgül, Ö. A., & Öğütücü, U. (2020). PERİODONTOLOJİDE DENEY HAYVANI VE HASTALIK MODELLERİ. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 30(1), 148-155. https://doi.org/10.17567/ataunidfd.417173
AMA Uslu MÖ, Kırmızıgül ÖA, Öğütücü U. PERİODONTOLOJİDE DENEY HAYVANI VE HASTALIK MODELLERİ. Ata Diş Hek Fak Derg. January 2020;30(1):148-155. doi:10.17567/ataunidfd.417173
Chicago Uslu, Mustafa Özay, Ömer Alperen Kırmızıgül, and Umut Öğütücü. “PERİODONTOLOJİDE DENEY HAYVANI VE HASTALIK MODELLERİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 30, no. 1 (January 2020): 148-55. https://doi.org/10.17567/ataunidfd.417173.
EndNote Uslu MÖ, Kırmızıgül ÖA, Öğütücü U (January 1, 2020) PERİODONTOLOJİDE DENEY HAYVANI VE HASTALIK MODELLERİ. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 30 1 148–155.
IEEE M. Ö. Uslu, Ö. A. Kırmızıgül, and U. Öğütücü, “PERİODONTOLOJİDE DENEY HAYVANI VE HASTALIK MODELLERİ”, Ata Diş Hek Fak Derg, vol. 30, no. 1, pp. 148–155, 2020, doi: 10.17567/ataunidfd.417173.
ISNAD Uslu, Mustafa Özay et al. “PERİODONTOLOJİDE DENEY HAYVANI VE HASTALIK MODELLERİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 30/1 (January 2020), 148-155. https://doi.org/10.17567/ataunidfd.417173.
JAMA Uslu MÖ, Kırmızıgül ÖA, Öğütücü U. PERİODONTOLOJİDE DENEY HAYVANI VE HASTALIK MODELLERİ. Ata Diş Hek Fak Derg. 2020;30:148–155.
MLA Uslu, Mustafa Özay et al. “PERİODONTOLOJİDE DENEY HAYVANI VE HASTALIK MODELLERİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, vol. 30, no. 1, 2020, pp. 148-55, doi:10.17567/ataunidfd.417173.
Vancouver Uslu MÖ, Kırmızıgül ÖA, Öğütücü U. PERİODONTOLOJİDE DENEY HAYVANI VE HASTALIK MODELLERİ. Ata Diş Hek Fak Derg. 2020;30(1):148-55.

Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır. Tıklayınız.