Research Article
BibTex RIS Cite

THE EFFECT OF AUTOCLAVE AND HEAT POLYMERIZATION TECHNIQUES OF INTERNAL ADAPTATION OF ACRYLIC RESINS

Year 2020, Volume: 30 Issue: 4, 614 - 619, 15.10.2020
https://doi.org/10.17567/ataunidfd.757302

Abstract

Aim: Polymerization shrinkage of the resin and distortion of the denture base due to thermal stress is virtually unavoidable during the processing of dentures. These adverse effects increase the gap between the denture base and underlying mucosa, resulting in an ill-fitting denture. A variety of methods have been used to evaluate the dimensional changes and/or adaptation accuracy of a denture base. This study compared the adaptation accuracy of maxillary complete denture bases processed using different polymerization techniques; conventional compression-molding technique and autoclave
polymerization techniques.
Material and Methods: 42 resin specimens were fabricated from three heat polymerizing denture base acrylics (Meliodent, Paladent, QC-20). The specimens were divided into six groups (n=7). Three of them were polymerized in a conventional water bath and other three were polymerized in autoclave. Internal adaptation was evaluated immediately after finishing by weighting a silicone film between the resin base and the metallic master model (silicone copy technique). Statistical analyses were performed with the SPSS Windows for 15.0. Data were submitted to ANOVA and Tukey’s post hoc tests at a significance level of 0.05.
Results: Comparisons are made among groups submitted to the different polymerization procedure. Interaction of material and polymerization procedure had a statistically significant effect on the final adaptation of the denture bases. When comparing the internal adaptation within each group, all groups of autoclave polymerization had significant decrease of weight of impression materials of mean values (meliodent water bath 2.03±0.17, meliodent autoclave 1.29±0.92; paladent water bath 2.14±0.18, paladent autoclave 1.31±0.94; QC-20 water bath 2.20±0.17, QC-20 autoclave 1.45±0.12). Better internal adaptations were observed when the samples were autoclave polymerized comparing to the conventional heat-polymerized group (p<0.05)
Conclusion: Increasing the internal adaptation of resin bases may be achieved by using autoclave polymerization technique, this would markedly contribute to the longevity of denture bases.
Keywords: denture bases, polymerization, autoclave

ISI VE OTOKLAV POLİMERİZASYONU TEKNİKLERİNİN AKRİLİK REZİNLERİN İNTERNAL ADAPTASYONU ÜZERİNE ETKİSİ
Özet
Amaç: Akrilik tam protezlerin polimerizasyon aşamasında termal stres ve polimerizasyon büzülmesi nedeniyle protez kaidesinin uyumsuzluğu genellikle kaçınılmazdır. Bu olumsuz etkiler, protez kaidesi ile mukoza arasındaki aralığı artırarak uyumsuz bir protez ile sonuçlanır. Protez kaidesinin boyutsal değişikliklerini ve/veya adaptasyonunu değerlendirmek için çeşitli yöntemler kullanılmaktadır. Bu çalışmada, konvansiyonel ısı ve basınç ile polimerizasyon ve otoklav polimerizasyonu teknikleri kullanılarak bitirilen maksiller tam protez kaidelerinin internal adaptasyonu karşılaştırılmıştır.
Gereç ve Yöntemler: 3 farklı ısı ile polimerize olan akrilik rezin sistemine (Meliodent, Paladent, QC-20) ait 42 adet örnek üretildi. Örnekler n=7 olacak şekilde 6 gruba bölündü, grupların üçüne konvansiyonel ısı ile polimerizasyon yöntemi uygulanırken diğer üçüne otoklav polimerizasyonu uygulandı. İnternal adaptasyon, bitimden hemen sonra kaide tabanı ile metalik ana model arasında bir silikon filme ağırlık uygulanması ile silikon kopya yöntemi ile değerlendirildi. İstatistiksel analizler SPSS Windows 15.0 ile yapıldı. Veriler ANOVA ve Tukey’in post hoc testleri ile 0.05 anlamlılık düzeyinde değerlendirildi.
Bulgular: Farklı polimerizasyon prosedürlerine tabi tutulan gruplar arasında karşılaştırmalar yapılmıştır. Rezin ve polimerizasyon prosedürünün etkileşimi, protez kaidesinin nihai adaptasyonu üzerinde istatistiksel olarak anlamlı bir etkiye sahiptir. Gruplar arası internal adaptasyon karşılaştırılması yapıldığında, otoklav polimerizasyonu uygulanan gruplarda konvansiyonel ısı ile polimerize edilen gruplara göre silikon film ağırlığında (g) anlamlı bir azalma gözlenmiştir (meliodent ısı 2.03±0.17, meliodent otoklav 1.29±0.92; paladent ısı 2.14±0.18, paladent otoklav 1.31±0.94; QC-20 ısı 2.20±0.17, QC-20 otoklav 1.45±0.12). Örneklerde, konvansiyonel ısı ile polimerize olan gruba kıyasla otoklav ile polimerizasyonda daha iyi internal adaptasyon belirlenmiştir (p <0.05).
Sonuç: Otoklav polimerizasyon yöntemi kullanılarak kaide rezininin internal adaptasyonu arttırılabilir, bu protezin uzun ömürlülüğüne önemli ölçüde katkıda bulunacaktır.
Anahtar kelimeler: protez kaideleri, polimerizasyon, otoklav

References

  • 1. Sushma R, Vande AV, Malvika SR, Abhijeet K, Pronob KS. A comparative study of the mechanical properties of clear and pink colored denture base acrylic resins. Ann Afr Med. 2018;17:178-82.
  • 2. Kaplan R, Özçelik B, Gürbüz A. Reinforcing methods of the acrylic resins used for the fabrication of complete dentures. Atatürk Üni. Diş Hek. Fak. Derg. 2006;1:70-6.
  • 3. Abdulwahhab SS: High-impact strength acrylic denture base material processed by autoclave. J Prosthodont Res. 2013;57:288-93.
  • 4. Gad MM, Fouda SM, ArRejaie AS, Al-Thobity AM. Comparative effect of different polymerization techniques on the flexural and surface properties of acrylic denture bases. J Prosthodont. 2019;28:458-65.
  • 5. Banerjee R, Banerjee S, Prabhudesai PS, et al: Influence of theprocessing technique on the flexural fatigue strength of denturebase resins: an in vitro investigation. Indian Dent Assoc. 2010;21:391-5.
  • 6. Chamberland C: Chronological Reference Marks. Paris; Pasteur Institute: 2007. p. 1-19.
  • 7. Ganzarolli SM, Mello JAN, Shinkai RS, Del Bel Cury AA. Internal adaptation and some physical properties of methacrylate-based denture base resins polymerized by different techniques. J Biomed Mater Res Part B: Appl Biomater. 2007;82:169-73.
  • 8. Akaltan F, Batak B, Oguz EI, Orhan K. Comparative analysis of denture base adaptation performance between pour and other conventional fabrication techniques. J Prosthet Dent. 2020;123:183.e1-183.e5.
  • 9. Ganzarolli SM, Rached RN, Garcia RC, Del Bel Cury AA. Effect of cooling procedure on final denture base adaptation. J Oral Rehabil. 2002;29:787-90.
  • 10. Gomes M, Broilo JR, Walber LF, Maccari PCA, Rosemary Sadami Arai Shinkai RSA. Adaptation of complete denture bases submitted to chemical polishing. J Appl Oral Sci. 2004;12:322-5.
  • 11. Sartori EA, Schmidt CB, Walber LF, Shinkai RS. Effect of microwave disinfection on denture base adaptation and resin surface roughness. Braz Dent J. 2006;17:195-200.
  • 12. Ono T, Kita S, Nokubi T. Dimensional accuracy of acrylic resin maxillary denture base polymerized by a new injection pressing method. Dent Mater J. 2004;23:348-52.
  • 13. Faot F, Costa MA, Del Bel Cury AA. Rodrigues Garcia RCM. Impact strength and fracture morphology of denture acrylic resins. J Prosthet Dent. 2006;96:367–73.
  • 14. Pfeiffer P, An N, Schmage P. Repair strength of hypoallergenic denture base materials. J Prosthet Dent. 2008;100:292-301.
  • 15. Parr GR, Rueggeberg FA. In vitro hardness, water sorption, and resin solubility of laboratory processed and autopolymerized long-term resilient denture liners over one year of water storage. J Prosthet Dent. 2002;88:139-44.
  • 16. Davenport JC. The oral distribution of Candida in denture stomatitis. Br Dent J. 1970;129:151-6.
  • 17. Durkan R, Oyar P. Comparison of mechanical and dynamic mechanical behaviors of different dental resins polymerized by different polymerization techniques. Niger J Clin Pract. 2018;21:1144-9.
  • 18. Craig RC. Prosthetic applications of polymers: Restorative Dental Materials. 10th ed, St. Louis; MO Mosby: 1997. p. 500-51.
  • 19. Durkan R, Ozel MB, Bağış B, Usanmaz A. In vitro comparison of autoclave polymerization on the transverse strength of denture base resins. Dent Mater J. 2008;27:640-2.
  • 20. Rodrigues-Garcia RC, Del Bel-Cury AA. Accuracy and porosity of denture bases submitted to two polymerization cycles. Indian J Dent Res. 1996;7:122-6.
  • 21. Azzari MJ, Cortizo MS, Alessandrini JL. Effect of the curing conditions on the properties of an acrylic denture base resin microwave-polymerized. J Dent. 2003;31:463-8.
  • 22. Harrison A, Huggett R, Jagger RC. The effect of a cross-linking agent on the abrasion resistance and impact strength of an acrylic resin denture base material. J Dent. 1978;6:299–304.
  • 23. Ozkir SE, Yilmaz B, Unal SM, Culhaoglu A, Kurkcuoglu I. Effect of heat polymerization conditions and microwave on the flexural strength of polymethyl methacrylate. Eur J Dent. 2018;12:116-9.
  • 24. Bayraktar G, Güvener B, Bural C, Uresin Y. Influence of polymerization method, curing process, and length of time of storage in water on the residual methyl methacrylate content in dental acrylic resins. J Biomed Mater Res Part B: Appl Biomater. 2006;76:340-5.
  • 25. Peracini A, Davi LR, Ribeiro NQ, Souza RF, Silva CH, Paranhos HFO. Effect of denture cleansres on physical properties of heat-polymerized acrylic resin. J Prosthodontics Res. 2010:54;78-83.
  • 26. Kareem AE. Strength and surface roughness of cross linking acrylic resin processed by different heat curing methods. Iraqi Dent J. 2015;37:13 9.
  • 27. Atihallah AA, Rola WA, Ali NA. Teeth displacement and palatal adaptation of autoclave cured acrylic resin with various palates and ınvestments. J Bagh Coll Dent. 2016;28:1 10.
Year 2020, Volume: 30 Issue: 4, 614 - 619, 15.10.2020
https://doi.org/10.17567/ataunidfd.757302

Abstract

References

  • 1. Sushma R, Vande AV, Malvika SR, Abhijeet K, Pronob KS. A comparative study of the mechanical properties of clear and pink colored denture base acrylic resins. Ann Afr Med. 2018;17:178-82.
  • 2. Kaplan R, Özçelik B, Gürbüz A. Reinforcing methods of the acrylic resins used for the fabrication of complete dentures. Atatürk Üni. Diş Hek. Fak. Derg. 2006;1:70-6.
  • 3. Abdulwahhab SS: High-impact strength acrylic denture base material processed by autoclave. J Prosthodont Res. 2013;57:288-93.
  • 4. Gad MM, Fouda SM, ArRejaie AS, Al-Thobity AM. Comparative effect of different polymerization techniques on the flexural and surface properties of acrylic denture bases. J Prosthodont. 2019;28:458-65.
  • 5. Banerjee R, Banerjee S, Prabhudesai PS, et al: Influence of theprocessing technique on the flexural fatigue strength of denturebase resins: an in vitro investigation. Indian Dent Assoc. 2010;21:391-5.
  • 6. Chamberland C: Chronological Reference Marks. Paris; Pasteur Institute: 2007. p. 1-19.
  • 7. Ganzarolli SM, Mello JAN, Shinkai RS, Del Bel Cury AA. Internal adaptation and some physical properties of methacrylate-based denture base resins polymerized by different techniques. J Biomed Mater Res Part B: Appl Biomater. 2007;82:169-73.
  • 8. Akaltan F, Batak B, Oguz EI, Orhan K. Comparative analysis of denture base adaptation performance between pour and other conventional fabrication techniques. J Prosthet Dent. 2020;123:183.e1-183.e5.
  • 9. Ganzarolli SM, Rached RN, Garcia RC, Del Bel Cury AA. Effect of cooling procedure on final denture base adaptation. J Oral Rehabil. 2002;29:787-90.
  • 10. Gomes M, Broilo JR, Walber LF, Maccari PCA, Rosemary Sadami Arai Shinkai RSA. Adaptation of complete denture bases submitted to chemical polishing. J Appl Oral Sci. 2004;12:322-5.
  • 11. Sartori EA, Schmidt CB, Walber LF, Shinkai RS. Effect of microwave disinfection on denture base adaptation and resin surface roughness. Braz Dent J. 2006;17:195-200.
  • 12. Ono T, Kita S, Nokubi T. Dimensional accuracy of acrylic resin maxillary denture base polymerized by a new injection pressing method. Dent Mater J. 2004;23:348-52.
  • 13. Faot F, Costa MA, Del Bel Cury AA. Rodrigues Garcia RCM. Impact strength and fracture morphology of denture acrylic resins. J Prosthet Dent. 2006;96:367–73.
  • 14. Pfeiffer P, An N, Schmage P. Repair strength of hypoallergenic denture base materials. J Prosthet Dent. 2008;100:292-301.
  • 15. Parr GR, Rueggeberg FA. In vitro hardness, water sorption, and resin solubility of laboratory processed and autopolymerized long-term resilient denture liners over one year of water storage. J Prosthet Dent. 2002;88:139-44.
  • 16. Davenport JC. The oral distribution of Candida in denture stomatitis. Br Dent J. 1970;129:151-6.
  • 17. Durkan R, Oyar P. Comparison of mechanical and dynamic mechanical behaviors of different dental resins polymerized by different polymerization techniques. Niger J Clin Pract. 2018;21:1144-9.
  • 18. Craig RC. Prosthetic applications of polymers: Restorative Dental Materials. 10th ed, St. Louis; MO Mosby: 1997. p. 500-51.
  • 19. Durkan R, Ozel MB, Bağış B, Usanmaz A. In vitro comparison of autoclave polymerization on the transverse strength of denture base resins. Dent Mater J. 2008;27:640-2.
  • 20. Rodrigues-Garcia RC, Del Bel-Cury AA. Accuracy and porosity of denture bases submitted to two polymerization cycles. Indian J Dent Res. 1996;7:122-6.
  • 21. Azzari MJ, Cortizo MS, Alessandrini JL. Effect of the curing conditions on the properties of an acrylic denture base resin microwave-polymerized. J Dent. 2003;31:463-8.
  • 22. Harrison A, Huggett R, Jagger RC. The effect of a cross-linking agent on the abrasion resistance and impact strength of an acrylic resin denture base material. J Dent. 1978;6:299–304.
  • 23. Ozkir SE, Yilmaz B, Unal SM, Culhaoglu A, Kurkcuoglu I. Effect of heat polymerization conditions and microwave on the flexural strength of polymethyl methacrylate. Eur J Dent. 2018;12:116-9.
  • 24. Bayraktar G, Güvener B, Bural C, Uresin Y. Influence of polymerization method, curing process, and length of time of storage in water on the residual methyl methacrylate content in dental acrylic resins. J Biomed Mater Res Part B: Appl Biomater. 2006;76:340-5.
  • 25. Peracini A, Davi LR, Ribeiro NQ, Souza RF, Silva CH, Paranhos HFO. Effect of denture cleansres on physical properties of heat-polymerized acrylic resin. J Prosthodontics Res. 2010:54;78-83.
  • 26. Kareem AE. Strength and surface roughness of cross linking acrylic resin processed by different heat curing methods. Iraqi Dent J. 2015;37:13 9.
  • 27. Atihallah AA, Rola WA, Ali NA. Teeth displacement and palatal adaptation of autoclave cured acrylic resin with various palates and ınvestments. J Bagh Coll Dent. 2016;28:1 10.
There are 27 citations in total.

Details

Primary Language English
Subjects Dentistry
Journal Section Araştırma Makalesi
Authors

Gonca Deste This is me 0000-0002-5481-0063

Rukiye Durkan This is me 0000-0002-3381-4073

Perihan Oyar This is me 0000-0003-3849-9153

Ayhan Gürbüz This is me 0000-0003-4066-9609

Publication Date October 15, 2020
Published in Issue Year 2020 Volume: 30 Issue: 4

Cite

APA Deste, G., Durkan, R., Oyar, P., Gürbüz, A. (2020). THE EFFECT OF AUTOCLAVE AND HEAT POLYMERIZATION TECHNIQUES OF INTERNAL ADAPTATION OF ACRYLIC RESINS. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 30(4), 614-619. https://doi.org/10.17567/ataunidfd.757302
AMA Deste G, Durkan R, Oyar P, Gürbüz A. THE EFFECT OF AUTOCLAVE AND HEAT POLYMERIZATION TECHNIQUES OF INTERNAL ADAPTATION OF ACRYLIC RESINS. Ata Diş Hek Fak Derg. October 2020;30(4):614-619. doi:10.17567/ataunidfd.757302
Chicago Deste, Gonca, Rukiye Durkan, Perihan Oyar, and Ayhan Gürbüz. “THE EFFECT OF AUTOCLAVE AND HEAT POLYMERIZATION TECHNIQUES OF INTERNAL ADAPTATION OF ACRYLIC RESINS”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 30, no. 4 (October 2020): 614-19. https://doi.org/10.17567/ataunidfd.757302.
EndNote Deste G, Durkan R, Oyar P, Gürbüz A (October 1, 2020) THE EFFECT OF AUTOCLAVE AND HEAT POLYMERIZATION TECHNIQUES OF INTERNAL ADAPTATION OF ACRYLIC RESINS. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 30 4 614–619.
IEEE G. Deste, R. Durkan, P. Oyar, and A. Gürbüz, “THE EFFECT OF AUTOCLAVE AND HEAT POLYMERIZATION TECHNIQUES OF INTERNAL ADAPTATION OF ACRYLIC RESINS”, Ata Diş Hek Fak Derg, vol. 30, no. 4, pp. 614–619, 2020, doi: 10.17567/ataunidfd.757302.
ISNAD Deste, Gonca et al. “THE EFFECT OF AUTOCLAVE AND HEAT POLYMERIZATION TECHNIQUES OF INTERNAL ADAPTATION OF ACRYLIC RESINS”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 30/4 (October 2020), 614-619. https://doi.org/10.17567/ataunidfd.757302.
JAMA Deste G, Durkan R, Oyar P, Gürbüz A. THE EFFECT OF AUTOCLAVE AND HEAT POLYMERIZATION TECHNIQUES OF INTERNAL ADAPTATION OF ACRYLIC RESINS. Ata Diş Hek Fak Derg. 2020;30:614–619.
MLA Deste, Gonca et al. “THE EFFECT OF AUTOCLAVE AND HEAT POLYMERIZATION TECHNIQUES OF INTERNAL ADAPTATION OF ACRYLIC RESINS”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, vol. 30, no. 4, 2020, pp. 614-9, doi:10.17567/ataunidfd.757302.
Vancouver Deste G, Durkan R, Oyar P, Gürbüz A. THE EFFECT OF AUTOCLAVE AND HEAT POLYMERIZATION TECHNIQUES OF INTERNAL ADAPTATION OF ACRYLIC RESINS. Ata Diş Hek Fak Derg. 2020;30(4):614-9.

Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır. Tıklayınız.