Research Article
BibTex RIS Cite

MİKROKRİSTALİN SELÜLOZ İÇEREN DENTAL KOMPOZİT REÇİNELERİN MEKANİK VE RENK ÖZELLİKLERİNİN İNCELENMESİ

Year 2020, Volume: 30 Issue: 2, 181 - 187, 15.04.2020
https://doi.org/10.17567/ataunidfd.652319

Abstract

ÖZ
Amaç: Mikrokristalin selülozun (MKS), dental reçine formülasyonu içerisinde kullanıldığında eğilme gerilimi ve mikro sertlik gibi mekanik özellikleri ve renk değişimi üzerindeki etkisini incelemektir.
Gereç ve Yöntem: Dental kompozit reçine gruplarında taşıyıcı sistem olarak Bisfenol A glisidil metakrilat, trietilenglikol dimetakrilat, monomerleri kullanılmıştır. Foto-başlatıcı olarak kamforokinon ve yardımcı başlatıcı olarak ise 2-dimetilaminoetilmetakrilattercih edilmiştir. Dolgu malzemesi olarak MKS farklı oranlarda karışımı kullanılmıştır. Kompozit reçinelerin eğilme gerilimi testi hem tasarlanan gruplar arasında hem de ticari ürün ile ıslak ve kuru olarak kıyaslanmıştır.
Bulgular: Elde edilen sonuçlara göre geliştirilen kompozit reçinelerde MKS oranı artmasına rağmen eğilme geriliminde önemli bir değişiklik gözlenmemekte ve ticari ürüne göre daha zayıf mekanik özelliğe sahip olduğu belirlenmektedir. Bu değerler tasarlanan kompozit reçineler için: 35.31, 35.50, 39.85 MPa ticari ürün için ise 78.8MPa olarak belirlenmiştir. Örnekler için yapılan mikrosertlik sonuçlarına göre ise MKS oranının artmasıyla örneklerin mikro sertliğinin de artmış olduğu gözlenmektedir. Su, kola, çay ve kahve içeceklerinde bekletilen örnekler içerdikleri MKS oranına göre değerlendirilmiş olup, en fazla renk değişiminin %20 MKS içeren örneğin 1 hafta süresince kahve içerisinde bekletilmesiyle elde edildiği gözlenmiştir.
Sonuç: Dental kompozit reçine sisteminde kullanılan MKS oranının artması örneklerin eğilme gerilimi özelliklerinde bir artışa neden olmazken mikrosertlik değerlerinde ve renk değişimlerinde önemli miktarda artışa sebep olmuştur.
Anahtar Kelimeler: Mikrokristalin selüloz, dental kompozit reçine, mikrosertlik, eğilme gerilimi, renk değişimi.

Investigation of the Mechanical and Color Characteristics of Microcrystalline Cellulose Containing Dental Composite Resins
ABSTRACT
Objective: The aim of this study is to investigate the effect of microcrystalline cellulose (MCC) on mechanical properties such as bending stress and micro hardness when used in dental resin formulation and its effect on color change.
Materials and Methods: Bisphenol A glycidyl methacrylate, triethyleneglycol dimethacrylate monomers were used as carrier system in dental composite resin groups. Camphorquinone was preferred as the photoinitiator and 2-dimethylaminoethylmethacrylate as the co-initiator. Mixture of MCC in different proportions was used as filling material. The flexural stress test of the composite resins was compared between the designed groups and the commercial product.
Results: According to the results obtained, although the MCC ratio of the developed composite resins increased, no significant change in bending stress was observed and it was determined that it had weaker mechanical properties compared to the commercial product. These values are 35.31, 35.50, 39.85 MPa for the designed composite resins and 78.8 MPa for the commercial product. According to the microhardness results of the samples, it was observed that the micro hardness of the samples increased with increasing MCC ratio. Water, cola, tea and coffee beverages were evaluated according to their MCC content and maximum color change was obtained by keeping the sample containing 20% MCC in coffee for 1 week.
Conclusion: The increase in the MCC ratio used in the dental composite resin system did not cause an increase in the flexural stress properties of the samples, but also caused a significant increase in the microhardness values and color changes.
Keywords: Microcrystalline cellulose, dental composite resin, microhardness, flexural stress, color change.

References

  • 1. Ferracane JL. Resin based composite performance: Are there some things we can’t predict. Dent Mater 2013; 29: 51-58.
  • 2. Laviguer C, Zhu XX. Recent advances in the development of dental composite resins. RSC Adv 2012; 2: 59-63.
  • 3. Manhart J, Kunzelmann KH, Chen HY, Hickel R. Mechanical properties of new composite restorative materials. J Biomed Mater Res 2000; 53: 353-361.
  • 4. Jandt KD, Sigusch BW. Future perspectives od resin-based materials. Dent Mater 2009; 25: 1001-1006.
  • 5. Habib E, Wang R, Wang Y, Zhu M, Zhu XX. Inorganic fillers for dental resin composites: present and future. ACS Biomater Sci Eng 2016; 2: 1-11.
  • 6. Jorfi M, Foster EJ. Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci 2015; 41719: 1-19.
  • 7. Joubert F, Musa OM, Hodgson DRW, Cameron NR. The preparation of graft copolymers of cellulose and cellulose derivatives using ATRP under homogeneous reaction conditions. Chem Soc Rev 2014; 43: 7217-35.
  • 8. Silva RM, Santos PHN, Souza LB, Dumont VC, Soares JA, Santos MH. Effects of cellulose fibers on the physical and chemical properties of glass ionomer dental restorative materials. Mater Res Bull 2013; 48: 118-126.
  • 9. Vichi A, Corciolani G, Davidson CL, Ferrari M. Color and opacity variations in three different resin-based composite products after UV aging. Dent Mater 2004; 9: 58-66.
  • 10. Ertaş E, Güler AU, Yücel AÇ, Köprülü H, Güler E. Color stability of resin composites after immersion in different drinks. Dent Mater Journal 2006; 25: 71-376.
  • 11. Afzali BM, Ghasemi A, Mirani A, Abdolazimi Z, Baghban AA, Kharazifard MJ. Effect of ingested liquids on color change of composite resins. J Dent 2015; 12: 577-84.
  • 12. Fontes ST, Fernandez MR, Moura CM, Meireles SS. Color Stability of a nanofill composite: Effect of different immersion media. J App Oral Sci 2009; 17: 338-391.
  • 13. Stober T, Gilde H, Lenz P. Color stability of highly filled composite resin materials for facings. Dent Mater 2001; 17: 87-94.
  • 14. Rashid M, Gafur MA, Sharafat MK, Minami H, Miah MAJ, Ahmad H. Biocompatible microcrystalline cellulose particles from cotton wool and magnetization via a simple in situ co-precipitation method. Carbohydr Polym 2017; 170: 72-9.
  • 15. Reier GE, Shangraw RF. Microcrystalline cellulose in tableting. J Pharm Sci1966; 55: 510-14.
  • 16. Petersson L, Oksman K. Biopolymer based nanocomposites: Comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Compos Sci Technol 2006; 66: 2187-96.
  • 17. Mathew AP, Oksman K, Sain M. Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 2005; 97: 2014-25.
  • 18. Amirouche-Korichi A, Mouzali M, Watts DC. Shrinkage strain-rates study of dental composites based on (BisGMA/TEGDMA) monomers. Arab J Chem 2017; 10: S190-5.
  • 19. Gajewski VES, Preifer CS, Froes-Salgado NRG, Boaro LCC, Braga RR. Monomers used in resin composites: degree of conversion, mechanical properties and water sorption/solubility. Braz Dent J 2012; 23:508-14.
  • 20. Esteves RA, Boaro LCC, Gancalves F, Campos LMP, Silva CM, Rodrigues-Filho LE. Chemical and mechanical properties of experimental dental composites as a function of formulation and postcuring thermal treatment. Biomed Res Int 2018; 2018: 1-6.
  • 21. Liu F, Jiang X, Zhang Q, Zhu M. Strong and bioactive dental resin composite containing poly(Bis-GMA) grafted hydroxyapatite whiskers and silica nanoparticles. Dent Mater 2014; 101: 86-93.
  • 22. Sidhu SK, Nicholson JV. A review of glass-ionomer cements for clinical dentistry. J Func Biomat 2016; 7: 1-15.
  • 23. ISO, Dentistry - Polymer-based restorative materials, ISO 4049:2009, International Organization for Standardization 2009.
  • 24. ASTM, Standard Test Method for Knoop and Vickers Hardness of Materials, ASTM E384-11, American Section of the International Association for Testing Materials, 2011.
  • 25. Khvostenko D, Mitchell JC, Hilton TJ, Ferracane JL, Kruzic JJ. Mechanical performance of novel bioactive glass containing dental restorative composites. Dent Mater 2013; 29: 1139-48.
  • 26. Zhang H, Darvell BW. Mechanical properties of hydroxyapatite whisker-reinforced bis-GMA-based resin composites. Dent Mater 2012; 28: 824-30.
  • 27. Alsharif SO, Bin MdAkil H, Abd El-Aziz NA, Bin Ahmad ZA. Effect of alumina particles loading on the mechanical properties of light-cured dental resin composites. Mater and Des 2014; 54: 430-5.
Year 2020, Volume: 30 Issue: 2, 181 - 187, 15.04.2020
https://doi.org/10.17567/ataunidfd.652319

Abstract

References

  • 1. Ferracane JL. Resin based composite performance: Are there some things we can’t predict. Dent Mater 2013; 29: 51-58.
  • 2. Laviguer C, Zhu XX. Recent advances in the development of dental composite resins. RSC Adv 2012; 2: 59-63.
  • 3. Manhart J, Kunzelmann KH, Chen HY, Hickel R. Mechanical properties of new composite restorative materials. J Biomed Mater Res 2000; 53: 353-361.
  • 4. Jandt KD, Sigusch BW. Future perspectives od resin-based materials. Dent Mater 2009; 25: 1001-1006.
  • 5. Habib E, Wang R, Wang Y, Zhu M, Zhu XX. Inorganic fillers for dental resin composites: present and future. ACS Biomater Sci Eng 2016; 2: 1-11.
  • 6. Jorfi M, Foster EJ. Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci 2015; 41719: 1-19.
  • 7. Joubert F, Musa OM, Hodgson DRW, Cameron NR. The preparation of graft copolymers of cellulose and cellulose derivatives using ATRP under homogeneous reaction conditions. Chem Soc Rev 2014; 43: 7217-35.
  • 8. Silva RM, Santos PHN, Souza LB, Dumont VC, Soares JA, Santos MH. Effects of cellulose fibers on the physical and chemical properties of glass ionomer dental restorative materials. Mater Res Bull 2013; 48: 118-126.
  • 9. Vichi A, Corciolani G, Davidson CL, Ferrari M. Color and opacity variations in three different resin-based composite products after UV aging. Dent Mater 2004; 9: 58-66.
  • 10. Ertaş E, Güler AU, Yücel AÇ, Köprülü H, Güler E. Color stability of resin composites after immersion in different drinks. Dent Mater Journal 2006; 25: 71-376.
  • 11. Afzali BM, Ghasemi A, Mirani A, Abdolazimi Z, Baghban AA, Kharazifard MJ. Effect of ingested liquids on color change of composite resins. J Dent 2015; 12: 577-84.
  • 12. Fontes ST, Fernandez MR, Moura CM, Meireles SS. Color Stability of a nanofill composite: Effect of different immersion media. J App Oral Sci 2009; 17: 338-391.
  • 13. Stober T, Gilde H, Lenz P. Color stability of highly filled composite resin materials for facings. Dent Mater 2001; 17: 87-94.
  • 14. Rashid M, Gafur MA, Sharafat MK, Minami H, Miah MAJ, Ahmad H. Biocompatible microcrystalline cellulose particles from cotton wool and magnetization via a simple in situ co-precipitation method. Carbohydr Polym 2017; 170: 72-9.
  • 15. Reier GE, Shangraw RF. Microcrystalline cellulose in tableting. J Pharm Sci1966; 55: 510-14.
  • 16. Petersson L, Oksman K. Biopolymer based nanocomposites: Comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Compos Sci Technol 2006; 66: 2187-96.
  • 17. Mathew AP, Oksman K, Sain M. Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 2005; 97: 2014-25.
  • 18. Amirouche-Korichi A, Mouzali M, Watts DC. Shrinkage strain-rates study of dental composites based on (BisGMA/TEGDMA) monomers. Arab J Chem 2017; 10: S190-5.
  • 19. Gajewski VES, Preifer CS, Froes-Salgado NRG, Boaro LCC, Braga RR. Monomers used in resin composites: degree of conversion, mechanical properties and water sorption/solubility. Braz Dent J 2012; 23:508-14.
  • 20. Esteves RA, Boaro LCC, Gancalves F, Campos LMP, Silva CM, Rodrigues-Filho LE. Chemical and mechanical properties of experimental dental composites as a function of formulation and postcuring thermal treatment. Biomed Res Int 2018; 2018: 1-6.
  • 21. Liu F, Jiang X, Zhang Q, Zhu M. Strong and bioactive dental resin composite containing poly(Bis-GMA) grafted hydroxyapatite whiskers and silica nanoparticles. Dent Mater 2014; 101: 86-93.
  • 22. Sidhu SK, Nicholson JV. A review of glass-ionomer cements for clinical dentistry. J Func Biomat 2016; 7: 1-15.
  • 23. ISO, Dentistry - Polymer-based restorative materials, ISO 4049:2009, International Organization for Standardization 2009.
  • 24. ASTM, Standard Test Method for Knoop and Vickers Hardness of Materials, ASTM E384-11, American Section of the International Association for Testing Materials, 2011.
  • 25. Khvostenko D, Mitchell JC, Hilton TJ, Ferracane JL, Kruzic JJ. Mechanical performance of novel bioactive glass containing dental restorative composites. Dent Mater 2013; 29: 1139-48.
  • 26. Zhang H, Darvell BW. Mechanical properties of hydroxyapatite whisker-reinforced bis-GMA-based resin composites. Dent Mater 2012; 28: 824-30.
  • 27. Alsharif SO, Bin MdAkil H, Abd El-Aziz NA, Bin Ahmad ZA. Effect of alumina particles loading on the mechanical properties of light-cured dental resin composites. Mater and Des 2014; 54: 430-5.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Dentistry
Journal Section Araştırma Makalesi
Authors

Vildan Sanko This is me

Ümran Aydemir Sezer This is me

Zeynep Basağaoğlu Demirekin This is me

Erdal Eroğlu This is me

Suha Türkaslan This is me

Serdar Sezer This is me

Publication Date April 15, 2020
Published in Issue Year 2020 Volume: 30 Issue: 2

Cite

APA Sanko, V., Aydemir Sezer, Ü., Basağaoğlu Demirekin, Z., Eroğlu, E., et al. (2020). MİKROKRİSTALİN SELÜLOZ İÇEREN DENTAL KOMPOZİT REÇİNELERİN MEKANİK VE RENK ÖZELLİKLERİNİN İNCELENMESİ. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 30(2), 181-187. https://doi.org/10.17567/ataunidfd.652319
AMA Sanko V, Aydemir Sezer Ü, Basağaoğlu Demirekin Z, Eroğlu E, Türkaslan S, Sezer S. MİKROKRİSTALİN SELÜLOZ İÇEREN DENTAL KOMPOZİT REÇİNELERİN MEKANİK VE RENK ÖZELLİKLERİNİN İNCELENMESİ. Ata Diş Hek Fak Derg. April 2020;30(2):181-187. doi:10.17567/ataunidfd.652319
Chicago Sanko, Vildan, Ümran Aydemir Sezer, Zeynep Basağaoğlu Demirekin, Erdal Eroğlu, Suha Türkaslan, and Serdar Sezer. “MİKROKRİSTALİN SELÜLOZ İÇEREN DENTAL KOMPOZİT REÇİNELERİN MEKANİK VE RENK ÖZELLİKLERİNİN İNCELENMESİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 30, no. 2 (April 2020): 181-87. https://doi.org/10.17567/ataunidfd.652319.
EndNote Sanko V, Aydemir Sezer Ü, Basağaoğlu Demirekin Z, Eroğlu E, Türkaslan S, Sezer S (April 1, 2020) MİKROKRİSTALİN SELÜLOZ İÇEREN DENTAL KOMPOZİT REÇİNELERİN MEKANİK VE RENK ÖZELLİKLERİNİN İNCELENMESİ. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 30 2 181–187.
IEEE V. Sanko, Ü. Aydemir Sezer, Z. Basağaoğlu Demirekin, E. Eroğlu, S. Türkaslan, and S. Sezer, “MİKROKRİSTALİN SELÜLOZ İÇEREN DENTAL KOMPOZİT REÇİNELERİN MEKANİK VE RENK ÖZELLİKLERİNİN İNCELENMESİ”, Ata Diş Hek Fak Derg, vol. 30, no. 2, pp. 181–187, 2020, doi: 10.17567/ataunidfd.652319.
ISNAD Sanko, Vildan et al. “MİKROKRİSTALİN SELÜLOZ İÇEREN DENTAL KOMPOZİT REÇİNELERİN MEKANİK VE RENK ÖZELLİKLERİNİN İNCELENMESİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 30/2 (April 2020), 181-187. https://doi.org/10.17567/ataunidfd.652319.
JAMA Sanko V, Aydemir Sezer Ü, Basağaoğlu Demirekin Z, Eroğlu E, Türkaslan S, Sezer S. MİKROKRİSTALİN SELÜLOZ İÇEREN DENTAL KOMPOZİT REÇİNELERİN MEKANİK VE RENK ÖZELLİKLERİNİN İNCELENMESİ. Ata Diş Hek Fak Derg. 2020;30:181–187.
MLA Sanko, Vildan et al. “MİKROKRİSTALİN SELÜLOZ İÇEREN DENTAL KOMPOZİT REÇİNELERİN MEKANİK VE RENK ÖZELLİKLERİNİN İNCELENMESİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, vol. 30, no. 2, 2020, pp. 181-7, doi:10.17567/ataunidfd.652319.
Vancouver Sanko V, Aydemir Sezer Ü, Basağaoğlu Demirekin Z, Eroğlu E, Türkaslan S, Sezer S. MİKROKRİSTALİN SELÜLOZ İÇEREN DENTAL KOMPOZİT REÇİNELERİN MEKANİK VE RENK ÖZELLİKLERİNİN İNCELENMESİ. Ata Diş Hek Fak Derg. 2020;30(2):181-7.

Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır. Tıklayınız.