Review
BibTex RIS Cite

DİŞ HEKİMLİĞİNDE YENİ GELİŞTİRİLEN YÜKSEK TRANSLÜSENT MONOLİTİK PARSİYEL STABİLİZE ZİRKONYA SİSTEMLERİNİN OPTİK VE MEKANİK ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ: DERLEME

Year 2021, Volume: 31 Issue: 4, 669 - 675, 14.10.2021
https://doi.org/10.17567/ataunidfd.831822

Abstract

İtriya tetragonal zirkonya polikristalin restorasyonları yüksek kırılma dayanıklılığı, tokluk, aşınmaya karşı direnç gibi mükemmel mekanik özelliklere sahiptir. Ancak itriya tetragonal zirkonya polikristalin restorasyonların en büyük dezavantajı opak olması nedeniyle estetik özelliklerinin daha zayıf olmasıdır. İtriya tetragonal zirkonya polikristalin restorasyonların opaklığının giderilmesi ve translüsensliğinin arttırılması için değişik yöntemler geliştirilmiştir. İtriya tetragonal zirkonya polikristalin restorasyonların translüsensliğini geliştirmek amacıyla itriya içeriği arttırılmış ve ışık geçirgenliğini artıran kübik faz zirkonya kullanılarak yüksek translüsent parsiyel stabilize zirkonyalar üretilmiştir. Kübik fazın artmasıyla tetragonal fazdan (t) monoklinik faza dönüşümün (m) azaltılması mekanik özelliklerin zayıflamasına sebep olabilmektedir. İtriya tetragonal zirkonya polikristalin restorasyonların translüsensliği alüminyum oksit miktarının azaltılması, itriyum oksit miktarının arttırılması ile sağlanmaktadır. Bu durum zirkonyanın stres ile oluşan transformasyon sertliğini azaltarak, bükülme dayanımı ve kırılma direnci gibi mekanik özelliklerini olumsuz yönde etkilemektedir. Yeni geliştirilen yüksek translüsent monolitik parsiyel stabilize zirkonya restorasyonları, artan estetik özellikleri nedeniyle itriya tetragonal zirkonya polikristalin restorasyonlarına alternatif olarak kullanılabilmektedir. Bu derlemenin amacı, yeni geliştirilen translüsent parsiyel stabilize zirkonya seramiklerinin optik ve mekanik özelliklerinin incelenerek değerlendirilmesidir.
Anahtar kelimeler: monolitik zirkonya, translüsent zirkonya, parsiyel stabilize zirkonya, optik özellikler, mekanik özellikler.

References

  • 1. Mao L, Kaizer M, Zhao M, Guo B, Song YF, Zhang Y. Graded ultra-translucent zirconia (5Y-PSZ) for strength and functionalities. J Dent Res 2018;97:1222-1228.
  • 2. Seçil K, Yılmaz H. Zirkonyum ve sabit protezlerde kullanımı. J Dent Fac Atatürk Uni 2006;36-44.
  • 3. Miyazaki T, Hotta Y, Kunii J, Kuriyama S, Tamaki Y. A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dent Mater J 2009;28:44-56.
  • 4. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater 2008;24:299-307.
  • 5. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999;20:125.
  • 6. Manziuc MM, Gasparik C, Negucioiu M, Constantiniuc M, Burde A, Vlas I, Dudea D. Optical properties of translucent zirconia: A review of the literature. The EuroBiotech Journal 2019;3:45-51.
  • 7. Stawarczyk B, Keul C, Eichberger M, Figge D, Edelhoff D, Lümkemann N. Three generations of zirconia: From veneered to monolithic. Part I. Quintessence Int 2017;48:441-450
  • 8. Tong H, Tanaka CB, Kaizer MR, Zhang Y. Characterization of three commercial YTZP ceramics produced for their high-translucency, high-strength and high-surface area. Ceramics International 2016;42:1077-1085.
  • 9. Zhang F, Inokoshi M, Batuk M, Hadermann J, Naert I, Van Meerbeek B, Vleugels J. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent Mater 2016;32:327-337.
  • 10. Miyazaki T, Nakamura T, Matsumura H, Ban S, Kobayashi T. Current status of zirconia restoration. Int J Prosthodont 2013;57:236-261.
  • 11. Zhang Y. Making yttria-stabilized tetragonal zirconia translucent. Dent Mater 2014;30:1195-1203.
  • 12. Schmitter M, Mueller D, Rues S. Chipping behaviour of all-ceramic crowns with zirconia framework and CAD/CAM manufactured veneer. J Dent 2012;40:154-162.
  • 13. Chen YM, Smales RJ, Yip KHK, Sung WJ. Translucency and biaxial flexural strength of four ceramic core materials. Dent Mater 2008;24:1506-1511.
  • 14. Green DJ. Transformation toughening of ceramics. CRC press in Boca Raton, Fla 2018
  • 15. Burger W, Richter HG, Piconi C, Vatteroni R, Cittadini A, Boccalari M. New Y-TZP powders for medical grade zirconia. J Mater Sci Mater Med 1997;8:113-118.
  • 16. Ruiz L, Readey MJ. Effect of heat treatment on grain size, phase assemblage, and mechanical properties of 3 mol% Y‐TZP. J Am Ceram Soc 1996;79:2331-2340.
  • 17. Heuer A, Claussen N, Kriven WM, Ruhle M. Stability of tetragonal ZrO2 particles in ceramic matrices. J Am Ceram Soc 1982;65:642-650.
  • 18. Cottom BA, Mayo MJ. Fracture toughness of nanocrystalline ZrO 2-3mol% Y 2 O 3 determined by Vickers indentation. Scr Mater 1996;34:809-814.
  • 19. Subbarao E. Zirconia an overview, Science and Technology of Zirconia. Proc. 1 st. Int. Conf. held at Cleveland, Ohio, June 16-18 1980. Advances in Ceramics.
  • 20. Scott HG. Phase relationships in the zirconia-yttria system. J Mater Sci 1975;10:1527-1535.
  • 21. Chevalier J, Deville S, Münch E, Jullian R, Lair F. Critical effect of cubic phase on aging in 3 mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis. Biomaterials 2004;25:5539-5545.
  • 22. Zhuang Y, Zhu Z, Jiao T, Sun J. Effect of Aging Time and Thickness on Low‐ Temperature Degradation of Dental Zirconia. J Prosthodont. 2019;28:404-410.
  • 23. Pereira GKR, Guilardi LF, Dapieve KS, Kleverlaan CJ, Rippe MP, Valandro LF. Mechanical reliability, fatigue strength and survival analysis of new polycrystalline translucent zirconia ceramics for monolithic restorations. J Mech Behav Biomed Mater 2018;85:57-65.
  • 24. Pereira GKR, Venturini A, Silvestri T, Dapieve K, Montagner A, Soares F, Valandro L. Low-temperature degradation of Y-TZP ceramics: a systematic review and metaanalysis. J Mech Behav Biomed Mater 2016;55:151-163.
  • 25. Chevalier J, Gremillard L, Deville S. Low-temperature degradation of zirconia and implications for biomedical implants. Annu Rev Mater Res 2007;37:1-32.
  • 26. Pinto PA, Colas G, Filleter T, De Souza GM. Surface and mechanical characterization of dental yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP) after different aging processes. Microsc Microanal 2016; 22:1179-1188.
  • 27. Lameira DP, De Souza GM. Fracture strength of aged monolithic and bilayer zirconia based crowns. Biomed Res Int 2015;2015:418641
  • 28. Elsayed A, Meyer G, Wille S, Kern M. Influence of the yttrium content on the fracture strength of monolithic zirconia crowns after artificial aging. Quintessence Int 2019;50:344-348.
  • 29. Kohorst P, Borchers L, Strempel J, Stiesch M, Hassel T, Bach FW, Hübsch C. Lowtemperature degradation of different zirconia ceramics for dental applicatins. Acta Biomater 2012;8:1213-1220.
  • 30. Nakamura K, Harada A, Kanno T, Inagaki R, Niwano Y, Milleding P, Örtengren U. The influence of low-temperature degradation and cyclic loading on the fracture resistance of monolithic zirconia molar crowns. J Mech Behav Biomed Mater 2015;47:49-56.
  • 31. Attia A, Kern M. Influence of cyclic loading and luting agents on the fracture load of two all-ceramic crown systems. J Prosthet Dent 2004;92:551-556.
  • 32. Cotič J, Jevnikar P, Kocjan A. Ageing kinetics and strength of airborne-particle abraded 3Y-TZP ceramics. Dent Mater 2017;33:847-856.
  • 33. Kelly JR, Denry I. Stabilized zirconia as a structural ceramic: an overview. Dent Mater 2008;24:289-298.
  • 34. Blatz MB, Vonderheide M, Conejo J. The effect of resin bonding on long-term success of high-strength ceramics. J Dent Res 2018;97:132-139.
  • 35. Kosmač T, Oblak C, Jevnikar P, Funduk N, Marion L. The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic. Dent Mater 1999;15:426-433.
  • 36. Zhang Y, Lawn BR, Malament KA, Thompson VP, Rekow ED. Damage accumulation and fatigue life of particle-abraded ceramics. Int J Prosthodont 2006;19:442-8
  • 37. Özcan M, Melo RM, Souza RO, Machado JP, Valandro LF, Botttino MA. Effect of air-particle abrasion protocols on the biaxial flexural strength, surface characteristics and phase transformation of zirconia after cyclic loading. J Mech Behav Biomed Mater 2013;20:19-28.
  • 38. Guess P, Zhang Y, Kim JW, Rekow E, Thompson V. Damage and reliability of YTZP after cementation surface treatment. J Dent Res 2010;89:592-596.
  • 39. Kosmač T, Oblak Č, Marion L. The effects of dental grinding and sandblasting on ageing and fatigue behavior of dental zirconia (Y-TZP) ceramics. J Eur Ceram Soc 2008;28:1085-1090.
  • 40. Scherrer SS, Cattani-Lorente M, Vittecoq E, de Mestral F, Griggs JA, Wiskott HA. Fatigue behavior in water of Y-TZP zirconia ceramics after abrasion with 30 μm silica-coated alumina particles. Dent Mater 2011;27:28-42.
  • 41. Sailer I, Feher A, Filser F, Gauckler LJ, Lüthy H, Hämmerle CHF. Five-year clinical results of zirconia frameworks for posterior fixed partial dentures. Int J Prosthodont 2007;20:383-8.
  • 42. Sailer I, Makarov NA, Thoma DS, Zwahlen M, Pjetursson BE. All-ceramic or metalceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part I: Single crowns (SCs). Dent Mater 2015;31:603-623.
  • 43. Hatanaka GR, Polli GS, Adabo GL. The mechanical behavior of high-translucent monolithic zirconia after adjustment and finishing procedures and artificial aging. J Prosthet Dent 2020;123:330-337.
  • 44. Klimke J, Trunec M, Krell A. Transparent tetragonal yttria‐stabilized zirconia ceramics: influence of scattering caused by birefringence. J Am Ceram Soc 2011;94:1850-1858.
  • 45. Krell A, Klimke J, Hutzler T. Transparent compact ceramics: inherent physical issues. Optical Materials 2009;31:1144-1150.
  • 46. Yamashita I, Tsukuma K. Light scattering by residual pores in transparent zirconia ceramics. Journal of the Ceramic Society of Japan 2011;119:133-135.
  • 47. Sulaiman TA, Abdulmajeed AA, Donovan TE, Ritter AV, Vallittu PK, Närhi TO, Lassila LV. Optical properties and light irradiance of monolithic zirconia at variable thicknesses. Dent Mater 2015;31:1180-1187
  • 48. Denry I, Kelly J. Emerging ceramic-based materials for dentistry. J Dent Res 2014;93:1235-1242.
  • 49. Carrabba M, Keeling AJ, Aziz A, Vichi A, Fonzar RF, Wood D, Ferrari M. Translucent zirconia in the ceramic scenario for monolithic restorations: A flexural strength and translucency comparison test. J Dent 2017;60:70-76.
  • 50. Zhang Y, Lawn B. Novel zirconia materials in dentistry. J Dent Res 2018;97140-147.
  • 51. https://www.nacera.us/solutions/nacera-pearl-q3-multi-shade.
  • 52. Vichi A, Sedda M, Fabian Fonzar R, Carrabba M, Ferrari M. Comparison of contrast ratio, translucency parameter, and flexural strength of traditional and “augmented translucency” zirconia for CEREC CAD/CAM system. J Esthet Restor Dent 2016;28:32-39.
  • 53. Beuer F, Stimmelmayr M, Gueth JF, Edelhoff D, Naumann M. In vitro performance of full-contour zirconia single crowns. Dent Mater 2012;28:449-456.
  • 54. Zesewitz TF, Knauber AW, Nothdurft FP. Fracture resistance of a selection of full contour all-ceramic crowns: an in vitro study. Int J Prosthodont 2014;27:264-6.
  • 55. Preis V, Behr M, Hahnel S, Handel G, Rosentritt M. In vitro failure and fracture resistance of veneered and full-contour zirconia restorations. J Dent 2012;40:921-928.
  • 56. Sun T, Zhou S, Lai R, Liu R, Ma S, Zhou Z, Longquan S. Load-bearing capacity and the recommended thickness of dental monolithic zirconia single crowns. J Mech Behav Biomed Mater 2014;35:93-101.
  • 57. Zadeh PN, Lümkemann N, Sener B, Eichberger M, Stawarczyk B. Flexural strength, fracture toughness, and translucency of cubic/tetragonal zirconia materials. J Prosthet Dent 2018;120:948-954.
  • 58. Kwon SJ, Lawson NC, McLaren EE, Nejat AH, Burgess JO. Comparison of the mechanical properties of translucent zirconia and lithium disilicate. J Prosthet Dent 2018;120:132-137.
Year 2021, Volume: 31 Issue: 4, 669 - 675, 14.10.2021
https://doi.org/10.17567/ataunidfd.831822

Abstract

References

  • 1. Mao L, Kaizer M, Zhao M, Guo B, Song YF, Zhang Y. Graded ultra-translucent zirconia (5Y-PSZ) for strength and functionalities. J Dent Res 2018;97:1222-1228.
  • 2. Seçil K, Yılmaz H. Zirkonyum ve sabit protezlerde kullanımı. J Dent Fac Atatürk Uni 2006;36-44.
  • 3. Miyazaki T, Hotta Y, Kunii J, Kuriyama S, Tamaki Y. A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dent Mater J 2009;28:44-56.
  • 4. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater 2008;24:299-307.
  • 5. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999;20:125.
  • 6. Manziuc MM, Gasparik C, Negucioiu M, Constantiniuc M, Burde A, Vlas I, Dudea D. Optical properties of translucent zirconia: A review of the literature. The EuroBiotech Journal 2019;3:45-51.
  • 7. Stawarczyk B, Keul C, Eichberger M, Figge D, Edelhoff D, Lümkemann N. Three generations of zirconia: From veneered to monolithic. Part I. Quintessence Int 2017;48:441-450
  • 8. Tong H, Tanaka CB, Kaizer MR, Zhang Y. Characterization of three commercial YTZP ceramics produced for their high-translucency, high-strength and high-surface area. Ceramics International 2016;42:1077-1085.
  • 9. Zhang F, Inokoshi M, Batuk M, Hadermann J, Naert I, Van Meerbeek B, Vleugels J. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent Mater 2016;32:327-337.
  • 10. Miyazaki T, Nakamura T, Matsumura H, Ban S, Kobayashi T. Current status of zirconia restoration. Int J Prosthodont 2013;57:236-261.
  • 11. Zhang Y. Making yttria-stabilized tetragonal zirconia translucent. Dent Mater 2014;30:1195-1203.
  • 12. Schmitter M, Mueller D, Rues S. Chipping behaviour of all-ceramic crowns with zirconia framework and CAD/CAM manufactured veneer. J Dent 2012;40:154-162.
  • 13. Chen YM, Smales RJ, Yip KHK, Sung WJ. Translucency and biaxial flexural strength of four ceramic core materials. Dent Mater 2008;24:1506-1511.
  • 14. Green DJ. Transformation toughening of ceramics. CRC press in Boca Raton, Fla 2018
  • 15. Burger W, Richter HG, Piconi C, Vatteroni R, Cittadini A, Boccalari M. New Y-TZP powders for medical grade zirconia. J Mater Sci Mater Med 1997;8:113-118.
  • 16. Ruiz L, Readey MJ. Effect of heat treatment on grain size, phase assemblage, and mechanical properties of 3 mol% Y‐TZP. J Am Ceram Soc 1996;79:2331-2340.
  • 17. Heuer A, Claussen N, Kriven WM, Ruhle M. Stability of tetragonal ZrO2 particles in ceramic matrices. J Am Ceram Soc 1982;65:642-650.
  • 18. Cottom BA, Mayo MJ. Fracture toughness of nanocrystalline ZrO 2-3mol% Y 2 O 3 determined by Vickers indentation. Scr Mater 1996;34:809-814.
  • 19. Subbarao E. Zirconia an overview, Science and Technology of Zirconia. Proc. 1 st. Int. Conf. held at Cleveland, Ohio, June 16-18 1980. Advances in Ceramics.
  • 20. Scott HG. Phase relationships in the zirconia-yttria system. J Mater Sci 1975;10:1527-1535.
  • 21. Chevalier J, Deville S, Münch E, Jullian R, Lair F. Critical effect of cubic phase on aging in 3 mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis. Biomaterials 2004;25:5539-5545.
  • 22. Zhuang Y, Zhu Z, Jiao T, Sun J. Effect of Aging Time and Thickness on Low‐ Temperature Degradation of Dental Zirconia. J Prosthodont. 2019;28:404-410.
  • 23. Pereira GKR, Guilardi LF, Dapieve KS, Kleverlaan CJ, Rippe MP, Valandro LF. Mechanical reliability, fatigue strength and survival analysis of new polycrystalline translucent zirconia ceramics for monolithic restorations. J Mech Behav Biomed Mater 2018;85:57-65.
  • 24. Pereira GKR, Venturini A, Silvestri T, Dapieve K, Montagner A, Soares F, Valandro L. Low-temperature degradation of Y-TZP ceramics: a systematic review and metaanalysis. J Mech Behav Biomed Mater 2016;55:151-163.
  • 25. Chevalier J, Gremillard L, Deville S. Low-temperature degradation of zirconia and implications for biomedical implants. Annu Rev Mater Res 2007;37:1-32.
  • 26. Pinto PA, Colas G, Filleter T, De Souza GM. Surface and mechanical characterization of dental yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP) after different aging processes. Microsc Microanal 2016; 22:1179-1188.
  • 27. Lameira DP, De Souza GM. Fracture strength of aged monolithic and bilayer zirconia based crowns. Biomed Res Int 2015;2015:418641
  • 28. Elsayed A, Meyer G, Wille S, Kern M. Influence of the yttrium content on the fracture strength of monolithic zirconia crowns after artificial aging. Quintessence Int 2019;50:344-348.
  • 29. Kohorst P, Borchers L, Strempel J, Stiesch M, Hassel T, Bach FW, Hübsch C. Lowtemperature degradation of different zirconia ceramics for dental applicatins. Acta Biomater 2012;8:1213-1220.
  • 30. Nakamura K, Harada A, Kanno T, Inagaki R, Niwano Y, Milleding P, Örtengren U. The influence of low-temperature degradation and cyclic loading on the fracture resistance of monolithic zirconia molar crowns. J Mech Behav Biomed Mater 2015;47:49-56.
  • 31. Attia A, Kern M. Influence of cyclic loading and luting agents on the fracture load of two all-ceramic crown systems. J Prosthet Dent 2004;92:551-556.
  • 32. Cotič J, Jevnikar P, Kocjan A. Ageing kinetics and strength of airborne-particle abraded 3Y-TZP ceramics. Dent Mater 2017;33:847-856.
  • 33. Kelly JR, Denry I. Stabilized zirconia as a structural ceramic: an overview. Dent Mater 2008;24:289-298.
  • 34. Blatz MB, Vonderheide M, Conejo J. The effect of resin bonding on long-term success of high-strength ceramics. J Dent Res 2018;97:132-139.
  • 35. Kosmač T, Oblak C, Jevnikar P, Funduk N, Marion L. The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic. Dent Mater 1999;15:426-433.
  • 36. Zhang Y, Lawn BR, Malament KA, Thompson VP, Rekow ED. Damage accumulation and fatigue life of particle-abraded ceramics. Int J Prosthodont 2006;19:442-8
  • 37. Özcan M, Melo RM, Souza RO, Machado JP, Valandro LF, Botttino MA. Effect of air-particle abrasion protocols on the biaxial flexural strength, surface characteristics and phase transformation of zirconia after cyclic loading. J Mech Behav Biomed Mater 2013;20:19-28.
  • 38. Guess P, Zhang Y, Kim JW, Rekow E, Thompson V. Damage and reliability of YTZP after cementation surface treatment. J Dent Res 2010;89:592-596.
  • 39. Kosmač T, Oblak Č, Marion L. The effects of dental grinding and sandblasting on ageing and fatigue behavior of dental zirconia (Y-TZP) ceramics. J Eur Ceram Soc 2008;28:1085-1090.
  • 40. Scherrer SS, Cattani-Lorente M, Vittecoq E, de Mestral F, Griggs JA, Wiskott HA. Fatigue behavior in water of Y-TZP zirconia ceramics after abrasion with 30 μm silica-coated alumina particles. Dent Mater 2011;27:28-42.
  • 41. Sailer I, Feher A, Filser F, Gauckler LJ, Lüthy H, Hämmerle CHF. Five-year clinical results of zirconia frameworks for posterior fixed partial dentures. Int J Prosthodont 2007;20:383-8.
  • 42. Sailer I, Makarov NA, Thoma DS, Zwahlen M, Pjetursson BE. All-ceramic or metalceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part I: Single crowns (SCs). Dent Mater 2015;31:603-623.
  • 43. Hatanaka GR, Polli GS, Adabo GL. The mechanical behavior of high-translucent monolithic zirconia after adjustment and finishing procedures and artificial aging. J Prosthet Dent 2020;123:330-337.
  • 44. Klimke J, Trunec M, Krell A. Transparent tetragonal yttria‐stabilized zirconia ceramics: influence of scattering caused by birefringence. J Am Ceram Soc 2011;94:1850-1858.
  • 45. Krell A, Klimke J, Hutzler T. Transparent compact ceramics: inherent physical issues. Optical Materials 2009;31:1144-1150.
  • 46. Yamashita I, Tsukuma K. Light scattering by residual pores in transparent zirconia ceramics. Journal of the Ceramic Society of Japan 2011;119:133-135.
  • 47. Sulaiman TA, Abdulmajeed AA, Donovan TE, Ritter AV, Vallittu PK, Närhi TO, Lassila LV. Optical properties and light irradiance of monolithic zirconia at variable thicknesses. Dent Mater 2015;31:1180-1187
  • 48. Denry I, Kelly J. Emerging ceramic-based materials for dentistry. J Dent Res 2014;93:1235-1242.
  • 49. Carrabba M, Keeling AJ, Aziz A, Vichi A, Fonzar RF, Wood D, Ferrari M. Translucent zirconia in the ceramic scenario for monolithic restorations: A flexural strength and translucency comparison test. J Dent 2017;60:70-76.
  • 50. Zhang Y, Lawn B. Novel zirconia materials in dentistry. J Dent Res 2018;97140-147.
  • 51. https://www.nacera.us/solutions/nacera-pearl-q3-multi-shade.
  • 52. Vichi A, Sedda M, Fabian Fonzar R, Carrabba M, Ferrari M. Comparison of contrast ratio, translucency parameter, and flexural strength of traditional and “augmented translucency” zirconia for CEREC CAD/CAM system. J Esthet Restor Dent 2016;28:32-39.
  • 53. Beuer F, Stimmelmayr M, Gueth JF, Edelhoff D, Naumann M. In vitro performance of full-contour zirconia single crowns. Dent Mater 2012;28:449-456.
  • 54. Zesewitz TF, Knauber AW, Nothdurft FP. Fracture resistance of a selection of full contour all-ceramic crowns: an in vitro study. Int J Prosthodont 2014;27:264-6.
  • 55. Preis V, Behr M, Hahnel S, Handel G, Rosentritt M. In vitro failure and fracture resistance of veneered and full-contour zirconia restorations. J Dent 2012;40:921-928.
  • 56. Sun T, Zhou S, Lai R, Liu R, Ma S, Zhou Z, Longquan S. Load-bearing capacity and the recommended thickness of dental monolithic zirconia single crowns. J Mech Behav Biomed Mater 2014;35:93-101.
  • 57. Zadeh PN, Lümkemann N, Sener B, Eichberger M, Stawarczyk B. Flexural strength, fracture toughness, and translucency of cubic/tetragonal zirconia materials. J Prosthet Dent 2018;120:948-954.
  • 58. Kwon SJ, Lawson NC, McLaren EE, Nejat AH, Burgess JO. Comparison of the mechanical properties of translucent zirconia and lithium disilicate. J Prosthet Dent 2018;120:132-137.
There are 58 citations in total.

Details

Primary Language Turkish
Subjects Dentistry
Journal Section Derleme
Authors

Gülsüm Doğru This is me 0000-0002-5803-9579

Elif Demiralp This is me 0000-0001-8156-8738

Handan Yılmaz This is me 0000-0001-5809-7018

Publication Date October 14, 2021
Published in Issue Year 2021 Volume: 31 Issue: 4

Cite

APA Doğru, G., Demiralp, E., & Yılmaz, H. (2021). DİŞ HEKİMLİĞİNDE YENİ GELİŞTİRİLEN YÜKSEK TRANSLÜSENT MONOLİTİK PARSİYEL STABİLİZE ZİRKONYA SİSTEMLERİNİN OPTİK VE MEKANİK ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ: DERLEME. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 31(4), 669-675. https://doi.org/10.17567/ataunidfd.831822
AMA Doğru G, Demiralp E, Yılmaz H. DİŞ HEKİMLİĞİNDE YENİ GELİŞTİRİLEN YÜKSEK TRANSLÜSENT MONOLİTİK PARSİYEL STABİLİZE ZİRKONYA SİSTEMLERİNİN OPTİK VE MEKANİK ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ: DERLEME. Ata Diş Hek Fak Derg. October 2021;31(4):669-675. doi:10.17567/ataunidfd.831822
Chicago Doğru, Gülsüm, Elif Demiralp, and Handan Yılmaz. “DİŞ HEKİMLİĞİNDE YENİ GELİŞTİRİLEN YÜKSEK TRANSLÜSENT MONOLİTİK PARSİYEL STABİLİZE ZİRKONYA SİSTEMLERİNİN OPTİK VE MEKANİK ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ: DERLEME”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 31, no. 4 (October 2021): 669-75. https://doi.org/10.17567/ataunidfd.831822.
EndNote Doğru G, Demiralp E, Yılmaz H (October 1, 2021) DİŞ HEKİMLİĞİNDE YENİ GELİŞTİRİLEN YÜKSEK TRANSLÜSENT MONOLİTİK PARSİYEL STABİLİZE ZİRKONYA SİSTEMLERİNİN OPTİK VE MEKANİK ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ: DERLEME. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 31 4 669–675.
IEEE G. Doğru, E. Demiralp, and H. Yılmaz, “DİŞ HEKİMLİĞİNDE YENİ GELİŞTİRİLEN YÜKSEK TRANSLÜSENT MONOLİTİK PARSİYEL STABİLİZE ZİRKONYA SİSTEMLERİNİN OPTİK VE MEKANİK ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ: DERLEME”, Ata Diş Hek Fak Derg, vol. 31, no. 4, pp. 669–675, 2021, doi: 10.17567/ataunidfd.831822.
ISNAD Doğru, Gülsüm et al. “DİŞ HEKİMLİĞİNDE YENİ GELİŞTİRİLEN YÜKSEK TRANSLÜSENT MONOLİTİK PARSİYEL STABİLİZE ZİRKONYA SİSTEMLERİNİN OPTİK VE MEKANİK ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ: DERLEME”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 31/4 (October 2021), 669-675. https://doi.org/10.17567/ataunidfd.831822.
JAMA Doğru G, Demiralp E, Yılmaz H. DİŞ HEKİMLİĞİNDE YENİ GELİŞTİRİLEN YÜKSEK TRANSLÜSENT MONOLİTİK PARSİYEL STABİLİZE ZİRKONYA SİSTEMLERİNİN OPTİK VE MEKANİK ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ: DERLEME. Ata Diş Hek Fak Derg. 2021;31:669–675.
MLA Doğru, Gülsüm et al. “DİŞ HEKİMLİĞİNDE YENİ GELİŞTİRİLEN YÜKSEK TRANSLÜSENT MONOLİTİK PARSİYEL STABİLİZE ZİRKONYA SİSTEMLERİNİN OPTİK VE MEKANİK ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ: DERLEME”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, vol. 31, no. 4, 2021, pp. 669-75, doi:10.17567/ataunidfd.831822.
Vancouver Doğru G, Demiralp E, Yılmaz H. DİŞ HEKİMLİĞİNDE YENİ GELİŞTİRİLEN YÜKSEK TRANSLÜSENT MONOLİTİK PARSİYEL STABİLİZE ZİRKONYA SİSTEMLERİNİN OPTİK VE MEKANİK ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ: DERLEME. Ata Diş Hek Fak Derg. 2021;31(4):669-75.

Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır. Tıklayınız.