Research Article
BibTex RIS Cite

FARKLI ÇAPLARDAKİ KUM PARTİKÜLLERİ İLE YAPILAN KUMLAMA İŞLEMİNİN İMPLANT-ABUTMENT-REZİN SİMAN BAĞLANMASINA ETKİSİNİN ÇEKME BAĞLANMA TESTİ İLE DEĞERLENDİRİLMESİ

Year 2021, Volume: 31 Issue: 3, 402 - 407, 14.07.2021
https://doi.org/10.17567/ataunidfd.895700

Abstract

Amaç: Bu çalışmanın amacı, titanyum implant dayanak ile rezin siman arasındaki çekme bağlanma dayanımını araştırmak için farklı boyutlarda kum partiküllerinin etkilerini değerlendirmektir.
Gereç ve yöntem: Kırk adet titanyum implant dayanak seçildi ve farklı yüzey işlemlerine göre; işlem yapılmamış yüzey (kontrol), 30 µm silika kaplı kumlama, 50 µm Al2O3 kumlama ve 110 µm Al2O3 kumlama olacak şekilde 4 farklı gruba ayrıldı. Yüzey işlemlerinin ardından bütün implant dayanakları oklüzalinde halka bulunan metal alt yapılara dual cure rezin siman ile simante edildi. 500 termal siklus uygulanan implant dayanak-metal alt yapı örnekleri daha sonra geleneksel kırma cihazında 0,5 mm/dk hızda çekme bağlanma kuvvetine tabi tutuldu. Kırılma sonrası kırılma tipleri (×35) stereomikroskop ile ve yüzey topografyasındaki değişiklikler ise taramalı elektron mikroskobu (SEM) altında (×1000) büyütme ile değerlendirildi. Elde edilen verilerin istatistiksel analizi tek yönlü ANOVA, gruplar arasındaki karşılaştırmalar ise Tukey testi ile yapıldı.
Bulgular: Çalışmanın sonuçlarına göre en yüksek çekme bağlanma kuvveti 30 µm silika (254,42 ±13,38) grubunda görülürken en düşük çekme bağlanma kuvveti değeri kontrol (198,24 ±15,32) grubunda görüldü. Yüzey işlemi uygulanan bütün gruplarda çekme bağlanma kuvveti değerlerinin istatistiksel olarak anlamlı derecede arttığı bulundu.
Sonuç: İmplant-dayanak üzerine uygulanan farklı kum partikülleri, implant dayanak-metal alt yapı arasındaki bağlantı kuvveti de anlamlı derecede farklılıklar gösterdi.
Anahtar kelimeler:Titanyum implant dayanak, 30 µm silika, Al2O3 kumlama, rezin siman, çekme bağlanma dayanımı testi, tarama elektron mikroskobu

ABSTRACT
Aim: The aim of this study was to evaluate the effects of different sizes of sand particles to investigate the tensile bond strength between titanium implant abutment and resin cement.
Material and Methods: Forty titanium implant abutments were selected. The specimens were divided into 4 different groups according to different surface treatments. These groups are; the untreated surface was named as (control), 30 µm silica coated airborne-particle abrasion, 50 µm Al2O3 airborne-particle abrasion and 110 µm Al2O3 airborne-particle abrasion groups. After surface treatments, all implant abutments were cemented with dual cured resin cement to metal substructures with an occlusal ring. Implant abutment-metal substructure samples, which were applied 500 thermal cycles, were then subjected to tensile bonding strenght at a speed of 0.5 mm / min in a conventional crushing device. Post-fracture types of refraction were evaluated with a stereomicroscope (×35) and the cause in the surface topography under a scanning electron microscope (SEM) at (×1000) magnification. Statistical analysis of the data obtained was made with 1-way ANOVA and comparisons between groups were made by the Tukey post hoc test.
Results: According to the results of the study, the highest tensile bond strength was seen in 30 µm silica (254.42 ±13.38) group, while the lowest tensile bond strength value was seen in the control (198.24 ±15.32) group. It was found that tensile bond strength values were statistically significantly increased in all surface treatment groups. (p<0,5)
Conclision: The bonding between the different sand particles applied on both the implant-abutment and the implant abutment-metal substructure showed significant differences.
Keywords: Titanium implant abutment, 30 µm silica, Al2O3 airborne-particle abrasion, resin cement, tensile bond strength test, scanning electron microscope.

References

  • 1. Shadid R, Sadaqa N. A comparison between screw- and cement-retained implant prostheses. A litera- ture review. J Oral Implantol 2012; 38:298-307
  • 2. Ustun O, Akar T, Kirmali O. A Comparative Study of Laser Irradiation Versus Sandblasting in Improving the Bond Strength of Titanium Abutments. Photobiomodul Photomed Laser Surg 2019; 37: 465-72.
  • 3. Sheets JL, Wilcox C, Wilwerding T. Cement selection for cement-retained crown technique with dental implants. J Prosthodont 2008;17:92–6.
  • 4. Guichet DL, Caputo AA, Choi H, et al: Passivity of fit and marginal opening in screw- or cement-retained implant fixed partial denture designs. Int J Oral Maxillofac Implants 2000;15:239-46.
  • 5. Campagni WV, Preston JD, Reisbick MH: Measurements of paint-on die spacers used for casting relief. J Prosthet Dent 1982;47:606-11.
  • 6. Berg E, Davik G, Hegdahl T, Gjerdet NR. Hardness, strength, and ductility of prefabricated titanium rods used in the manufacture of spark erosion crowns. J Prosthet Dent 1996;75: 419-25.
  • 7. Bertolotti RL. Adhesion to porcelain and metal. Dent Clin North Am 2007;51:433-51.
  • 8. Jorgensen KD: The relationship between retention and convergence angle in cemented veneer crowns. Acta Odontol Scand 1955;13:35-40.
  • 9. Kaufman EG, Coelho DH, Colin L: Factors influencing the retention of cemented gold castings. J Prosthet Dent 1961; 11:487-502.
  • 10. Hebel KS, Gajjar RC: Cement-retained versus screw-retained implant restorations: Achieving optimal occlusion and esthetics in implant dentistry. J Prosthet Dent 1997;77:28-35.
  • 11. Goodacre CJ, Kan JY, Rungcharassaeng K: Clinical complications of osseointegrated implants. J Prosthet Dent 1999; 81:537-52.
  • 12. Bernal G, Okamura M, Muñoz CA. The effects of abutment taper, length and cement type on resistance to dislodgement of cement-retained, implant-supported restorations. J Prosthodont 2003; 12:111-5.
  • 13. Taira Y, Matsumura H, Yoshida K, Tanaka T, Atsuta M. Adhesive bonding of titanium with a methacrylate-phosphate primer and self-curing adhesive resins. J Oral Rehabil 1995;22:409-12.
  • 14. Abi-Rached Fde O, Fonseca RG, Haneda IG, de Almeida- Júnior AA, Adabo GL. The effect of different surface treatments on the shear bond strength of luting cements to titanium. J Prosthet Dent 2012;108:370-6.
  • 15. Ozcan M, Pfeiffer P, Nergiz I. A brief history and current status of metal-and ceramic surface-conditioning concepts for resin bonding in dentistry. Quintessence Int 1998;29:713- 24.
  • 16. Tsuchimoto Y, Yoshida Y, Takeuchi M, Mine A, Yatani H, Tagawa Y, Van Meerbeek B, Suzuki K, Kuboki T. Effect of surface pre-treatment on durability of resin-based cements bonded to titanium. Dent Mater 2006;22:545-52.
  • 17. Seker E, Kilicarslan MA, Deniz ST, Mumcu E, Ozkan P. Effect of atmospheric plasma versus conven- tional surface treatments on the adhesion capabi- lity between self-adhesive resin cement and tita- nium surface. J Adv Prosthodont 2015; 7:249-56.
  • 18. Chaar MS, Att W, Strub JR. Prosthetic outcome of cement retained implant-supported fixed dental restorations: a systematic review. J Oral Rehabil 2011;38:697–711.
  • 19. Kono A, Fusayama T. Casting shrinkage of one-piece-cast fixed partial dentures. J Prosthet Dent 1969;22:73–83.
  • 20. Emir F, Ayyıldız S, Şahin C. Farklı yüzey bitim işlemlerinin feldspatik porselenin yüzey pürüz- lülüğüne etkisi. Atatürk Üniv Diş Hek Fak Derg 2015; 25:353-9.
  • 21. Li H, Burrow MF, Tyas MJ. The effect of thermocycling regimens on the nanoleakage of dentin bonding systems. Dent Mater Offic Public Academy Dent Mater 2002; 18:189-96.
  • 22. Gale MS, Darvell BW. Thermal cycling procedures for laboratory testing of dental restorations. J Dent 1999; 27:89-99.
  • 23. Tanaka T, Kamada K, Matsumura H, Atsuta M. A comparison of water temperatures for ther- mocycling of metal-bonded resin specimens. J prosthetic dentistry. 1995;74:345-9.
  • 24. Papacchini F, Toledano M, Monticelli F, Osorio R, Radovic I, Polimeni A, et al. Hydrolytic stability of composite repair bond. Eur J Oral Sci 2007; 115: 417-24.
  • 25. Akin H, Tugut F, Topcuoglu S, Kirmali O. Effects of sandblasting and laser irradiation on shear bond strength of low-fusing porcelain to titanium.J Adhes Dent 2013 ;15:55-63.
  • 26. Degirmenci K, Saridag S. Effect of different surface treatments on the shear bond strength of luting cements used with implant-supported prosthesis: An in vitro study. J Adv Prosthodont 2020; 12:75-82.
  • 27. Kurt M, Ku¨lu¨nk T, Ural C, Kulunk S, Danisxman S, Savasx S. The effect of different surface treatments on cementretained implant-supported restorations. J Oral Implantol 2013;39:44–51.
  • 28. Ates SM, Korkmaz FM, Caglar IS, Duymus ZY, Turgut S, Bagis EA. The effect of ultrafast fiber laser application on the bond strength of resin ce- ment to titanium. Lasers Med Sci 2017;32:1121–9.
  • 29. Inan O, Acar A, Halkaci S. Effects of sandblasting and electrical discharge machining on porcelain adherence to cast and machined commercially pure titanium. J Biomed Mater Res B Appl Biomater 2006;78:393-400.
  • 30. Sahu N, Lakshmi N, Azhagarasan NS, Agnihotri Y, Rajan M, Hariharan R. Comparison of the effect of implant abutment surface modifications on reten- tion of implantsupported restoration with a polymer based cement. J Clin Diagn Res 2014; 8: 239–42.
  • 31. El-Helbawy NG, El-Hatery AA, Ahmed MH. Comparison of oxygen plasma treatment and sandblasting of titanium implant-abutment surface on bond strength and surface topography. Int J Oral Maxillofac Implants 2016;31:555–62.
  • 32. Watanabe T, Ino S,Okada S, Katsumata Y, Hamano N, Hojo S, et al. Influence of simplified silica coating method on the bonding strength of resin cement to dental alloy. Dent Mater J 2008;27:16-20.
  • 33. Cobb DS, Vargas MA, Fridrich TA, Bouschlicher MR. Metal surface treatment: characterization and effect on compositeto- metal bond strength. Oper Dent 2000;25:427-33.
Year 2021, Volume: 31 Issue: 3, 402 - 407, 14.07.2021
https://doi.org/10.17567/ataunidfd.895700

Abstract

References

  • 1. Shadid R, Sadaqa N. A comparison between screw- and cement-retained implant prostheses. A litera- ture review. J Oral Implantol 2012; 38:298-307
  • 2. Ustun O, Akar T, Kirmali O. A Comparative Study of Laser Irradiation Versus Sandblasting in Improving the Bond Strength of Titanium Abutments. Photobiomodul Photomed Laser Surg 2019; 37: 465-72.
  • 3. Sheets JL, Wilcox C, Wilwerding T. Cement selection for cement-retained crown technique with dental implants. J Prosthodont 2008;17:92–6.
  • 4. Guichet DL, Caputo AA, Choi H, et al: Passivity of fit and marginal opening in screw- or cement-retained implant fixed partial denture designs. Int J Oral Maxillofac Implants 2000;15:239-46.
  • 5. Campagni WV, Preston JD, Reisbick MH: Measurements of paint-on die spacers used for casting relief. J Prosthet Dent 1982;47:606-11.
  • 6. Berg E, Davik G, Hegdahl T, Gjerdet NR. Hardness, strength, and ductility of prefabricated titanium rods used in the manufacture of spark erosion crowns. J Prosthet Dent 1996;75: 419-25.
  • 7. Bertolotti RL. Adhesion to porcelain and metal. Dent Clin North Am 2007;51:433-51.
  • 8. Jorgensen KD: The relationship between retention and convergence angle in cemented veneer crowns. Acta Odontol Scand 1955;13:35-40.
  • 9. Kaufman EG, Coelho DH, Colin L: Factors influencing the retention of cemented gold castings. J Prosthet Dent 1961; 11:487-502.
  • 10. Hebel KS, Gajjar RC: Cement-retained versus screw-retained implant restorations: Achieving optimal occlusion and esthetics in implant dentistry. J Prosthet Dent 1997;77:28-35.
  • 11. Goodacre CJ, Kan JY, Rungcharassaeng K: Clinical complications of osseointegrated implants. J Prosthet Dent 1999; 81:537-52.
  • 12. Bernal G, Okamura M, Muñoz CA. The effects of abutment taper, length and cement type on resistance to dislodgement of cement-retained, implant-supported restorations. J Prosthodont 2003; 12:111-5.
  • 13. Taira Y, Matsumura H, Yoshida K, Tanaka T, Atsuta M. Adhesive bonding of titanium with a methacrylate-phosphate primer and self-curing adhesive resins. J Oral Rehabil 1995;22:409-12.
  • 14. Abi-Rached Fde O, Fonseca RG, Haneda IG, de Almeida- Júnior AA, Adabo GL. The effect of different surface treatments on the shear bond strength of luting cements to titanium. J Prosthet Dent 2012;108:370-6.
  • 15. Ozcan M, Pfeiffer P, Nergiz I. A brief history and current status of metal-and ceramic surface-conditioning concepts for resin bonding in dentistry. Quintessence Int 1998;29:713- 24.
  • 16. Tsuchimoto Y, Yoshida Y, Takeuchi M, Mine A, Yatani H, Tagawa Y, Van Meerbeek B, Suzuki K, Kuboki T. Effect of surface pre-treatment on durability of resin-based cements bonded to titanium. Dent Mater 2006;22:545-52.
  • 17. Seker E, Kilicarslan MA, Deniz ST, Mumcu E, Ozkan P. Effect of atmospheric plasma versus conven- tional surface treatments on the adhesion capabi- lity between self-adhesive resin cement and tita- nium surface. J Adv Prosthodont 2015; 7:249-56.
  • 18. Chaar MS, Att W, Strub JR. Prosthetic outcome of cement retained implant-supported fixed dental restorations: a systematic review. J Oral Rehabil 2011;38:697–711.
  • 19. Kono A, Fusayama T. Casting shrinkage of one-piece-cast fixed partial dentures. J Prosthet Dent 1969;22:73–83.
  • 20. Emir F, Ayyıldız S, Şahin C. Farklı yüzey bitim işlemlerinin feldspatik porselenin yüzey pürüz- lülüğüne etkisi. Atatürk Üniv Diş Hek Fak Derg 2015; 25:353-9.
  • 21. Li H, Burrow MF, Tyas MJ. The effect of thermocycling regimens on the nanoleakage of dentin bonding systems. Dent Mater Offic Public Academy Dent Mater 2002; 18:189-96.
  • 22. Gale MS, Darvell BW. Thermal cycling procedures for laboratory testing of dental restorations. J Dent 1999; 27:89-99.
  • 23. Tanaka T, Kamada K, Matsumura H, Atsuta M. A comparison of water temperatures for ther- mocycling of metal-bonded resin specimens. J prosthetic dentistry. 1995;74:345-9.
  • 24. Papacchini F, Toledano M, Monticelli F, Osorio R, Radovic I, Polimeni A, et al. Hydrolytic stability of composite repair bond. Eur J Oral Sci 2007; 115: 417-24.
  • 25. Akin H, Tugut F, Topcuoglu S, Kirmali O. Effects of sandblasting and laser irradiation on shear bond strength of low-fusing porcelain to titanium.J Adhes Dent 2013 ;15:55-63.
  • 26. Degirmenci K, Saridag S. Effect of different surface treatments on the shear bond strength of luting cements used with implant-supported prosthesis: An in vitro study. J Adv Prosthodont 2020; 12:75-82.
  • 27. Kurt M, Ku¨lu¨nk T, Ural C, Kulunk S, Danisxman S, Savasx S. The effect of different surface treatments on cementretained implant-supported restorations. J Oral Implantol 2013;39:44–51.
  • 28. Ates SM, Korkmaz FM, Caglar IS, Duymus ZY, Turgut S, Bagis EA. The effect of ultrafast fiber laser application on the bond strength of resin ce- ment to titanium. Lasers Med Sci 2017;32:1121–9.
  • 29. Inan O, Acar A, Halkaci S. Effects of sandblasting and electrical discharge machining on porcelain adherence to cast and machined commercially pure titanium. J Biomed Mater Res B Appl Biomater 2006;78:393-400.
  • 30. Sahu N, Lakshmi N, Azhagarasan NS, Agnihotri Y, Rajan M, Hariharan R. Comparison of the effect of implant abutment surface modifications on reten- tion of implantsupported restoration with a polymer based cement. J Clin Diagn Res 2014; 8: 239–42.
  • 31. El-Helbawy NG, El-Hatery AA, Ahmed MH. Comparison of oxygen plasma treatment and sandblasting of titanium implant-abutment surface on bond strength and surface topography. Int J Oral Maxillofac Implants 2016;31:555–62.
  • 32. Watanabe T, Ino S,Okada S, Katsumata Y, Hamano N, Hojo S, et al. Influence of simplified silica coating method on the bonding strength of resin cement to dental alloy. Dent Mater J 2008;27:16-20.
  • 33. Cobb DS, Vargas MA, Fridrich TA, Bouschlicher MR. Metal surface treatment: characterization and effect on compositeto- metal bond strength. Oper Dent 2000;25:427-33.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Dentistry
Journal Section Araştırma Makalesi
Authors

Türker Akar This is me 0000-0003-2035-8686

Ömer Kırmalı This is me 0000-0002-4313-344X

Publication Date July 14, 2021
Published in Issue Year 2021 Volume: 31 Issue: 3

Cite

APA Akar, T., & Kırmalı, Ö. (2021). FARKLI ÇAPLARDAKİ KUM PARTİKÜLLERİ İLE YAPILAN KUMLAMA İŞLEMİNİN İMPLANT-ABUTMENT-REZİN SİMAN BAĞLANMASINA ETKİSİNİN ÇEKME BAĞLANMA TESTİ İLE DEĞERLENDİRİLMESİ. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 31(3), 402-407. https://doi.org/10.17567/ataunidfd.895700
AMA Akar T, Kırmalı Ö. FARKLI ÇAPLARDAKİ KUM PARTİKÜLLERİ İLE YAPILAN KUMLAMA İŞLEMİNİN İMPLANT-ABUTMENT-REZİN SİMAN BAĞLANMASINA ETKİSİNİN ÇEKME BAĞLANMA TESTİ İLE DEĞERLENDİRİLMESİ. Ata Diş Hek Fak Derg. July 2021;31(3):402-407. doi:10.17567/ataunidfd.895700
Chicago Akar, Türker, and Ömer Kırmalı. “FARKLI ÇAPLARDAKİ KUM PARTİKÜLLERİ İLE YAPILAN KUMLAMA İŞLEMİNİN İMPLANT-ABUTMENT-REZİN SİMAN BAĞLANMASINA ETKİSİNİN ÇEKME BAĞLANMA TESTİ İLE DEĞERLENDİRİLMESİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 31, no. 3 (July 2021): 402-7. https://doi.org/10.17567/ataunidfd.895700.
EndNote Akar T, Kırmalı Ö (July 1, 2021) FARKLI ÇAPLARDAKİ KUM PARTİKÜLLERİ İLE YAPILAN KUMLAMA İŞLEMİNİN İMPLANT-ABUTMENT-REZİN SİMAN BAĞLANMASINA ETKİSİNİN ÇEKME BAĞLANMA TESTİ İLE DEĞERLENDİRİLMESİ. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 31 3 402–407.
IEEE T. Akar and Ö. Kırmalı, “FARKLI ÇAPLARDAKİ KUM PARTİKÜLLERİ İLE YAPILAN KUMLAMA İŞLEMİNİN İMPLANT-ABUTMENT-REZİN SİMAN BAĞLANMASINA ETKİSİNİN ÇEKME BAĞLANMA TESTİ İLE DEĞERLENDİRİLMESİ”, Ata Diş Hek Fak Derg, vol. 31, no. 3, pp. 402–407, 2021, doi: 10.17567/ataunidfd.895700.
ISNAD Akar, Türker - Kırmalı, Ömer. “FARKLI ÇAPLARDAKİ KUM PARTİKÜLLERİ İLE YAPILAN KUMLAMA İŞLEMİNİN İMPLANT-ABUTMENT-REZİN SİMAN BAĞLANMASINA ETKİSİNİN ÇEKME BAĞLANMA TESTİ İLE DEĞERLENDİRİLMESİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 31/3 (July 2021), 402-407. https://doi.org/10.17567/ataunidfd.895700.
JAMA Akar T, Kırmalı Ö. FARKLI ÇAPLARDAKİ KUM PARTİKÜLLERİ İLE YAPILAN KUMLAMA İŞLEMİNİN İMPLANT-ABUTMENT-REZİN SİMAN BAĞLANMASINA ETKİSİNİN ÇEKME BAĞLANMA TESTİ İLE DEĞERLENDİRİLMESİ. Ata Diş Hek Fak Derg. 2021;31:402–407.
MLA Akar, Türker and Ömer Kırmalı. “FARKLI ÇAPLARDAKİ KUM PARTİKÜLLERİ İLE YAPILAN KUMLAMA İŞLEMİNİN İMPLANT-ABUTMENT-REZİN SİMAN BAĞLANMASINA ETKİSİNİN ÇEKME BAĞLANMA TESTİ İLE DEĞERLENDİRİLMESİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, vol. 31, no. 3, 2021, pp. 402-7, doi:10.17567/ataunidfd.895700.
Vancouver Akar T, Kırmalı Ö. FARKLI ÇAPLARDAKİ KUM PARTİKÜLLERİ İLE YAPILAN KUMLAMA İŞLEMİNİN İMPLANT-ABUTMENT-REZİN SİMAN BAĞLANMASINA ETKİSİNİN ÇEKME BAĞLANMA TESTİ İLE DEĞERLENDİRİLMESİ. Ata Diş Hek Fak Derg. 2021;31(3):402-7.

Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır. Tıklayınız.