Research Article
BibTex RIS Cite

FARKLI ZİRKONYA ALTYAPILI KURONLARIN MARJİNAL UYUM VE KIRILMA DİRENÇLERİNİN DEĞERLENDİRİLMESİ

Year 2021, Volume: 31 Issue: 2, 247 - 255, 15.04.2021
https://doi.org/10.17567/ataunidfd.895046

Abstract

Amaç: Bu çalışmanın amacı 5 farklı yöntemle hazırlanan zirkonya altyapılı porselen kuronların marjinal uyum ve kırılma dirençlerini in vitro olarak değerlendirmektir.
Gereç ve yöntem: Prepare edilmiş molar dişi temsilen 30 adet paslanmaz çelik güdük her grupta 6 adet olacak şekilde 5 gruba ayrıldı.. 1. grup slip-casting yöntemi ile hazırlanan In-Ceram Zirconia, 2. grup electrodepositing yöntemi ile hazırlanan Wol-Ceram, 3. grup manuel dizayn ve manuel kopya üretim ile hazırlanan ZirkonZahn, 4. grup manuel dizayn ve dijital üretim ile hazırlanan Cercon ve 5. grup dijital dizayn ve dijital üretim ile hazırlanan Everest örneklerden oluşturuldu. Kuronlar simante edilmeden önce ve sonra optik mikroskop ile marjinal uyum açısından değerlendirildi. Verilerin değerlendirilmesinde Student t testi uygulandı.
Simantasyon sonrası termal siklus uygulanan kuronların kırılma dirençleri, 0.5 mm/dakika başlık hızına ayarlı universal test cihazında ölçüldü. Veriler tek yönlü varyans analizi (ANOVA) ile değerlendirildi.
Bulgular: Everest grubuna ait örnekler marjinal uyum açısından hem simantasyon öncesi (24,80 ± 4,77 µ) hem de simantasyon sonrası (41,86 ± 5,41 µ) en düşük değerleri verdi (p<0.001). Bunu, her iki ölçümde, sırası ile Cercon, Wol-Ceram, ZirkonZahn ve In-ceram Zirconia gruplarına ait örnekler takip etti.
En yüksek kırılma direnci değerini Everest grubuna ait örnekler gösterdi (1653,33 ± 53,54 N) (p<0.01). Bunu Cercon, ZirkonZahn, Wol-Ceram ve In-Ceram Zirconia grubuna ait örnekler takip etti.
Sonuçlar: Zirkonya altyapılı kuronların kırılma direnci ve marginal adaptasyonu üzerinde farklı hazırlama yöntemlerinin etkisi önemlidir. Dijital hazırlama yöntemi marginal uyum ve kırılma direnci açısından daha iyi sonuç vermiştir. İstatistiksel farklılıklara rağmen çalışmada kullanılan materyaller klinik olarak kabul edilir değerler sağlamıştır.
Anahtar kelimeler: Zirkonya, marjinal uyum, kırılma direnci

EVALUATION OF MARGINAL ADAPTATION AND FRACTURE STRENGTH OF DIFFERENT ZIRCONIA BASED CROWNS
ABSTRACT
Aim: The purpose of this study was in-vitro evaluation of marginal adaptation and fracture strength of zirconia based ceramic crowns prepared in five different ways.
Material and Methods: 30 stainless steel dies representing a molar crown were formed. 5 groups containig 6 dies each were formed. Groups were as follows: group 1. In-Ceram Zirconia prepared by slipcasting, group 2. Wol-Ceram prepared by electro-depositing, group 3. ZirkonZahn prepared by manual design and manufacturing, group 4. Cercon prepared by manuel design and digital manufacturing, group5. Everest prepared by digital design and digital manufacturing. All the crowns were evaluated for marginal adaptation before and after cementation by using stereo microscope. Data were statistically evaluated by Student t test. Fracture strengths of crowns were measured by a universal testing machine at a cross-head speed of 5mm/minute after thermo-cycling. One way ANOVA test were used to evaluate the data.
Results: Everest group showed the lowest marginal adaptation values before (24,80 ± 4,77 µ) and after cementation (41,86 ± 5,41 µ) (p<0.001). This was followed by Cercon, Wol-Ceram, Zirkonzahn, In-Ceram Zirconia groups in both measurements.
The highest fracture strength value was obtained from Everest group (1653,33 ± 53,54 N) (p<0.01). This was followed by Cercon, ZirkonZahn, Wol-Ceram and In-Ceram Zirconia groups.
Conclusion: Different preparation methods have important effect on marginal adaptation and fracture strength of zirconia based crowns. Digital manufacturing technique showed better marginal adaptation and fracture strength results. Despite the statistical differences all of the materials used in this study showed clinically accepted values.
Key words: Zirconia, marginal adaptation, fracture strength

References

  • 1. Samorodnitzky-Naveh GR, Geiger SB, Levin L. Patients’ satisfaction with dental esthetics. Journal of the American Dental Association 2007;138:805-808.
  • 2. Zhang Y, Kelly JR. Dental ceramics for restoration and metal veneering. Dent Clin North Am 2017; 61: 797–819.
  • 3. Touati B, Miara P, Nathanson D. Esthetic Dentistry And Ceramic Restorations. London, Martin Dunitz Ltd., 1999: 25-26.
  • 4. Vagkopoulou T, Koutayas SO, Koidis P, Strub JR. Zirconia in dentistry: Part 1. Discovering the nature of an upcoming bioceramic. Eur J Esthet Dent. 2009; 4 :130-151. 5. Raigrodski AJ, Hillstead MB, Meng GK, Chung KH. Survival and complications of zirconia-based fixed dental prostheses: a systematic review. J Prosthet Dent. 2012; 107:170-177.
  • 6. Rimondini L, Cerroni L, Carrassi A, Torricelli P. Bacterial colonization of zirconia ceramic surfaces: an in vitro and in vivo study. Int J Oral Maxillofac Implants. 2002; 17: 793- 798.
  • 7. Özyer EK, Kahramanoğlu E, Akmansoy CŞ, Özkan YK. Zirkonyum Destekli Sabit Protetik Restorasyonlarda Klinik Başarı Değerlendirme Kriterleri. European Journal of Research in Dentistry 2019; 3: 53–62.
  • 8. Yüksel G, Çekiç C, Özkan P. Metal desteksiz porselen sistemleri. Atatürk Üniv Diş Hek Fak Derg. 2000; 10(2): 79- 89.
  • 9. Hummert T, Barghi N, Berry T. Postcementation Marginal fit of a new ceramic foil crown system. J Prosthet Dent. 1992; 68(5): 766-770.
  • 10. Holmes JR, Sulik WD, Holland GA, Bayne SC. Marginal fit of castable ceramic crowns. J Prosthet Dent. 1992; 67(5): 594-599.
  • 11. Sulaiman F, Chai J, Jameson LM, Wozniak WT. A comparison of the marginal fit of ın-ceram, IPS empress and procera crowns. Int J Prosthodont. 1997; 10(5): 478-484.
  • 12. Schmitter M, Mueller D, Rues S. In vitro chipping behavior of all-ceramic crowns with a zirconia framework and feldspathic veneering: comparison of CAD/CAM-produced veneer with manually layered veneer. Journal of Oral Rehabilitation 2013; 40:519-525.
  • 13. Lopez-Suarez C, Tobar C, Sola-Ruiz MF, Pelaez J, Suarez MJ. Effect of thermomechanical and static loading on the load to fracture of metal-ceramic, monolithic, and veneered zirconia posterior fixed partial dentures. Journal of Prosthodontics 2019; 28(2):171-178.
  • 14. Güngör MB, Nemli SK. Fracture resistance of CAD-CAM monolithic ceramic and veneered zirconia molar crowns after aging in a mastication simulator. Journal of Prosthetic Dentistry 2018;119(3):473-480.
  • 15. Kheradmandan S, Koutayas SO, Bernhard M, Strub JR. Fracture strength of four different types of anterior 3-unit bridges after thermo-mechanical fatigue in the dual-axis chewing simulator. J Oral Rehabil. 2001; 28(4): 361-369.
  • 16. Hwang JW, Yang JH. Fracture strength of copy-milled and conventional In-Ceram crowns. J Oral Rehabil. 2001; 28(7): 678-683.
  • 17. Amaral R, Rippe M, Oliveira BG, Cesar PF, Bottino MA, Valandro LF. Evaluation of tensile retention of Y-TZP crowns after long-term aging: effect of the core substrate and crown surface conditioning. Oper Dent 2014 Nov-Dec;39(6):619-626.
  • 18. Burke FJ, Fleming GJ, Nathanson D, Marquis PM. Are adhesive technologies needed to support ceramics? An assessment of the current evidence. J Adhes Dent 2002 Spring;4(1):7-22.
  • 19. Wegner SM, Kern M.. Long-term resin bond strength to zirconia ceramic. J Adhes Dent. 2000; 2(2): 139-147.
  • 20. Quaas AC, Yang B, Kern M. Panavia F 2.0 bonding to contaminated zirconia ceramic after different cleaning procedures. Dent Mater. 2007; 23(4): 506–512.
  • 21. Wolfart M, Lehmann F, Wolfart S, Kern M. Durability of the resin bond strength to zirconia ceramic after using different surface conditioning methods. Dent Mater. 2007; 23(1): 45–50.
  • 22. Beuer F, Aggastaller H, Edelhoff D, Gernet W, Sorenson J. Marginal and internal fits of fixed dental prostheses zirconia retainers. Dent Mater. 2009 Feb;25:94-102.
  • 23. Beschnidt SM, Strub JR. Evaluation of the marginal accuracy of different all-ceramic crown systems after simulation in the artificial mouth. J Oral Rehabil. 1999 Jul;26(7):582-93.
  • 24. Kohorst P, Brinkmann H, Dittmer MP, Borchers L, Stiesch M. Influence of the veneering process on the marginal fit of zirconia fixed dental prostheses. J Oral Rehabil. 2010 Apr;37(4):283-91.
  • 25. Baig MR, Tan KB, Nicholls JI. Evaluation of the marginal fit of a zirconia ceramic computer-aided machined (CAM) crown system. J Prosthet Dent. 2010 Oct;104(4):216-27.
  • 26. Groten M, Girthofer S, Pröbster L. Marginal fit consistency of copy- milled all ceramic crowns during fabrication by light and scanning electron microscopic analysis in vitro. J Oral Rehabil. 1997 Dec;24(12):871-88.
  • 27. Wolfart S, Wegner SM, Al-Halabi A, Kern M. Clinical evaluation of marginal fit of a new experimental all-ceramic system before and after cementation. Int J Prosthodont. 2003; 16(6): 587-592.
  • 28. McLean J.W, Von Fraunhofner JA. The estimation of cement film thickness by an in vivo technique Br Dent J. 1971; 131(3): 107-111.
  • 29. Suarez MJ, Villaumbrosia PG, Pradies G, Lozano JF. Comparison of the marginal fit of Procera Allceram crowns with two finish lines. Int J Prosthodont. 2003; 16(3): 229-232.
  • 30. Borba M, Miranda WG, Cesar PF, Griggs JA, Bona AD. Evaluation of the adaptation of zirconia-based fixed partial dentures using micro-CT technology. Braz Oral Res. 2013 ;27(5): 396-402.
  • 31. Coli P, Karlsson S. Fit of a new pressure-sintered zirconium dioxide coping. Int J Prosthodont. 2004; 17(1); 59-64.
  • 32. M. Okutan, G. Heydecke, F. Butz, J. R. Strub. Fracture load and marginal fit of shrinkage-free ZrSiO4 all-ceramic crowns after chewing simulation J Oral Rehabil. 2006; 33(11):827–832.
  • 33. Komine F, Gerds T, Witkowski S, Strub J.R. Influence of framework configuration on the marginal adaptation of zirconium dioxide ceramic anterior four-unit frameworks. Acta Odontol Scand.2005; 63(6): 361-366.
  • 34. Sindel J, Petschelt A. Evaluation of subsurface damage in CAD/CAM machined dental ceramics. J Mater Sci Mater Med. 1998; 9(5): 291-295.
  • 35. Probster L, Geis-Gerstorfer J, Kirchner E, Kanjantra P. In-vitro evaluation of a glass-ceramic restorative material. J Oral Rehabil. 1997; 24(9): 636-645.
  • 36. Jin Lei, Wang Zhong-yi, Chen Liang-liang, Jıa Jun, Wang Xiao-hui. Aqueous Electrophretic Deposition Fabricate All Ceramic Dental Crown. Journal of US -China Medical Science 2007; (4): 17-22.
  • 37. Alkurt M. Duymuş YD. Farklı Kenar Bitim ve Alt Yapı Dizaynlarının Çeşitli Zirkonyum Alt Yapılar Üzerindeki Veneer Porselenlerinin Kırılma Direncine Etkisinin İncelenmesi. Atatürk Üniv. Diş Hek. Fak. Derg. 2019; 29(2): 268-76
  • 38. Pallis K, Griggs JA, Woody RD, Guillen GE, Miller AW. Fracture resistance of three all-ceramic restorative systems for posterior applications. J Prosthet Dent. 2004; 91(6): 561-569.
  • 39. Sundh A, Sjorgren G. A comparison of fracture strength of yttrium-oxidepartially-stabilized zirconia ceramic crowns with varying core thickness, shapes and veneer ceramics. J Oral Rehabil. 2004; 31(7): 682–688.
  • 40. Snyder MD, Hogg KD. Load-to-fracture value of different all-ceramic crown systems. J Contemp Dent Pract. 2005; 6(4): 54-63.
  • 41. Vult Von Steyern P, Ebbesson S, Holmgren J, Haag P, Nilner K. Fracture strentgh of two oxide ceramic crown systems after cyclic pre-loading and thermocycling. J Oral Rehabil. 2006; 33(9): 682-689.
  • 42. Potiket N, Chiche G, Finger IM. In vitro fracture strength of teeth restored with different all-ceramic crown systems. J Prosthet Dent. 2004; 92(5): 491-495.
  • 43. Sun T, Zhou S, Lai R, et al. Load-bearing capacity and the recommended thickness of dental monolithic zirconia single crowns. Mech Behav Biomed Mater. 2014;35:93-101.
  • 44. Lameira DP, Silva WAB, Silva FA, DeSouza GM. Fracture Strength of Aged Monolithic and Bilayer Zirconia-Based Crowns. BioMed Research Int 2015 1-7.
  • 45. Kara D. Monolitik ve çift katmanlı zirkonya seramik kuronların kenar uyumlarının ve kırılmadirençlerinin in vitro olarak değerlendirilmesi. Doktora tezi, Adnan Menderes Üniversitesi Sağlık Bilimleri Enstitüsü, Aydın, 2016.
  • 46. Sağsöz NP. Farklı Siman Aralıklarında Hazırlanan CAD/CAM Monolitik Kuronların Kırılma Direncinin Değerlendirilmesi. Doktora tezi, Atatürk Üniversitesi Sağlık Bilimleri Enstitüsü, Erzurum, 2015.
  • 47. Bates JF, Stafford GD, Harrison A. Masticatory function--A review of the literature. III. Masticatory performance and efficiency. Oral Rehabil. 1976; 3(1): 57-67.
  • 48. Richter EJ. In vivo vertical forces on implants. Int J Oral Maxillofac Implants. 1995; 10(1): 99-109.
  • 49. Gibbs CH, Mahan PE, Mauderli A, Lundeen HC, Walsh EK. Limits of human bite strength. J Prosthet Dent. 1986; 56(2): 226-229.
  • 50. Ferrarıo VF, Sforza C, Zanottı G, Tartaglıa GM. Maximal bite forces in healthy young adults as predicted by surface electromyography. J Dent 2004; 32: 451–457
Year 2021, Volume: 31 Issue: 2, 247 - 255, 15.04.2021
https://doi.org/10.17567/ataunidfd.895046

Abstract

References

  • 1. Samorodnitzky-Naveh GR, Geiger SB, Levin L. Patients’ satisfaction with dental esthetics. Journal of the American Dental Association 2007;138:805-808.
  • 2. Zhang Y, Kelly JR. Dental ceramics for restoration and metal veneering. Dent Clin North Am 2017; 61: 797–819.
  • 3. Touati B, Miara P, Nathanson D. Esthetic Dentistry And Ceramic Restorations. London, Martin Dunitz Ltd., 1999: 25-26.
  • 4. Vagkopoulou T, Koutayas SO, Koidis P, Strub JR. Zirconia in dentistry: Part 1. Discovering the nature of an upcoming bioceramic. Eur J Esthet Dent. 2009; 4 :130-151. 5. Raigrodski AJ, Hillstead MB, Meng GK, Chung KH. Survival and complications of zirconia-based fixed dental prostheses: a systematic review. J Prosthet Dent. 2012; 107:170-177.
  • 6. Rimondini L, Cerroni L, Carrassi A, Torricelli P. Bacterial colonization of zirconia ceramic surfaces: an in vitro and in vivo study. Int J Oral Maxillofac Implants. 2002; 17: 793- 798.
  • 7. Özyer EK, Kahramanoğlu E, Akmansoy CŞ, Özkan YK. Zirkonyum Destekli Sabit Protetik Restorasyonlarda Klinik Başarı Değerlendirme Kriterleri. European Journal of Research in Dentistry 2019; 3: 53–62.
  • 8. Yüksel G, Çekiç C, Özkan P. Metal desteksiz porselen sistemleri. Atatürk Üniv Diş Hek Fak Derg. 2000; 10(2): 79- 89.
  • 9. Hummert T, Barghi N, Berry T. Postcementation Marginal fit of a new ceramic foil crown system. J Prosthet Dent. 1992; 68(5): 766-770.
  • 10. Holmes JR, Sulik WD, Holland GA, Bayne SC. Marginal fit of castable ceramic crowns. J Prosthet Dent. 1992; 67(5): 594-599.
  • 11. Sulaiman F, Chai J, Jameson LM, Wozniak WT. A comparison of the marginal fit of ın-ceram, IPS empress and procera crowns. Int J Prosthodont. 1997; 10(5): 478-484.
  • 12. Schmitter M, Mueller D, Rues S. In vitro chipping behavior of all-ceramic crowns with a zirconia framework and feldspathic veneering: comparison of CAD/CAM-produced veneer with manually layered veneer. Journal of Oral Rehabilitation 2013; 40:519-525.
  • 13. Lopez-Suarez C, Tobar C, Sola-Ruiz MF, Pelaez J, Suarez MJ. Effect of thermomechanical and static loading on the load to fracture of metal-ceramic, monolithic, and veneered zirconia posterior fixed partial dentures. Journal of Prosthodontics 2019; 28(2):171-178.
  • 14. Güngör MB, Nemli SK. Fracture resistance of CAD-CAM monolithic ceramic and veneered zirconia molar crowns after aging in a mastication simulator. Journal of Prosthetic Dentistry 2018;119(3):473-480.
  • 15. Kheradmandan S, Koutayas SO, Bernhard M, Strub JR. Fracture strength of four different types of anterior 3-unit bridges after thermo-mechanical fatigue in the dual-axis chewing simulator. J Oral Rehabil. 2001; 28(4): 361-369.
  • 16. Hwang JW, Yang JH. Fracture strength of copy-milled and conventional In-Ceram crowns. J Oral Rehabil. 2001; 28(7): 678-683.
  • 17. Amaral R, Rippe M, Oliveira BG, Cesar PF, Bottino MA, Valandro LF. Evaluation of tensile retention of Y-TZP crowns after long-term aging: effect of the core substrate and crown surface conditioning. Oper Dent 2014 Nov-Dec;39(6):619-626.
  • 18. Burke FJ, Fleming GJ, Nathanson D, Marquis PM. Are adhesive technologies needed to support ceramics? An assessment of the current evidence. J Adhes Dent 2002 Spring;4(1):7-22.
  • 19. Wegner SM, Kern M.. Long-term resin bond strength to zirconia ceramic. J Adhes Dent. 2000; 2(2): 139-147.
  • 20. Quaas AC, Yang B, Kern M. Panavia F 2.0 bonding to contaminated zirconia ceramic after different cleaning procedures. Dent Mater. 2007; 23(4): 506–512.
  • 21. Wolfart M, Lehmann F, Wolfart S, Kern M. Durability of the resin bond strength to zirconia ceramic after using different surface conditioning methods. Dent Mater. 2007; 23(1): 45–50.
  • 22. Beuer F, Aggastaller H, Edelhoff D, Gernet W, Sorenson J. Marginal and internal fits of fixed dental prostheses zirconia retainers. Dent Mater. 2009 Feb;25:94-102.
  • 23. Beschnidt SM, Strub JR. Evaluation of the marginal accuracy of different all-ceramic crown systems after simulation in the artificial mouth. J Oral Rehabil. 1999 Jul;26(7):582-93.
  • 24. Kohorst P, Brinkmann H, Dittmer MP, Borchers L, Stiesch M. Influence of the veneering process on the marginal fit of zirconia fixed dental prostheses. J Oral Rehabil. 2010 Apr;37(4):283-91.
  • 25. Baig MR, Tan KB, Nicholls JI. Evaluation of the marginal fit of a zirconia ceramic computer-aided machined (CAM) crown system. J Prosthet Dent. 2010 Oct;104(4):216-27.
  • 26. Groten M, Girthofer S, Pröbster L. Marginal fit consistency of copy- milled all ceramic crowns during fabrication by light and scanning electron microscopic analysis in vitro. J Oral Rehabil. 1997 Dec;24(12):871-88.
  • 27. Wolfart S, Wegner SM, Al-Halabi A, Kern M. Clinical evaluation of marginal fit of a new experimental all-ceramic system before and after cementation. Int J Prosthodont. 2003; 16(6): 587-592.
  • 28. McLean J.W, Von Fraunhofner JA. The estimation of cement film thickness by an in vivo technique Br Dent J. 1971; 131(3): 107-111.
  • 29. Suarez MJ, Villaumbrosia PG, Pradies G, Lozano JF. Comparison of the marginal fit of Procera Allceram crowns with two finish lines. Int J Prosthodont. 2003; 16(3): 229-232.
  • 30. Borba M, Miranda WG, Cesar PF, Griggs JA, Bona AD. Evaluation of the adaptation of zirconia-based fixed partial dentures using micro-CT technology. Braz Oral Res. 2013 ;27(5): 396-402.
  • 31. Coli P, Karlsson S. Fit of a new pressure-sintered zirconium dioxide coping. Int J Prosthodont. 2004; 17(1); 59-64.
  • 32. M. Okutan, G. Heydecke, F. Butz, J. R. Strub. Fracture load and marginal fit of shrinkage-free ZrSiO4 all-ceramic crowns after chewing simulation J Oral Rehabil. 2006; 33(11):827–832.
  • 33. Komine F, Gerds T, Witkowski S, Strub J.R. Influence of framework configuration on the marginal adaptation of zirconium dioxide ceramic anterior four-unit frameworks. Acta Odontol Scand.2005; 63(6): 361-366.
  • 34. Sindel J, Petschelt A. Evaluation of subsurface damage in CAD/CAM machined dental ceramics. J Mater Sci Mater Med. 1998; 9(5): 291-295.
  • 35. Probster L, Geis-Gerstorfer J, Kirchner E, Kanjantra P. In-vitro evaluation of a glass-ceramic restorative material. J Oral Rehabil. 1997; 24(9): 636-645.
  • 36. Jin Lei, Wang Zhong-yi, Chen Liang-liang, Jıa Jun, Wang Xiao-hui. Aqueous Electrophretic Deposition Fabricate All Ceramic Dental Crown. Journal of US -China Medical Science 2007; (4): 17-22.
  • 37. Alkurt M. Duymuş YD. Farklı Kenar Bitim ve Alt Yapı Dizaynlarının Çeşitli Zirkonyum Alt Yapılar Üzerindeki Veneer Porselenlerinin Kırılma Direncine Etkisinin İncelenmesi. Atatürk Üniv. Diş Hek. Fak. Derg. 2019; 29(2): 268-76
  • 38. Pallis K, Griggs JA, Woody RD, Guillen GE, Miller AW. Fracture resistance of three all-ceramic restorative systems for posterior applications. J Prosthet Dent. 2004; 91(6): 561-569.
  • 39. Sundh A, Sjorgren G. A comparison of fracture strength of yttrium-oxidepartially-stabilized zirconia ceramic crowns with varying core thickness, shapes and veneer ceramics. J Oral Rehabil. 2004; 31(7): 682–688.
  • 40. Snyder MD, Hogg KD. Load-to-fracture value of different all-ceramic crown systems. J Contemp Dent Pract. 2005; 6(4): 54-63.
  • 41. Vult Von Steyern P, Ebbesson S, Holmgren J, Haag P, Nilner K. Fracture strentgh of two oxide ceramic crown systems after cyclic pre-loading and thermocycling. J Oral Rehabil. 2006; 33(9): 682-689.
  • 42. Potiket N, Chiche G, Finger IM. In vitro fracture strength of teeth restored with different all-ceramic crown systems. J Prosthet Dent. 2004; 92(5): 491-495.
  • 43. Sun T, Zhou S, Lai R, et al. Load-bearing capacity and the recommended thickness of dental monolithic zirconia single crowns. Mech Behav Biomed Mater. 2014;35:93-101.
  • 44. Lameira DP, Silva WAB, Silva FA, DeSouza GM. Fracture Strength of Aged Monolithic and Bilayer Zirconia-Based Crowns. BioMed Research Int 2015 1-7.
  • 45. Kara D. Monolitik ve çift katmanlı zirkonya seramik kuronların kenar uyumlarının ve kırılmadirençlerinin in vitro olarak değerlendirilmesi. Doktora tezi, Adnan Menderes Üniversitesi Sağlık Bilimleri Enstitüsü, Aydın, 2016.
  • 46. Sağsöz NP. Farklı Siman Aralıklarında Hazırlanan CAD/CAM Monolitik Kuronların Kırılma Direncinin Değerlendirilmesi. Doktora tezi, Atatürk Üniversitesi Sağlık Bilimleri Enstitüsü, Erzurum, 2015.
  • 47. Bates JF, Stafford GD, Harrison A. Masticatory function--A review of the literature. III. Masticatory performance and efficiency. Oral Rehabil. 1976; 3(1): 57-67.
  • 48. Richter EJ. In vivo vertical forces on implants. Int J Oral Maxillofac Implants. 1995; 10(1): 99-109.
  • 49. Gibbs CH, Mahan PE, Mauderli A, Lundeen HC, Walsh EK. Limits of human bite strength. J Prosthet Dent. 1986; 56(2): 226-229.
  • 50. Ferrarıo VF, Sforza C, Zanottı G, Tartaglıa GM. Maximal bite forces in healthy young adults as predicted by surface electromyography. J Dent 2004; 32: 451–457
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Dentistry
Journal Section Araştırma Makalesi
Authors

Baykal Yılmaz This is me 0000-0001-8664-2853

Nuran Yanıkoğlu This is me 0000-0001-7677-1248

Publication Date April 15, 2021
Published in Issue Year 2021 Volume: 31 Issue: 2

Cite

APA Yılmaz, B., & Yanıkoğlu, N. (2021). FARKLI ZİRKONYA ALTYAPILI KURONLARIN MARJİNAL UYUM VE KIRILMA DİRENÇLERİNİN DEĞERLENDİRİLMESİ. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 31(2), 247-255. https://doi.org/10.17567/ataunidfd.895046
AMA Yılmaz B, Yanıkoğlu N. FARKLI ZİRKONYA ALTYAPILI KURONLARIN MARJİNAL UYUM VE KIRILMA DİRENÇLERİNİN DEĞERLENDİRİLMESİ. Ata Diş Hek Fak Derg. April 2021;31(2):247-255. doi:10.17567/ataunidfd.895046
Chicago Yılmaz, Baykal, and Nuran Yanıkoğlu. “FARKLI ZİRKONYA ALTYAPILI KURONLARIN MARJİNAL UYUM VE KIRILMA DİRENÇLERİNİN DEĞERLENDİRİLMESİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 31, no. 2 (April 2021): 247-55. https://doi.org/10.17567/ataunidfd.895046.
EndNote Yılmaz B, Yanıkoğlu N (April 1, 2021) FARKLI ZİRKONYA ALTYAPILI KURONLARIN MARJİNAL UYUM VE KIRILMA DİRENÇLERİNİN DEĞERLENDİRİLMESİ. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 31 2 247–255.
IEEE B. Yılmaz and N. Yanıkoğlu, “FARKLI ZİRKONYA ALTYAPILI KURONLARIN MARJİNAL UYUM VE KIRILMA DİRENÇLERİNİN DEĞERLENDİRİLMESİ”, Ata Diş Hek Fak Derg, vol. 31, no. 2, pp. 247–255, 2021, doi: 10.17567/ataunidfd.895046.
ISNAD Yılmaz, Baykal - Yanıkoğlu, Nuran. “FARKLI ZİRKONYA ALTYAPILI KURONLARIN MARJİNAL UYUM VE KIRILMA DİRENÇLERİNİN DEĞERLENDİRİLMESİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 31/2 (April 2021), 247-255. https://doi.org/10.17567/ataunidfd.895046.
JAMA Yılmaz B, Yanıkoğlu N. FARKLI ZİRKONYA ALTYAPILI KURONLARIN MARJİNAL UYUM VE KIRILMA DİRENÇLERİNİN DEĞERLENDİRİLMESİ. Ata Diş Hek Fak Derg. 2021;31:247–255.
MLA Yılmaz, Baykal and Nuran Yanıkoğlu. “FARKLI ZİRKONYA ALTYAPILI KURONLARIN MARJİNAL UYUM VE KIRILMA DİRENÇLERİNİN DEĞERLENDİRİLMESİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, vol. 31, no. 2, 2021, pp. 247-55, doi:10.17567/ataunidfd.895046.
Vancouver Yılmaz B, Yanıkoğlu N. FARKLI ZİRKONYA ALTYAPILI KURONLARIN MARJİNAL UYUM VE KIRILMA DİRENÇLERİNİN DEĞERLENDİRİLMESİ. Ata Diş Hek Fak Derg. 2021;31(2):247-55.

Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır. Tıklayınız.