Review
BibTex RIS Cite
Year 2020, Volume: 30 Issue: 4, 659 - 670, 15.10.2020
https://doi.org/10.17567/ataunidfd.661479

Abstract

References

  • 1. Bhatt RA, Rozental TD. Bone graft substitutes. Hand Clinic. 2012; 28: 457–468.
  • 2. Köse Hİ, Özden B. Ağız ve çene cerrahisinde periosteumun greft olarak kullanımı: literatür derlemesi. J Dent Fac Atatürk Üni. 2016; 16: 137- 140.
  • 3. Chiarello E, Cadossi M, Tedesco G, Capra P. Autograft, allograft and bone substitutes in reconstructive orthopedic surgery. Aging Clin Exp Res. 2013; 25: 101-103.
  • 4. Khan SN, Cammisa JFP, Sandhu HS, Diwan AD, Girardi FP, Lane JM. The biology of bone grafting. J Am Acad Orthop Surg. 2005; 13: 77-86.
  • 5. Sukumar S, Drizhal I. Bone grafts in periodontal therapy. Acta Medica. 2008; 51: 203–207.
  • 6. Şençimen M, Gülses A, Varol A, Okçu KM, Bayar GR. Mandibuler simfiz bölgesinden kemik grefti alınmasına yönelik iki basit cerrahi teknik. J Dent Fac Atatürk Üni. 2010; 3: 12-16.
  • 7. Esposito M, Grusovin MG, Felice P, Karatzopoulos G, Worthington HV, Coulthard P. The efficacy of horizontal and vertical ridge augmentation procedures for dental implants. a cochrane systematic review. Eur J Oral Implantol. 2009; 2; 167-184.
  • 8. Chiapasco M, Casentini P, Zaniboni M. Bone augmentation procedures in implant dentistry. Int J Oral Maxillofac Implants. 2009; 24: 237–259.
  • 9. Kim YK, Kim SG, Byeon JH, Lee HJ, Um IU, Lim SC, Kim SY. Development of a novel bone grafting material using autogenous teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010; 109: 496–503.
  • 10. Buser D. 20 years of guided bone regeneration in implant dentistry. 2th. New Malden: Surrey: Quintessence Publishing; 2010. p.1-15.
  • 11. White DJ. The application of in vitro models to research on demineralization and remineralization of the teeth. Adv Dent Res. 1995; 9: 175–193.
  • 12. Jones SJ, Boyde A. Ultrastructure of dentin and dentinogenesis. In: Linde A. editor. Dentin and dentinogenesis. 2th. Boca Raton: Florida: CRC Press; 1984. p. 81-134.
  • 13. Goldberg M, Kulkarni AB, Young M, Boskey A. Dentin: structure, composition and mineralization. Front Biosci (Elite ed.); 2011; 3: 711–735.
  • 14. He L, Hao Y, Zhena L, Liu H, Shao M, Xua X, Liang K, Gao Y, Yuan H, Li J, Li J, Cheng L, van Loveren C. Biomineralization of dentin. J Struct Biol. 2019; 207: 115–122.
  • 15. Okamoto M, Takahashi Y, Komichi S, Ali M, Yoneda N, Ishimoto T, Nakano T, Hayashi M.Novel evaluation method of dentin repair by direct pulp capping using high-resolution micro-computed tomography. Clin Oral Investig. 2018; 22: 2879-2887.
  • 16. Cao CY, Mei ML, Li QL, Lo EC, Chu CH. Methods for biomimetic remineralization of human dentine: a systematic review. Int J Mol Sci. 2015; 16: 4615-4627.
  • 17. Silver FH, Langley KH, Trelstad RL. Type I collagen fibrillogenesis: initiation via reversible linear and lateral growth steps. Biopolymers. 2004; 18: 2523–2535.
  • 18. Waddington RJ, Hall RC, Embery G, Lloyd DM. Changing profiles of proteoglycans in the transition of predentine to dentine. Matrix Biol. 2003; 22:153–161.
  • 19. Schilke R, Lisson JA, Bauss O, Geurtsen W. Comparison of the number and diameter of dentinal tubules in human and bovine dentine by scanning electron microscopic investigation. Arch Oral Biol. 2000; 45:355–361.
  • 20. de Mattos Pimenta Vidal C, Leme-Kraus AA, Rahman M, Farina AP, Bedran-Russo AK. Role of proteoglycans on the biochemical and biomechanical properties of dentin organic matrix. Arch Oral Biol. 2017; 82: 203–208.
  • 21. Boskey AL. Biomineralization: conflicts, challenges, and opportunities. J Cell Biochem Suppl. 1998; 83-91.
  • 22. Nudelman F, Lausch AJ, Sommerdijk NA, Sone ED. In vitro models of collagen biomineralization. J Struct Biol. 2013; 183: 258-269.
  • 23. Barralet J, Best S, Bonfield W. Carbonate substitution in precipitated hydroxyapatite: an investigation into the effects of reaction temperature and bicarbonate ion concentration. J Biomed Mater Res. 1998; 41: 79–86.
  • 24. Teruel JD, Alcolea A, Hernández A, Ortiz AJ. Comparison of chemical composition of enamel and dentine in human, bovine, porcine and ovine teeth. Arch Oral Biol. 2015; 60: 768–775.
  • 25. Youssef AR, Emara R, Taher MM, Al-Allaf FA, Almalki M, Almasri MA, Siddiqui SS. Effects of mineral trioxide aggregate, calcium hydroxide, biodentine and Emdogain on osteogenesis, Odontogenesis, angiogenesis and cell viability of dental pulp stem cells. BMC Oral Health. 2019; 2: 19:133.
  • 26. Ritchie H. The functional significance of dentin sialoprotein-phosphophoryn and dentin sialoprotein. Int J Oral Sci. 2018; 10: 31.
  • 27. Mazzoni A, Tjäderhane L, Checchi V, Di Lenarda R, Salo T, Tay FR, Pashley DH, Breschi L. Role of dentin MMPs in caries progression and bond stability. J Dent Res. 2015; 94: 241-51.
  • 28. Guven EP, Yalvac ME, Sahin F, Yazici MM, Rizvanov AA, Bayirli G. Effect of dental materials calcium hydroxide-containing cement, mineral trioxide aggregate, and enamel matrix derivative on proliferation and differentiation of human tooth germ stem cells. J Endod. 2011; 37: 650–656.
  • 29. Alford AI, Hankenson KD. Matricellular proteins: extracellular modulators of bone development, remodeling, and regeneration. Bone. 2006; 38: 749–757.
  • 30. Jadlowiec JA, Zhang X, Li J, Campbell PG, Sfeir C. Extracellular matrix-mediated signaling by dentin phosphophoryn involves activation of the Smad pathway independent of bone morphogenetic protein. J Biol Chem. 2006; 281: 5341–5347.
  • 31. Van der Rest M, Garrone R. Collagen family of proteins. FASEB J. 1991; 5: 2814–2823.
  • 32. Iohara K, Nakashima M, Ito M, Ishikawa M, Nakasima A, Akamine A. Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2. J Dent Res. 2004; 83: 590–595.
  • 33. Ike M, Urist MR. Recycled dentin root matrix for a carrier of recombinant human bone morphogenetic protein. J Oral Implantol. 1998; 24: 124–132.
  • 34. Steiglitz BM, Ayala M, Narayanan K, George A, Greenspan DS. Bone morphogenetic protein-1/ Tolloid-like proteinases process dentin matrix protein-1. J Biol Chem. 2004; 279: 980–986.
  • 35. Chen S, Gluhak-Heinrich J, Martinez M, Li T, Wu Y, Chuang H-H, Chen L, Dong J, Gay I, MacDougall M. Bone morphogenetic protein-2 mediates dentin sialophosphoprotein expression and odontoblast differentiation via NF-Y signaling. J Biol Chem. 2008; 283 :19359–19370.
  • 36. Ni SL, Zhang J, Liu X, Li XW, Sun YJ, Zhang X, Wang L, Lu JJ, Cui Y, Zheng CY, Han B, Sun HC. Effects of human bone morphogenetic protein 2 (hBMP2) on tertiary dentin formation. Am J Transl Res. 2018; 10: 2868-2876.
  • 37. Um IW, Ku JK, Lee BK, Yun PY, Lee JK, Nam JH. Postulated release profile of recombinant human bone morphogenetic protein-2 (rhBMP-2) from demineralized dentin matrix. J Korean Assoc Oral Maxillofac Surg. 2019; 45: 123–128.
  • 38. Prockop DJ, Sieron AL, Li SW. Procollagen N-proteinase and procollagen C-proteinase. Two unusual metalloproteinases that are essential for procollagen processing probably have important roles in development and cell signaling. Matrix Biol. 1998; 16: 399–408.
  • 39. von Marschall Z, Fisher LW. Dentin sialophosphoprotein (DSPP) is cleaved into its two natural dentin matrix products by three isoforms of bone morphogenetic protein-1 (BMP1). Matrix Biol. 2010; 29: 295-303.
  • 40. Li W, Chen L, Chen Z, Wu L, Feng J, Wang F, Shoff L, Li X, Donly KJ, MacDougall M, Chen S. Dentin sialoprotein facilitates dental mesenchymal cell differentiation and dentin formation. Sci Rep. 2017; 7: 300.
  • 41. Almushayt A, Narayanan K, Zaki AE, George A. Dentin matrix protein 1 induces cytodifferentiation of dental pulp stem cells into odontoblasts. Gene Ther. 2006; 13: 611-620.
  • 42. Alimohamad H, Habijanac T, Larjava H, Häkkinen L. Colocalization of the collagen-binding proteoglycans decorin, biglycan, fibromodulin and lumican with different cells in human gingiva. J Periodontal Res. 2005; 40: 73-86.
  • 43. Bertassoni LE, Orgel JP, Antipova O, Swain MV. The dentin organic matrix - limitations of restorative dentistry hidden on the nanometer scale. Acta biomaterialia. 2012; 8: 2419–2433.
  • 44. Christiansen DL, Huang EK, Silver FH. Assembly of type I collagen: fusion of fibril subunits and the influence of fibril diameter on mechanical properties. Matrix Biol. 2000; 19 :409–420.
  • 45. Milan AM, Sugars RV, Embery G, Waddington RJ. Modulation of collagen fibrillogenesis by dentinal proteoglycans. Calcif Tissue Int. 2005; 76:127–135.
  • 46. Di Foggia M, Prati C, Gandolfi MG, Taddei P. An in vitro study on dentin demineralization and remineralization: Collagen rearrangements and influence on the enucleated phase. J Inorg Biochem. 2019; 193: 84-93.
  • 47. Murata M. Collagen biology for bone regenerative surgery. J Korean Assoc Oral Maxillofac Surg. 2012; 38: 321–325.
  • 48. Iohara K, Nakashima M, Ito M, Ishikawa M, Nakasima A, Akamine A. Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2. J Dent Res. 2004; 83: 590–595.
  • 49. Sereda G, VanLaecken A, Turner JA.Monitoring demineralization and remineralization of human dentin by characterization of its structure with resonance-enhanced AFM-IR chemical mapping, nanoindentation, and SEM. Dent Mater. 2019; 35: 617-626.
  • 50. Wiesmann H, Meyer U, Plate U, Höhling H. Aspects of collagen mineralization in hard tissue formation. Int Rev Cytol. 2004; 242: 121–156.
  • 51. Huang B, Sun Y, Maciejewska I, Qin D, Peng T, McIntyre B, Wygant J, Butler WT, Qin C. Distribution of SIBLING proteins in the organic and inorganic phases of rat dentin and bone. Eur J Oral Sci. 2008; 116: 104–112.
  • 52. Bertassoni LE. Dentin on the nanoscale: Hierarchical organization, mechanical behavior and bioinspired engineering. Dent Mater. 2017; 33: 637–649.
  • 53. Niu LN, Jee SE, Jiao K, Tonggu L, Li M, Wang L, Yang YD, Bian JH, Breschi L, Jang SS, Chen JH, Pashley DH, Tay FR. Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality. Nat Mater. 2017; 16: 370-378.
  • 54. Gulseren G, Tansik G, Garifullin R, Tekinay AB, Guler OB. Dentin phosphoprotein mimetic peptide nanofibers promote biomineralization. Macromol. Biosci. 2019; 19: e1800080.
  • 55. Suzuki S, Sreenath T, Haruyama N, Honeycutt C, Terse A, Cho A, Kohler T, Müller R, Goldberg M, Kulkarni AB. Dentin sialoprotein and dentin phosphoprotein have distinct roles in dentin mineralization. Matrix Biol. 2009; 28: 221–229.
  • 56. Srinivasan R, Chen B, Gorskil JP, George A. Recombinant expression and characterization of dentin matrix protein 1. Connect Tissue Res. 1999; 40: 251-258.
  • 57. Padovano J, Ravindran S, Snee P, Ramachandran A, Bedran-Russo A, George A. DMP1-derived peptides promote remineralization of human dentin. J Dent Res. 2015; 94: 608–614.
  • 58. Orsini G, Ruggeri A, Mazzoni A, Nato F, Falconi M, Putignano A, Di Lenarda R, Nanci A, Breschi L. Immunohistochemical localization of dentin matrix protein 1 in human dentin. Eur J Histochem. 2008; 52: 215-220.
  • 59. He LH, Swain MV. Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics. J Mech Behav Biomed Mater. 2008; 1: 18-29.
  • 60. Goldberg M, Takagi M. Dentine proteoglycans: composition, ultrastructure and functions. Histochem J. 1993; 25: 781-806.
  • 61. Gandhi NS, Mancera RL. The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des. 2008; 72: 455-482.
  • 62. Stankoska K, Sarram L, Smith S, Bedran-Russo AK, Little CB, Swain MV, Bertassoni LE. Immunolocalization and distribution of proteoglycans in carious dentine. Aust Dent J. 2016; 61: 288-297.
  • 63. Bertassoni LE, Swain MV. The contribution of proteoglycans to the mechanical behavior of mineralized tissues. J Mech Behav Biomed Mater. 2014; 38: 91–104.
  • 64. Kim YK, Kim SG, Bae JH, Um IW, Oh JS, Jeong KI. Guided bone regeneration using autogenous tooth bone graft in implant therapy: case series. Implant Dent. 2014; 23: 138–143.
  • 65. Joshi CP, Dani NH, Khedkar SU. Alveolar ridge preservation using autogenous tooth graft versus beta-tricalcium phosphate alloplast: A randomized, controlled, prospective, clinical pilot study. J Indian Soc Periodontol. 2016; 20: 429-434.
  • 66. Lee JY, Kim YK. Retrospective cohort study of autogenous tooth bone graft. Oral Biol Res. 2012; 36: 39–43.
  • 67. Jeong KI, Kim SG, Kim YK, Oh JS, Jeong MA, Park JJ. Clinical study of graft materials using autogenous teeth in maxillary sinus augmentation. Implant Dent. 2011; 20: 471–475.
  • 68. Jun SH, Ahn JS, Lee JI, Ahn KJ, Yun PY, Kim YK. A prospective study on the effectiveness of newly developed autogenous tooth bone graft material for sinus bone graft procedure. J Adv Prosthodont. 2014; 6: 528-538.
  • 69. Upadhyay P, Blaggana V, Tripathi P, Jindal M. Treatment of furcation involvement using autogenous tooth graft with 1-year follow-up: a case series. Clin Adv Periodont. 2019; 9: 4-8.
  • 70. Kim YK, Lee J, Kim KW, Um IW, Murata M, Ito K. Analysis of organic components and osteoinductivity in autogenous tooth bone graft material. J Korean Assoc Maxillofac Plast Reconstr Surg. 2013; 35: 353-359.
  • 71. Bessho K, Tagawa T, Murata M. Purification of rabbit bone morphogenetic protein derived from bone, dentin, and wound tissue after tooth extraction. J Oral Maxillofac Surg. 1990; 48: 162-169.
  • 72. Calvo-Guirado JL, Maté-Sánchez de Val JE, Ramos-Oltra ML, Pérez-Albacete Martínez C, Ramírez-Fernández MP, Maiquez-Gosálvez M, Gehrke SA, Fernández-Domínguez M, Romanos GE, Delgado-Ruiz RA. The use of tooth particles as a biomaterial in post-extraction sockets. Experimental study in dogs. Dent J. 2018; 6: E12.
  • 73. Kim SK, Kim SW, Kim KW. Effect on bone formation of the autogenous tooth graft in the treatment of peri-implant vertical bone defects in the minipigs. Maxillofac Plast Reconstr Surg. 2015; 37: 2.
  • 74. Lee DH, Yang KY, Lee JK. Porcine study on the efficacy of autogenous tooth bone in the maxillary sinus. J Korean Assoc Oral Maxillofac Surg. 2013; 39: 120-126.
  • 75. Kim YK, Kim SG, Um IW, Kim KW. Bone grafts using autogenous tooth blocks: A case series. Implant Dent. 2013; 22: 584–589.
  • 76. Lee JY, Kim YK, Yi YJ, Choi JH. Clinical evaluation of ridge augmentation using autogenous tooth bone graft material: case series study. J Korean Assoc Oral Maxillofac Surg 2013; 39: 156-160.
  • 77. Pohl V, Pohl S, Sulzbacher I, Fuerhauser R, Mailath-Pokorny G, Haas R. Alveolar ridge augmentation using dystopic autogenous tooth: 2 year results of an open prospective study. Int J Oral Maxillofac Implants. 2017; 32: 870-879.
  • 78. Parvini P, Sader R, Sahin D, Becker J, Schwarz F. Radiographic outcomes following lateral alveolar ridge augmentation using autogenous tooth roots. Int J Implant Dent. 2018; 4: 31.
  • 79. Del Canto-Díaz A, De Elío-Oliveros J, Del Canto-Díaz M, Alobera-Gracia MA, Del Canto-Pingarrón M, Martínez-González JM. Use of autologous tooth-derived graft material in the post-extraction dental socket. Pilot study. Med Oral Patol Oral Cir Bucal. 2019; 24: 53-60.
  • 80. Kim YK, Yun PY, Um IW, Lee HJ, Yi YJ, Bae JH, Lee J. Alveolar ridge preservation of an extraction socket using autogenous tooth bone graft material for implant site development: prospective case series. J Adv Prosthodont. 2014; 6: 521-527.
  • 81. Kim YK, Lee J, Yun JY, Yun PY, Um IW. Comparison of autogenous tooth bone graft and synthetic bone graft materials used for bone resorption around implants after crestal approach sinus lifting: a retrospective study. J Periodontal Implant Sci. 2014; 44: 216-221.
  • 82. Pang KM, Um IW, Kim YK, Woo JM, Kim SM, Lee JH. Autogenous demineralized dentin matrix from extracted tooth for the augmentation of alveolar bone defect: a prospective randomized clinical trial in comparison with anorganic bovine bone. Clin Oral Implant Res. 2017; 28: 809–815.

OTOJEN DİŞ KEMİK GREFTİNİN BİYOLOJİK ÖZELLİKLERİ VE KLİNİK KULLANIMI

Year 2020, Volume: 30 Issue: 4, 659 - 670, 15.10.2020
https://doi.org/10.17567/ataunidfd.661479

Abstract

Kemik dokunun tamiri ve yenilenmesinde, allogreft, ksenogreft ve sentetik kemik greftlerinin eksikliklerinin üstesinden gelebilecek ve otojen kemik greftlerine benzer kemik rejenerasyon kapasitesine sahip yeni materyaller geliştirmek için çalışmalar devam etmektedir. Otojen diş kemik greftleri, fiziksel ve biyolojik yapısı kemik doku ile benzer olan bir materyaldir. Bu greft, inorganik ve organik olmak üzere iki bileşene sahiptir. Organik yapı içerisinde yer alan kemik morfogenetik proteinleri, kollajen ve kollajen olmayan proteinler ile inorganik yapının oluşumunda bir iskelet görevi görür. İnorganik yapının büyük bir yüzdesini oluşturan hidroksiapatit kristalleri dokuya dayanıklılık kazandırır ve organik yapı ile birlikte yeni kemik doku oluşumunu sağlar. Bu derleme, geleneksel kemik greft materyallerine göre daha iyi bir alternatif olarak hizmet edebileceği düşünülen otojen diş kemik greftleri hakkında bilgi sunmaktadır.
Anahtar kelimeler: Otojen diş kemik grefti, kemik ogmentasyonu, yeni geliştirilen kemik greft materyalleri
BIOLOGICAL FEATURES AND CLINICAL USE OF AUTOGENOUS TOOTH BONE GRAFT
ABSTRACT
The studies focus on new bone grafts which as an alternative of allograft, xenograft and synthetic bone graft and, have a similar bone regeneration capacity with autogenous bone grafts. Autogenous tooth bone grafts are materials whose physical and biological structure is similar that of the bone tissue. This graft has two components, inorganic and organic. Organic structure that includes bone morphogenetic proteins, collagen and non-collagen proteins act as a scaffold for the formation of the inorganic structure. Hydroxyapatite crystals, which make up a large percentage of the inorganic structure, give the tissue durability and provide new bone tissue formation with the organic structure. This review provides knowledge on autogenous tooth bone grafts that may serve as a better alternative to conventional bone graft materials.
Key words: Autogenous tooth bone graft; bone augmentation; novel bone grafting materials

References

  • 1. Bhatt RA, Rozental TD. Bone graft substitutes. Hand Clinic. 2012; 28: 457–468.
  • 2. Köse Hİ, Özden B. Ağız ve çene cerrahisinde periosteumun greft olarak kullanımı: literatür derlemesi. J Dent Fac Atatürk Üni. 2016; 16: 137- 140.
  • 3. Chiarello E, Cadossi M, Tedesco G, Capra P. Autograft, allograft and bone substitutes in reconstructive orthopedic surgery. Aging Clin Exp Res. 2013; 25: 101-103.
  • 4. Khan SN, Cammisa JFP, Sandhu HS, Diwan AD, Girardi FP, Lane JM. The biology of bone grafting. J Am Acad Orthop Surg. 2005; 13: 77-86.
  • 5. Sukumar S, Drizhal I. Bone grafts in periodontal therapy. Acta Medica. 2008; 51: 203–207.
  • 6. Şençimen M, Gülses A, Varol A, Okçu KM, Bayar GR. Mandibuler simfiz bölgesinden kemik grefti alınmasına yönelik iki basit cerrahi teknik. J Dent Fac Atatürk Üni. 2010; 3: 12-16.
  • 7. Esposito M, Grusovin MG, Felice P, Karatzopoulos G, Worthington HV, Coulthard P. The efficacy of horizontal and vertical ridge augmentation procedures for dental implants. a cochrane systematic review. Eur J Oral Implantol. 2009; 2; 167-184.
  • 8. Chiapasco M, Casentini P, Zaniboni M. Bone augmentation procedures in implant dentistry. Int J Oral Maxillofac Implants. 2009; 24: 237–259.
  • 9. Kim YK, Kim SG, Byeon JH, Lee HJ, Um IU, Lim SC, Kim SY. Development of a novel bone grafting material using autogenous teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010; 109: 496–503.
  • 10. Buser D. 20 years of guided bone regeneration in implant dentistry. 2th. New Malden: Surrey: Quintessence Publishing; 2010. p.1-15.
  • 11. White DJ. The application of in vitro models to research on demineralization and remineralization of the teeth. Adv Dent Res. 1995; 9: 175–193.
  • 12. Jones SJ, Boyde A. Ultrastructure of dentin and dentinogenesis. In: Linde A. editor. Dentin and dentinogenesis. 2th. Boca Raton: Florida: CRC Press; 1984. p. 81-134.
  • 13. Goldberg M, Kulkarni AB, Young M, Boskey A. Dentin: structure, composition and mineralization. Front Biosci (Elite ed.); 2011; 3: 711–735.
  • 14. He L, Hao Y, Zhena L, Liu H, Shao M, Xua X, Liang K, Gao Y, Yuan H, Li J, Li J, Cheng L, van Loveren C. Biomineralization of dentin. J Struct Biol. 2019; 207: 115–122.
  • 15. Okamoto M, Takahashi Y, Komichi S, Ali M, Yoneda N, Ishimoto T, Nakano T, Hayashi M.Novel evaluation method of dentin repair by direct pulp capping using high-resolution micro-computed tomography. Clin Oral Investig. 2018; 22: 2879-2887.
  • 16. Cao CY, Mei ML, Li QL, Lo EC, Chu CH. Methods for biomimetic remineralization of human dentine: a systematic review. Int J Mol Sci. 2015; 16: 4615-4627.
  • 17. Silver FH, Langley KH, Trelstad RL. Type I collagen fibrillogenesis: initiation via reversible linear and lateral growth steps. Biopolymers. 2004; 18: 2523–2535.
  • 18. Waddington RJ, Hall RC, Embery G, Lloyd DM. Changing profiles of proteoglycans in the transition of predentine to dentine. Matrix Biol. 2003; 22:153–161.
  • 19. Schilke R, Lisson JA, Bauss O, Geurtsen W. Comparison of the number and diameter of dentinal tubules in human and bovine dentine by scanning electron microscopic investigation. Arch Oral Biol. 2000; 45:355–361.
  • 20. de Mattos Pimenta Vidal C, Leme-Kraus AA, Rahman M, Farina AP, Bedran-Russo AK. Role of proteoglycans on the biochemical and biomechanical properties of dentin organic matrix. Arch Oral Biol. 2017; 82: 203–208.
  • 21. Boskey AL. Biomineralization: conflicts, challenges, and opportunities. J Cell Biochem Suppl. 1998; 83-91.
  • 22. Nudelman F, Lausch AJ, Sommerdijk NA, Sone ED. In vitro models of collagen biomineralization. J Struct Biol. 2013; 183: 258-269.
  • 23. Barralet J, Best S, Bonfield W. Carbonate substitution in precipitated hydroxyapatite: an investigation into the effects of reaction temperature and bicarbonate ion concentration. J Biomed Mater Res. 1998; 41: 79–86.
  • 24. Teruel JD, Alcolea A, Hernández A, Ortiz AJ. Comparison of chemical composition of enamel and dentine in human, bovine, porcine and ovine teeth. Arch Oral Biol. 2015; 60: 768–775.
  • 25. Youssef AR, Emara R, Taher MM, Al-Allaf FA, Almalki M, Almasri MA, Siddiqui SS. Effects of mineral trioxide aggregate, calcium hydroxide, biodentine and Emdogain on osteogenesis, Odontogenesis, angiogenesis and cell viability of dental pulp stem cells. BMC Oral Health. 2019; 2: 19:133.
  • 26. Ritchie H. The functional significance of dentin sialoprotein-phosphophoryn and dentin sialoprotein. Int J Oral Sci. 2018; 10: 31.
  • 27. Mazzoni A, Tjäderhane L, Checchi V, Di Lenarda R, Salo T, Tay FR, Pashley DH, Breschi L. Role of dentin MMPs in caries progression and bond stability. J Dent Res. 2015; 94: 241-51.
  • 28. Guven EP, Yalvac ME, Sahin F, Yazici MM, Rizvanov AA, Bayirli G. Effect of dental materials calcium hydroxide-containing cement, mineral trioxide aggregate, and enamel matrix derivative on proliferation and differentiation of human tooth germ stem cells. J Endod. 2011; 37: 650–656.
  • 29. Alford AI, Hankenson KD. Matricellular proteins: extracellular modulators of bone development, remodeling, and regeneration. Bone. 2006; 38: 749–757.
  • 30. Jadlowiec JA, Zhang X, Li J, Campbell PG, Sfeir C. Extracellular matrix-mediated signaling by dentin phosphophoryn involves activation of the Smad pathway independent of bone morphogenetic protein. J Biol Chem. 2006; 281: 5341–5347.
  • 31. Van der Rest M, Garrone R. Collagen family of proteins. FASEB J. 1991; 5: 2814–2823.
  • 32. Iohara K, Nakashima M, Ito M, Ishikawa M, Nakasima A, Akamine A. Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2. J Dent Res. 2004; 83: 590–595.
  • 33. Ike M, Urist MR. Recycled dentin root matrix for a carrier of recombinant human bone morphogenetic protein. J Oral Implantol. 1998; 24: 124–132.
  • 34. Steiglitz BM, Ayala M, Narayanan K, George A, Greenspan DS. Bone morphogenetic protein-1/ Tolloid-like proteinases process dentin matrix protein-1. J Biol Chem. 2004; 279: 980–986.
  • 35. Chen S, Gluhak-Heinrich J, Martinez M, Li T, Wu Y, Chuang H-H, Chen L, Dong J, Gay I, MacDougall M. Bone morphogenetic protein-2 mediates dentin sialophosphoprotein expression and odontoblast differentiation via NF-Y signaling. J Biol Chem. 2008; 283 :19359–19370.
  • 36. Ni SL, Zhang J, Liu X, Li XW, Sun YJ, Zhang X, Wang L, Lu JJ, Cui Y, Zheng CY, Han B, Sun HC. Effects of human bone morphogenetic protein 2 (hBMP2) on tertiary dentin formation. Am J Transl Res. 2018; 10: 2868-2876.
  • 37. Um IW, Ku JK, Lee BK, Yun PY, Lee JK, Nam JH. Postulated release profile of recombinant human bone morphogenetic protein-2 (rhBMP-2) from demineralized dentin matrix. J Korean Assoc Oral Maxillofac Surg. 2019; 45: 123–128.
  • 38. Prockop DJ, Sieron AL, Li SW. Procollagen N-proteinase and procollagen C-proteinase. Two unusual metalloproteinases that are essential for procollagen processing probably have important roles in development and cell signaling. Matrix Biol. 1998; 16: 399–408.
  • 39. von Marschall Z, Fisher LW. Dentin sialophosphoprotein (DSPP) is cleaved into its two natural dentin matrix products by three isoforms of bone morphogenetic protein-1 (BMP1). Matrix Biol. 2010; 29: 295-303.
  • 40. Li W, Chen L, Chen Z, Wu L, Feng J, Wang F, Shoff L, Li X, Donly KJ, MacDougall M, Chen S. Dentin sialoprotein facilitates dental mesenchymal cell differentiation and dentin formation. Sci Rep. 2017; 7: 300.
  • 41. Almushayt A, Narayanan K, Zaki AE, George A. Dentin matrix protein 1 induces cytodifferentiation of dental pulp stem cells into odontoblasts. Gene Ther. 2006; 13: 611-620.
  • 42. Alimohamad H, Habijanac T, Larjava H, Häkkinen L. Colocalization of the collagen-binding proteoglycans decorin, biglycan, fibromodulin and lumican with different cells in human gingiva. J Periodontal Res. 2005; 40: 73-86.
  • 43. Bertassoni LE, Orgel JP, Antipova O, Swain MV. The dentin organic matrix - limitations of restorative dentistry hidden on the nanometer scale. Acta biomaterialia. 2012; 8: 2419–2433.
  • 44. Christiansen DL, Huang EK, Silver FH. Assembly of type I collagen: fusion of fibril subunits and the influence of fibril diameter on mechanical properties. Matrix Biol. 2000; 19 :409–420.
  • 45. Milan AM, Sugars RV, Embery G, Waddington RJ. Modulation of collagen fibrillogenesis by dentinal proteoglycans. Calcif Tissue Int. 2005; 76:127–135.
  • 46. Di Foggia M, Prati C, Gandolfi MG, Taddei P. An in vitro study on dentin demineralization and remineralization: Collagen rearrangements and influence on the enucleated phase. J Inorg Biochem. 2019; 193: 84-93.
  • 47. Murata M. Collagen biology for bone regenerative surgery. J Korean Assoc Oral Maxillofac Surg. 2012; 38: 321–325.
  • 48. Iohara K, Nakashima M, Ito M, Ishikawa M, Nakasima A, Akamine A. Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2. J Dent Res. 2004; 83: 590–595.
  • 49. Sereda G, VanLaecken A, Turner JA.Monitoring demineralization and remineralization of human dentin by characterization of its structure with resonance-enhanced AFM-IR chemical mapping, nanoindentation, and SEM. Dent Mater. 2019; 35: 617-626.
  • 50. Wiesmann H, Meyer U, Plate U, Höhling H. Aspects of collagen mineralization in hard tissue formation. Int Rev Cytol. 2004; 242: 121–156.
  • 51. Huang B, Sun Y, Maciejewska I, Qin D, Peng T, McIntyre B, Wygant J, Butler WT, Qin C. Distribution of SIBLING proteins in the organic and inorganic phases of rat dentin and bone. Eur J Oral Sci. 2008; 116: 104–112.
  • 52. Bertassoni LE. Dentin on the nanoscale: Hierarchical organization, mechanical behavior and bioinspired engineering. Dent Mater. 2017; 33: 637–649.
  • 53. Niu LN, Jee SE, Jiao K, Tonggu L, Li M, Wang L, Yang YD, Bian JH, Breschi L, Jang SS, Chen JH, Pashley DH, Tay FR. Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality. Nat Mater. 2017; 16: 370-378.
  • 54. Gulseren G, Tansik G, Garifullin R, Tekinay AB, Guler OB. Dentin phosphoprotein mimetic peptide nanofibers promote biomineralization. Macromol. Biosci. 2019; 19: e1800080.
  • 55. Suzuki S, Sreenath T, Haruyama N, Honeycutt C, Terse A, Cho A, Kohler T, Müller R, Goldberg M, Kulkarni AB. Dentin sialoprotein and dentin phosphoprotein have distinct roles in dentin mineralization. Matrix Biol. 2009; 28: 221–229.
  • 56. Srinivasan R, Chen B, Gorskil JP, George A. Recombinant expression and characterization of dentin matrix protein 1. Connect Tissue Res. 1999; 40: 251-258.
  • 57. Padovano J, Ravindran S, Snee P, Ramachandran A, Bedran-Russo A, George A. DMP1-derived peptides promote remineralization of human dentin. J Dent Res. 2015; 94: 608–614.
  • 58. Orsini G, Ruggeri A, Mazzoni A, Nato F, Falconi M, Putignano A, Di Lenarda R, Nanci A, Breschi L. Immunohistochemical localization of dentin matrix protein 1 in human dentin. Eur J Histochem. 2008; 52: 215-220.
  • 59. He LH, Swain MV. Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics. J Mech Behav Biomed Mater. 2008; 1: 18-29.
  • 60. Goldberg M, Takagi M. Dentine proteoglycans: composition, ultrastructure and functions. Histochem J. 1993; 25: 781-806.
  • 61. Gandhi NS, Mancera RL. The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des. 2008; 72: 455-482.
  • 62. Stankoska K, Sarram L, Smith S, Bedran-Russo AK, Little CB, Swain MV, Bertassoni LE. Immunolocalization and distribution of proteoglycans in carious dentine. Aust Dent J. 2016; 61: 288-297.
  • 63. Bertassoni LE, Swain MV. The contribution of proteoglycans to the mechanical behavior of mineralized tissues. J Mech Behav Biomed Mater. 2014; 38: 91–104.
  • 64. Kim YK, Kim SG, Bae JH, Um IW, Oh JS, Jeong KI. Guided bone regeneration using autogenous tooth bone graft in implant therapy: case series. Implant Dent. 2014; 23: 138–143.
  • 65. Joshi CP, Dani NH, Khedkar SU. Alveolar ridge preservation using autogenous tooth graft versus beta-tricalcium phosphate alloplast: A randomized, controlled, prospective, clinical pilot study. J Indian Soc Periodontol. 2016; 20: 429-434.
  • 66. Lee JY, Kim YK. Retrospective cohort study of autogenous tooth bone graft. Oral Biol Res. 2012; 36: 39–43.
  • 67. Jeong KI, Kim SG, Kim YK, Oh JS, Jeong MA, Park JJ. Clinical study of graft materials using autogenous teeth in maxillary sinus augmentation. Implant Dent. 2011; 20: 471–475.
  • 68. Jun SH, Ahn JS, Lee JI, Ahn KJ, Yun PY, Kim YK. A prospective study on the effectiveness of newly developed autogenous tooth bone graft material for sinus bone graft procedure. J Adv Prosthodont. 2014; 6: 528-538.
  • 69. Upadhyay P, Blaggana V, Tripathi P, Jindal M. Treatment of furcation involvement using autogenous tooth graft with 1-year follow-up: a case series. Clin Adv Periodont. 2019; 9: 4-8.
  • 70. Kim YK, Lee J, Kim KW, Um IW, Murata M, Ito K. Analysis of organic components and osteoinductivity in autogenous tooth bone graft material. J Korean Assoc Maxillofac Plast Reconstr Surg. 2013; 35: 353-359.
  • 71. Bessho K, Tagawa T, Murata M. Purification of rabbit bone morphogenetic protein derived from bone, dentin, and wound tissue after tooth extraction. J Oral Maxillofac Surg. 1990; 48: 162-169.
  • 72. Calvo-Guirado JL, Maté-Sánchez de Val JE, Ramos-Oltra ML, Pérez-Albacete Martínez C, Ramírez-Fernández MP, Maiquez-Gosálvez M, Gehrke SA, Fernández-Domínguez M, Romanos GE, Delgado-Ruiz RA. The use of tooth particles as a biomaterial in post-extraction sockets. Experimental study in dogs. Dent J. 2018; 6: E12.
  • 73. Kim SK, Kim SW, Kim KW. Effect on bone formation of the autogenous tooth graft in the treatment of peri-implant vertical bone defects in the minipigs. Maxillofac Plast Reconstr Surg. 2015; 37: 2.
  • 74. Lee DH, Yang KY, Lee JK. Porcine study on the efficacy of autogenous tooth bone in the maxillary sinus. J Korean Assoc Oral Maxillofac Surg. 2013; 39: 120-126.
  • 75. Kim YK, Kim SG, Um IW, Kim KW. Bone grafts using autogenous tooth blocks: A case series. Implant Dent. 2013; 22: 584–589.
  • 76. Lee JY, Kim YK, Yi YJ, Choi JH. Clinical evaluation of ridge augmentation using autogenous tooth bone graft material: case series study. J Korean Assoc Oral Maxillofac Surg 2013; 39: 156-160.
  • 77. Pohl V, Pohl S, Sulzbacher I, Fuerhauser R, Mailath-Pokorny G, Haas R. Alveolar ridge augmentation using dystopic autogenous tooth: 2 year results of an open prospective study. Int J Oral Maxillofac Implants. 2017; 32: 870-879.
  • 78. Parvini P, Sader R, Sahin D, Becker J, Schwarz F. Radiographic outcomes following lateral alveolar ridge augmentation using autogenous tooth roots. Int J Implant Dent. 2018; 4: 31.
  • 79. Del Canto-Díaz A, De Elío-Oliveros J, Del Canto-Díaz M, Alobera-Gracia MA, Del Canto-Pingarrón M, Martínez-González JM. Use of autologous tooth-derived graft material in the post-extraction dental socket. Pilot study. Med Oral Patol Oral Cir Bucal. 2019; 24: 53-60.
  • 80. Kim YK, Yun PY, Um IW, Lee HJ, Yi YJ, Bae JH, Lee J. Alveolar ridge preservation of an extraction socket using autogenous tooth bone graft material for implant site development: prospective case series. J Adv Prosthodont. 2014; 6: 521-527.
  • 81. Kim YK, Lee J, Yun JY, Yun PY, Um IW. Comparison of autogenous tooth bone graft and synthetic bone graft materials used for bone resorption around implants after crestal approach sinus lifting: a retrospective study. J Periodontal Implant Sci. 2014; 44: 216-221.
  • 82. Pang KM, Um IW, Kim YK, Woo JM, Kim SM, Lee JH. Autogenous demineralized dentin matrix from extracted tooth for the augmentation of alveolar bone defect: a prospective randomized clinical trial in comparison with anorganic bovine bone. Clin Oral Implant Res. 2017; 28: 809–815.
There are 82 citations in total.

Details

Primary Language Turkish
Subjects Dentistry
Journal Section Derleme
Authors

Gözde Işık 0000-0001-9572-3049

Banu Özveri Koyuncu This is me 0000-0002-0074-0055

Sema Çınar Becerik 0000-0003-2472-3599

Tayfun Günbay This is me 0000-0002-9685-3942

Publication Date October 15, 2020
Published in Issue Year 2020 Volume: 30 Issue: 4

Cite

APA Işık, G., Özveri Koyuncu, B., Çınar Becerik, S., Günbay, T. (2020). OTOJEN DİŞ KEMİK GREFTİNİN BİYOLOJİK ÖZELLİKLERİ VE KLİNİK KULLANIMI. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 30(4), 659-670. https://doi.org/10.17567/ataunidfd.661479
AMA Işık G, Özveri Koyuncu B, Çınar Becerik S, Günbay T. OTOJEN DİŞ KEMİK GREFTİNİN BİYOLOJİK ÖZELLİKLERİ VE KLİNİK KULLANIMI. Ata Diş Hek Fak Derg. October 2020;30(4):659-670. doi:10.17567/ataunidfd.661479
Chicago Işık, Gözde, Banu Özveri Koyuncu, Sema Çınar Becerik, and Tayfun Günbay. “OTOJEN DİŞ KEMİK GREFTİNİN BİYOLOJİK ÖZELLİKLERİ VE KLİNİK KULLANIMI”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 30, no. 4 (October 2020): 659-70. https://doi.org/10.17567/ataunidfd.661479.
EndNote Işık G, Özveri Koyuncu B, Çınar Becerik S, Günbay T (October 1, 2020) OTOJEN DİŞ KEMİK GREFTİNİN BİYOLOJİK ÖZELLİKLERİ VE KLİNİK KULLANIMI. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 30 4 659–670.
IEEE G. Işık, B. Özveri Koyuncu, S. Çınar Becerik, and T. Günbay, “OTOJEN DİŞ KEMİK GREFTİNİN BİYOLOJİK ÖZELLİKLERİ VE KLİNİK KULLANIMI”, Ata Diş Hek Fak Derg, vol. 30, no. 4, pp. 659–670, 2020, doi: 10.17567/ataunidfd.661479.
ISNAD Işık, Gözde et al. “OTOJEN DİŞ KEMİK GREFTİNİN BİYOLOJİK ÖZELLİKLERİ VE KLİNİK KULLANIMI”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 30/4 (October 2020), 659-670. https://doi.org/10.17567/ataunidfd.661479.
JAMA Işık G, Özveri Koyuncu B, Çınar Becerik S, Günbay T. OTOJEN DİŞ KEMİK GREFTİNİN BİYOLOJİK ÖZELLİKLERİ VE KLİNİK KULLANIMI. Ata Diş Hek Fak Derg. 2020;30:659–670.
MLA Işık, Gözde et al. “OTOJEN DİŞ KEMİK GREFTİNİN BİYOLOJİK ÖZELLİKLERİ VE KLİNİK KULLANIMI”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, vol. 30, no. 4, 2020, pp. 659-70, doi:10.17567/ataunidfd.661479.
Vancouver Işık G, Özveri Koyuncu B, Çınar Becerik S, Günbay T. OTOJEN DİŞ KEMİK GREFTİNİN BİYOLOJİK ÖZELLİKLERİ VE KLİNİK KULLANIMI. Ata Diş Hek Fak Derg. 2020;30(4):659-70.

Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır. Tıklayınız.