Research Article
BibTex RIS Cite

EVALUATION OF INTRAORAL ORTHODONTIC BRACKETS’ EFFECTS ON MAGNETIC RESONANCE IMAGING –A CADAVERIC STUDY AT 3 TESLA

Year 2020, Volume: 30 Issue: 1, 12 - 19, 15.01.2020
https://doi.org/10.17567/ataunidfd.649475

Abstract



Abstract



Aim:
Artifacts caused by orthodontic attachments limit the diagnostic value and lead
to the removal of these appliances before magnetic resonance imaging. The
magnet strength can influence the artifact size due to orthodontic appliances.
Moreover, new (ceramic/clear) brackets have not been detailed evaluated. Hence,
the purpose of this study was to quantitively evaluated the artifacts and heat
due to different intra-oral appliances on Magnetic Resonance Imaging.



Material and Method: The study was based on a fresh cadaver head. Three intra-oral
orthodontic appliances (i.e. metal/metal-ceramic and ceramic clear brackets)
together with metallic wires were scanned in a 3 Tesla magnetic resonance
device (3-Tesla Philips Achieva) using different sequences. Artifact areas were
determined and the temperature elevations were also evaluated before and after
MRI scanning.



Results: The
smallest artifact was produced by Ceramic (clear) Brackets scanned in a 3D
FLAIR sequence with a dimension of 9,1 mm on sagittal images. The steel-containing
orthodontic devices were associated with radius artifacts ranging from 34,45 mm
to 47,35 mm. No significant difference was found for heat before and after
scanning (p ≤0.05).



Conclusion:
As a consequence, the choice of intra-oral orthodontic appliances and awareness
of the composition of appliances together with magnetic interference is crucial
for head and neck magnetic resonance scanning that has to be taken into
consideration by both orthodontic consultants and the radiologists.



 



Key Words: Magnetic Resonance
Imaging, Heat, Artifact, Orthodontics, Ceramic Brackets





İntraoral Ortodontik
Braketlerin Manyetik Rezonans Görüntüler Üzerine Etkilerinin Değerlendirilmesi
- 3 Tesla'da Bir Kadavra Çalışması



Öz



Amaç: Ortodontik aygıtların
neden olduğu artefaktlar teşhis değerini kısıtlamaktadır. Manyetik rezonans
görüntülemeden önce bu aygıtların çıkarılması gerekmektedir. Bunula birlikte
manyetik kuvvetin büyüklüğü ortodontik aygıtlardan dolayı oluşan artefaktalrın
boyutunu etkilemektedir. Bugüne kadar, tamamen seramik olan yeni braketlerin
oluşturabileceği artefakt boyutu detaylı bir şekilde değerlendirilmemiştir. Bu
çalışmanın amacı, farklı ağız içi ortodontik braketlerin manyetik rezonans
görüntüleme esnasındaki oluşturdukları artefaktları ve oluşan ısıyı nicel
olarak değerlendirmektir.



Gereç ve Yöntem: Çalışma taze
bir kadavra kafası ile yapıldı. Üç farklı ortodontik braket (metal /
metal-seramik ve seramik şeffaf braketler) dişlere yapıştırıldıktan sonra  farklı sekanslar kullanılarak 3 Tesla
manyetik rezonans cihazında (3 Tesla Philips Achieva) tarandı. Oluşan artefakt
alanları tespit edildi ve MRI taramasından önce ve sonra sıcaklık değişimleri
de değerlendirildi.



Bulgular: En küçük
artefakt çapı, sagittal görüntülerde 9,1 mm boyutlarındaydı. Bu artefakt 3D
FLAIR sekansında taranan seramik braketler ile oluştu. Çelik içeren ortodontik
braketler 34,45 mm ila 47,35 mm arasında değişen artefakt çaplarına sahipti.
Tarama öncesi ve sonrası ısı açısından anlamlı bir fark bulunmadı (p ≤0.05).



Sonuç: Baş ve boyun
manyetik rezonans taraması için ağız içi ortodontik braketlerin seçimi ile
bunların içeriklerinin ve bu aygıtların manyetik alandan nasıl etkilendiğinin
bilinmesi hem ortodontistlerin hem de radyologların göz önünde bulundurması
gereken bir durumdur.



Anahtar
Kelimeler:

Manyetik Rezonans Görüntüleme, Isı, Artefakt, Ortodonti, Seramik Braket



 



References

  • 1. American Society for Testing and Materials (ASTM) International. Standard F2182-02a: Standard Test Method for Measurement of Radio Frequency Induced Heating Near Passive Implants During Magnetic Resonance Imaging. West Conshohocken, PA: ASTM International; 2002.
  • 2. Elster A, Chen M, Williams D, Key L. Pituitary gland: MR imaging of physiologic hypertrophy in adolescence. Radiology 1990; 174: 681–685.
  • 3. Marro B, Zouaoui A, Shel M, Rudish A. MRI of pituitary adenomas on acromegaly. Neurology 1997; 39: 394–399.
  • 4. Smallridge RC, Czervionke LF, Fellows DW, Bernet VJ. Cortotropin- and thyrotropin-secreting pituitary microadenomas: detection by magnetic resonance imaging. Mayo Clinic Proceedings 2000; 75: 521–528.
  • 5. Larheim TA. Role of magnetic resonance imaging in the clinical diagnosis of temporomandibular joint. Cells Tissues Organs 2005; 180: 6–21.
  • 6. Emshoff R, Brandlmaier I, Gerhard S, Strobi H, Bertram S. Magnetic resonance imaging predictors of temporomandibular joint pain. Journal of American Dental Association 2003; 134: 705–714.
  • 7. Raanan A, McDonough M, Corbin AM, et al. Linear dimensions of the upper airway structure during development, assessment by magnetic resonance imaging. American Journal of Respiratory and Critical Care Medicine 2002; 165: 117–122.
  • 8. Perry LJ, Kuehen DP, Sutton BP. Morphology of the levator veli palatini muscle using magnetic resonance imaging. Cleft Palate-Craniofacial Journal 20013; 50: 64–67.
  • 9. Kuhl CK, Traber F, Schild HH. Whole-body high-field-strength (3.0-T) MR imaging in clinical practice. Part I. Technical considerations and clinical applications. Radiology 2008; 246: 675–696.
  • 10. Dagia C, Ditchfield M. 3T MRI in paediatrics: challenges and clinical applications. Eur J Radiol 2008; 68: 309–319.
  • 11. Elison JM, Leggitt VL, Thomson M, Oyoyo U, Wycliffee ND. Influence of common orthodontic appliances on the diagnostic quality of cranial magnetic resonance images. Am J Orthod Dentofacial Orthop 2008; 134: 563-572.
  • 12. Harris TMJ, Faridrad MR, Dickson JAS. The benefits of aesthetic orthodontic brackets in patients requiring multiple MRI scanning. J Orthod 2006; 33: 90-94.
  • 13. Shellock FG, Kanal E. Aneurysm clips: evaluation of MR imaging artifacts at 1.5 T. Radiology 1998; 209: 563-566.
  • 14. Destine D, Mizutani H, Igarashi Y. Metallic artifacts in MRI caused by dental alloys and magnetic keeper. Nihon Hotetsu Shika Gakkai Zasshi 2008; 52: 205-210.
  • 15. Shafiei F, Honda E, Takahashi H, Sasaki T. Artifacts from dental casting alloys in magnetic resonance imaging. J Dent Res 2003; 82: 602-606.
  • 16. Okano Y, Yamashiro M, Kaneda T, Kasai K. Magnetic resonance imaging diagnosis of thetemporomandibular joint in patients with orthodontic appliances. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003; 95: 255-263.
  • 17. Kemper J, Klocke A, Kahl-Nieke B, Adam G. Orthodontic Brackets in High Field Magnetic Resonance Tomography: Experimental assessment of magnetic attraction and rotational forces at 3 Tesla. RöFo 2005; 177: 1691-8. [In German].
  • 18. Patel A, Bhavra GS, O'Neill JR. MRI scanning and orthodontics. J Orthod. 2006; 33: 246-249.
  • 19. Hatch J, Deahl TS, Matteson SR. CAT of the month: Remove metallic orthodontic appliances prior to MRI imaging. Tex Dent J 2014; 131: 26.
  • 20. Kajan ZD, Khademi J, Alizadeh A, Hemmaty YB, Roushan ZA. A comparative study of metal artifacts from common metal orthodontic brackets in magnetic resonance imaging. Imaging Sci Dent 2015; 45: 159-168.
  • 21. Vandevenne JE, Vanhoenacker FM, Parizel PM, Butts PK, Lang RK. Reduction of metal artefacts in musculoskeletal MR imaging. JBR-BTR 2007; 90: 345–349.
  • 22. Eggers G, Rieker M, Kress B, Fiebach J, Dickhaus H, Hassfeld S. Artefacts in magnetic resonance imaging caused by dental material. MAGMA 2005; 18: 103-111.
  • 23. Karaman T, Eşer B, Güven S, Yıldırım TT. Magnetic resonance imaging in dentistry and its effect on dental materials. J Dent Fac Atatürk Uni 2018; 28: 271-276.
  • 24. New PF, Rosen BR, Brady TJ, et al. Potential hazards and artifacts of ferromagnetic and nonferromagnetic surgical and dental materials and devices in nuclear magnetic resonance imaging. Radiology 1983; 147: 139–138.
  • 25. Hinshaw DB, Jr Holshouser BA, Engstrom HI, Tjan AH, Christiansen EL, Catelli WF. Dental material artifacts on MR images. Radiology 1988; 166: 777–779.
  • 26. Lissac M, Coudert JL, Briguet A, Amiel M. Disturbances caused by dental materials in magnetic resonance imaging. International Dental Journal 1992; 42: 229–233.
  • 27. Masumi S, Arita M, Morikawa M, Toyoda S. Effect of dental metals on magnetic resonance imaging (MRI). Journal of Oral Rehabilitation 1993; 20: 97–106.
  • 28. Starcuk Z, Bartusek K, Hubalkova H. Evaluation of MRI artifacts caused by metallic dental implants and classification of the dental materials in use. Measurement Science Review 2006; 6: 24–27.
  • 29. Sadowsky PL, Bernreuter W, Lakshminarayanan AV, Kenney P. Orthodontic appliances and magnetic resonance imaging of the brain and temporomandibular joint. The Angle Orthodontist 1988; 58: 9–20.
  • 30. Elison MJ, Leroy Leggitt V, Thomson M, Oyoyo U, Dan Wycliffe D. Influence of common orthodontic appliances on the diagnostic quality of cranial magnetic resonance images. American Journal of Orthodontics and Dentofacial Orthopedics 2008; 134: 563–572.
  • 31. Beau A, Bossard D, Gebeile-Chauty S. Magnetic resonance imaging artefacts and fixed orthodontic attachements. Eur J Orthod 2015; 37: 105-110.
  • 32. Hasegawa M, Miyata K, Abe Y, Ishigami T. Radiofrequency heating of metallic dental devices durig 3.0 T MRI. Dentomaxillofac Radiol 2013; 42(5): 20120234. doi: 10.1259/dmfr.20120234. Epub 2013 Mar 21.
  • 33. Gorgulu S, Ayyıldız S, Kamburoglu K, Gokçe S, Ozen T. Effect of orthodontic brackets and different wires on radiofrequency heating and magnetic field interactions during 3-T MRI. Dentomaxillofac Radiol 2014; 43(2): 20130356. doi: 10.1259/dmfr.20130356. Epub 2013 Nov 20.
  • 34. Zachriat C, Asbach P, Blankenstein K I, Peroz I, Blankenstein FH. MRI with intraoral orthodontic appliance: a comparative in vitro and in vivo study of image artefacts at 1.5 T. Dentomaxillofac Radiol 2015; 44(6): 20140416. doi: 10.1259/dmfr.20140416. Epub 2015 Mar 3.
  • 35. Wylezinska M, Pinkstone M, Hay N, Scott AD, Birch MJ, Miquel ME. Impact of orthodontic appliances on the quality of craniofacial anatomical magnetic resonance imaging and real-time speech imaging. Eur J Orthod 2015; 37: 610-617.
  • 36. Ho ML, Campeau NG, Ngo TD, Udayasankar UK, Welker KM. Pediatric brain MRI part I: basic techniques. Pediatr Radiol 2017; 47: 534-543.
Year 2020, Volume: 30 Issue: 1, 12 - 19, 15.01.2020
https://doi.org/10.17567/ataunidfd.649475

Abstract

References

  • 1. American Society for Testing and Materials (ASTM) International. Standard F2182-02a: Standard Test Method for Measurement of Radio Frequency Induced Heating Near Passive Implants During Magnetic Resonance Imaging. West Conshohocken, PA: ASTM International; 2002.
  • 2. Elster A, Chen M, Williams D, Key L. Pituitary gland: MR imaging of physiologic hypertrophy in adolescence. Radiology 1990; 174: 681–685.
  • 3. Marro B, Zouaoui A, Shel M, Rudish A. MRI of pituitary adenomas on acromegaly. Neurology 1997; 39: 394–399.
  • 4. Smallridge RC, Czervionke LF, Fellows DW, Bernet VJ. Cortotropin- and thyrotropin-secreting pituitary microadenomas: detection by magnetic resonance imaging. Mayo Clinic Proceedings 2000; 75: 521–528.
  • 5. Larheim TA. Role of magnetic resonance imaging in the clinical diagnosis of temporomandibular joint. Cells Tissues Organs 2005; 180: 6–21.
  • 6. Emshoff R, Brandlmaier I, Gerhard S, Strobi H, Bertram S. Magnetic resonance imaging predictors of temporomandibular joint pain. Journal of American Dental Association 2003; 134: 705–714.
  • 7. Raanan A, McDonough M, Corbin AM, et al. Linear dimensions of the upper airway structure during development, assessment by magnetic resonance imaging. American Journal of Respiratory and Critical Care Medicine 2002; 165: 117–122.
  • 8. Perry LJ, Kuehen DP, Sutton BP. Morphology of the levator veli palatini muscle using magnetic resonance imaging. Cleft Palate-Craniofacial Journal 20013; 50: 64–67.
  • 9. Kuhl CK, Traber F, Schild HH. Whole-body high-field-strength (3.0-T) MR imaging in clinical practice. Part I. Technical considerations and clinical applications. Radiology 2008; 246: 675–696.
  • 10. Dagia C, Ditchfield M. 3T MRI in paediatrics: challenges and clinical applications. Eur J Radiol 2008; 68: 309–319.
  • 11. Elison JM, Leggitt VL, Thomson M, Oyoyo U, Wycliffee ND. Influence of common orthodontic appliances on the diagnostic quality of cranial magnetic resonance images. Am J Orthod Dentofacial Orthop 2008; 134: 563-572.
  • 12. Harris TMJ, Faridrad MR, Dickson JAS. The benefits of aesthetic orthodontic brackets in patients requiring multiple MRI scanning. J Orthod 2006; 33: 90-94.
  • 13. Shellock FG, Kanal E. Aneurysm clips: evaluation of MR imaging artifacts at 1.5 T. Radiology 1998; 209: 563-566.
  • 14. Destine D, Mizutani H, Igarashi Y. Metallic artifacts in MRI caused by dental alloys and magnetic keeper. Nihon Hotetsu Shika Gakkai Zasshi 2008; 52: 205-210.
  • 15. Shafiei F, Honda E, Takahashi H, Sasaki T. Artifacts from dental casting alloys in magnetic resonance imaging. J Dent Res 2003; 82: 602-606.
  • 16. Okano Y, Yamashiro M, Kaneda T, Kasai K. Magnetic resonance imaging diagnosis of thetemporomandibular joint in patients with orthodontic appliances. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003; 95: 255-263.
  • 17. Kemper J, Klocke A, Kahl-Nieke B, Adam G. Orthodontic Brackets in High Field Magnetic Resonance Tomography: Experimental assessment of magnetic attraction and rotational forces at 3 Tesla. RöFo 2005; 177: 1691-8. [In German].
  • 18. Patel A, Bhavra GS, O'Neill JR. MRI scanning and orthodontics. J Orthod. 2006; 33: 246-249.
  • 19. Hatch J, Deahl TS, Matteson SR. CAT of the month: Remove metallic orthodontic appliances prior to MRI imaging. Tex Dent J 2014; 131: 26.
  • 20. Kajan ZD, Khademi J, Alizadeh A, Hemmaty YB, Roushan ZA. A comparative study of metal artifacts from common metal orthodontic brackets in magnetic resonance imaging. Imaging Sci Dent 2015; 45: 159-168.
  • 21. Vandevenne JE, Vanhoenacker FM, Parizel PM, Butts PK, Lang RK. Reduction of metal artefacts in musculoskeletal MR imaging. JBR-BTR 2007; 90: 345–349.
  • 22. Eggers G, Rieker M, Kress B, Fiebach J, Dickhaus H, Hassfeld S. Artefacts in magnetic resonance imaging caused by dental material. MAGMA 2005; 18: 103-111.
  • 23. Karaman T, Eşer B, Güven S, Yıldırım TT. Magnetic resonance imaging in dentistry and its effect on dental materials. J Dent Fac Atatürk Uni 2018; 28: 271-276.
  • 24. New PF, Rosen BR, Brady TJ, et al. Potential hazards and artifacts of ferromagnetic and nonferromagnetic surgical and dental materials and devices in nuclear magnetic resonance imaging. Radiology 1983; 147: 139–138.
  • 25. Hinshaw DB, Jr Holshouser BA, Engstrom HI, Tjan AH, Christiansen EL, Catelli WF. Dental material artifacts on MR images. Radiology 1988; 166: 777–779.
  • 26. Lissac M, Coudert JL, Briguet A, Amiel M. Disturbances caused by dental materials in magnetic resonance imaging. International Dental Journal 1992; 42: 229–233.
  • 27. Masumi S, Arita M, Morikawa M, Toyoda S. Effect of dental metals on magnetic resonance imaging (MRI). Journal of Oral Rehabilitation 1993; 20: 97–106.
  • 28. Starcuk Z, Bartusek K, Hubalkova H. Evaluation of MRI artifacts caused by metallic dental implants and classification of the dental materials in use. Measurement Science Review 2006; 6: 24–27.
  • 29. Sadowsky PL, Bernreuter W, Lakshminarayanan AV, Kenney P. Orthodontic appliances and magnetic resonance imaging of the brain and temporomandibular joint. The Angle Orthodontist 1988; 58: 9–20.
  • 30. Elison MJ, Leroy Leggitt V, Thomson M, Oyoyo U, Dan Wycliffe D. Influence of common orthodontic appliances on the diagnostic quality of cranial magnetic resonance images. American Journal of Orthodontics and Dentofacial Orthopedics 2008; 134: 563–572.
  • 31. Beau A, Bossard D, Gebeile-Chauty S. Magnetic resonance imaging artefacts and fixed orthodontic attachements. Eur J Orthod 2015; 37: 105-110.
  • 32. Hasegawa M, Miyata K, Abe Y, Ishigami T. Radiofrequency heating of metallic dental devices durig 3.0 T MRI. Dentomaxillofac Radiol 2013; 42(5): 20120234. doi: 10.1259/dmfr.20120234. Epub 2013 Mar 21.
  • 33. Gorgulu S, Ayyıldız S, Kamburoglu K, Gokçe S, Ozen T. Effect of orthodontic brackets and different wires on radiofrequency heating and magnetic field interactions during 3-T MRI. Dentomaxillofac Radiol 2014; 43(2): 20130356. doi: 10.1259/dmfr.20130356. Epub 2013 Nov 20.
  • 34. Zachriat C, Asbach P, Blankenstein K I, Peroz I, Blankenstein FH. MRI with intraoral orthodontic appliance: a comparative in vitro and in vivo study of image artefacts at 1.5 T. Dentomaxillofac Radiol 2015; 44(6): 20140416. doi: 10.1259/dmfr.20140416. Epub 2015 Mar 3.
  • 35. Wylezinska M, Pinkstone M, Hay N, Scott AD, Birch MJ, Miquel ME. Impact of orthodontic appliances on the quality of craniofacial anatomical magnetic resonance imaging and real-time speech imaging. Eur J Orthod 2015; 37: 610-617.
  • 36. Ho ML, Campeau NG, Ngo TD, Udayasankar UK, Welker KM. Pediatric brain MRI part I: basic techniques. Pediatr Radiol 2017; 47: 534-543.
There are 36 citations in total.

Details

Primary Language English
Subjects Dentistry
Journal Section Araştırma Makalesi
Authors

Mehmet Hakan Kurt 0000-0001-8312-5674

Mehmet Eray Kolsuz This is me 0000-0001-8872-1897

Ulaş Öz This is me 0000-0002-5203-577X

İsmail Hakan Avsever This is me 0000-0002-2972-2547

Tuğrul Örmeci This is me 0000-0001-8532-4917

Bayram Ufuk Şakul This is me 0000-0002-5539-2342

Kaan Orhan This is me 0000-0001-6768-0176

Publication Date January 15, 2020
Published in Issue Year 2020 Volume: 30 Issue: 1

Cite

APA Kurt, M. H., Kolsuz, M. E., Öz, U., Avsever, İ. H., et al. (2020). EVALUATION OF INTRAORAL ORTHODONTIC BRACKETS’ EFFECTS ON MAGNETIC RESONANCE IMAGING –A CADAVERIC STUDY AT 3 TESLA. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 30(1), 12-19. https://doi.org/10.17567/ataunidfd.649475
AMA Kurt MH, Kolsuz ME, Öz U, Avsever İH, Örmeci T, Şakul BU, Orhan K. EVALUATION OF INTRAORAL ORTHODONTIC BRACKETS’ EFFECTS ON MAGNETIC RESONANCE IMAGING –A CADAVERIC STUDY AT 3 TESLA. Ata Diş Hek Fak Derg. January 2020;30(1):12-19. doi:10.17567/ataunidfd.649475
Chicago Kurt, Mehmet Hakan, Mehmet Eray Kolsuz, Ulaş Öz, İsmail Hakan Avsever, Tuğrul Örmeci, Bayram Ufuk Şakul, and Kaan Orhan. “EVALUATION OF INTRAORAL ORTHODONTIC BRACKETS’ EFFECTS ON MAGNETIC RESONANCE IMAGING –A CADAVERIC STUDY AT 3 TESLA”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 30, no. 1 (January 2020): 12-19. https://doi.org/10.17567/ataunidfd.649475.
EndNote Kurt MH, Kolsuz ME, Öz U, Avsever İH, Örmeci T, Şakul BU, Orhan K (January 1, 2020) EVALUATION OF INTRAORAL ORTHODONTIC BRACKETS’ EFFECTS ON MAGNETIC RESONANCE IMAGING –A CADAVERIC STUDY AT 3 TESLA. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 30 1 12–19.
IEEE M. H. Kurt, “EVALUATION OF INTRAORAL ORTHODONTIC BRACKETS’ EFFECTS ON MAGNETIC RESONANCE IMAGING –A CADAVERIC STUDY AT 3 TESLA”, Ata Diş Hek Fak Derg, vol. 30, no. 1, pp. 12–19, 2020, doi: 10.17567/ataunidfd.649475.
ISNAD Kurt, Mehmet Hakan et al. “EVALUATION OF INTRAORAL ORTHODONTIC BRACKETS’ EFFECTS ON MAGNETIC RESONANCE IMAGING –A CADAVERIC STUDY AT 3 TESLA”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 30/1 (January 2020), 12-19. https://doi.org/10.17567/ataunidfd.649475.
JAMA Kurt MH, Kolsuz ME, Öz U, Avsever İH, Örmeci T, Şakul BU, Orhan K. EVALUATION OF INTRAORAL ORTHODONTIC BRACKETS’ EFFECTS ON MAGNETIC RESONANCE IMAGING –A CADAVERIC STUDY AT 3 TESLA. Ata Diş Hek Fak Derg. 2020;30:12–19.
MLA Kurt, Mehmet Hakan et al. “EVALUATION OF INTRAORAL ORTHODONTIC BRACKETS’ EFFECTS ON MAGNETIC RESONANCE IMAGING –A CADAVERIC STUDY AT 3 TESLA”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, vol. 30, no. 1, 2020, pp. 12-19, doi:10.17567/ataunidfd.649475.
Vancouver Kurt MH, Kolsuz ME, Öz U, Avsever İH, Örmeci T, Şakul BU, Orhan K. EVALUATION OF INTRAORAL ORTHODONTIC BRACKETS’ EFFECTS ON MAGNETIC RESONANCE IMAGING –A CADAVERIC STUDY AT 3 TESLA. Ata Diş Hek Fak Derg. 2020;30(1):12-9.

Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır. Tıklayınız.