BibTex RIS Cite

-

Year 2015, Volume: 29 Issue: 1, 0 - , 05.02.2015

Abstract

As globalization spreads worldwide, the interaction between economies makes progress rapidly. This progressive interaction has both negative and positive side effects. For instance, a crisis occurred in one country can easily turn into a global recession. Lately, the crisis in Greek economy has affected world economy in a very short period. In this study factors, that would have been reasons of the Greece economic crisis, were analyzed by Artificial Neural Networks method. The result of the study shows that unemployment was the most important factor of the crisis

References

  • Ahmad, H.A. and Mariano, M. (2006). Comparison of Forecasting Methodologies Using Egg Price as a Test Case. Poultry Science, 85, ss:798–807.
  • Alkin, E., Yıldırım, K. and Özer, M. (2003), İktisada Giriş (edt. Işıklar İ.), Eskişehir: Anadolu Üniversitesi Yayınları
  • Altunısık, R., Coskun, R., Bayraktaroglu, S.and Yıldırım, E. (2005) Sosyal Bilimlerde Araştırma Metotları, SPSS Uygulamalı, 4 Baskı, Adapazari, Sakarya Yayıncılık.
  • Alagöz, M., Işık, N. ve Delice, G. (2006), “ Finansal Krizler İçin Erken Uyarı Sinyali Olarak Cari Hesap Göstergeleri”, Ekonomik Kriz Öncesi Erken Uyarı Sistemleri Makale Derlemesi, Editörler: H. Seyidoğlu ve R. Yıldız, İstanbul:Arıkan Basım yayım Dağıtım Ltd. Şti., ss. 347- 374
  • Gürkan, Ö. (1999). İktisada Giriş, (3. Baskı), Ankara: Attila Kitabevi
  • IMF (International Monetary Fund) (2010), Country Report, Greece: Staff Report on Request for Stand-By Agreement, No:10/110
  • Karahan, M. (2011). İstatistiksel Tahmin Yöntemleri: Yapay Sinir Ağları Metodu ile Ürün Talep Tahmini Uygulaması, Doktora Tezi, Selçuk Üniversitesi Sosyal Bilimler Enstitüsü, Konya.
  • Karahan, M. ve Tetik, N. (2012). “The Determination of the Effect Level on Employee Performance of TQM Practices with Artificial Neural Networks: A Case Study on Manufacturing Industry Enterprises in Turkey” International Journal of Business and Social Science, 3(7), ss:133-142.
  • Kartalopoulos, S. V (1996). Understanding Neural Networks and Fuzzy Logic. Basic Consepts and Applications. New York: IEEE Press.
  • Köse, Y. Karabacak, H. (2011),’’Yunanistan Ekonomik Krizi: Nedenleri, Etkileri ve Alınan Tedbirlere İlişkin Bir Değerlendirme’’, Maliye Dergisi, Sayı: 160, Ocak-Haziran 2011, ss: 290-306
  • Makridakis, S. Wheelwright, S. C. and Hyndman, R. J. (1998). Forecasting Methods and Applications (Third Edition). New York: John Wiley & Sons Inc.
  • Odyakmaz, Necmi (1997). Groups Correlation Method Based Analysis of foreign trade with the item. Republic of Turkey Prime Ministry Undersecretariat ead/DTDERGİ/nisan97/5.htm. Foreign Trade,
  • http://www.dtm.gov.tr/
  • Oltheten, E., Pinteris, G. ve Sougiannis, T. (2003), “Greece in the European Union: Policy Lessons from Two Decades of Membership”, The Quarterly Review of Economics and Finance, 43, 774-806.
  • Sahoo, G.B., Schladow, S.G. and Reuter, J.E. (2009). Forecasting stream water temperature using regression analysis, artificial neural network, and chaotic non-linear dynamic models. Journal of Hydrology, 378, ss:325–342.
  • Sezgin, F. Özdamar, E. Ö. (2011). XI. Üretim Araştırmaları Sempozyumu, Bildiriler Kitapçığı, 23-24 Haziran 2011, ss: 157-167.
  • SGP (2010), Update of the Hellenic Stability and Growth Programme (Including an Updated Reform Programme), Ministry of Finance, Athens
  • http://www.tradingeconomics.com/greece

Yapay Sinir Ağları Metodu ile Yunanistan Krizini Etkileyen Major Faktörlerin Belirlenmesi

Year 2015, Volume: 29 Issue: 1, 0 - , 05.02.2015

Abstract

References

  • Ahmad, H.A. and Mariano, M. (2006). Comparison of Forecasting Methodologies Using Egg Price as a Test Case. Poultry Science, 85, ss:798–807.
  • Alkin, E., Yıldırım, K. and Özer, M. (2003), İktisada Giriş (edt. Işıklar İ.), Eskişehir: Anadolu Üniversitesi Yayınları
  • Altunısık, R., Coskun, R., Bayraktaroglu, S.and Yıldırım, E. (2005) Sosyal Bilimlerde Araştırma Metotları, SPSS Uygulamalı, 4 Baskı, Adapazari, Sakarya Yayıncılık.
  • Alagöz, M., Işık, N. ve Delice, G. (2006), “ Finansal Krizler İçin Erken Uyarı Sinyali Olarak Cari Hesap Göstergeleri”, Ekonomik Kriz Öncesi Erken Uyarı Sistemleri Makale Derlemesi, Editörler: H. Seyidoğlu ve R. Yıldız, İstanbul:Arıkan Basım yayım Dağıtım Ltd. Şti., ss. 347- 374
  • Gürkan, Ö. (1999). İktisada Giriş, (3. Baskı), Ankara: Attila Kitabevi
  • IMF (International Monetary Fund) (2010), Country Report, Greece: Staff Report on Request for Stand-By Agreement, No:10/110
  • Karahan, M. (2011). İstatistiksel Tahmin Yöntemleri: Yapay Sinir Ağları Metodu ile Ürün Talep Tahmini Uygulaması, Doktora Tezi, Selçuk Üniversitesi Sosyal Bilimler Enstitüsü, Konya.
  • Karahan, M. ve Tetik, N. (2012). “The Determination of the Effect Level on Employee Performance of TQM Practices with Artificial Neural Networks: A Case Study on Manufacturing Industry Enterprises in Turkey” International Journal of Business and Social Science, 3(7), ss:133-142.
  • Kartalopoulos, S. V (1996). Understanding Neural Networks and Fuzzy Logic. Basic Consepts and Applications. New York: IEEE Press.
  • Köse, Y. Karabacak, H. (2011),’’Yunanistan Ekonomik Krizi: Nedenleri, Etkileri ve Alınan Tedbirlere İlişkin Bir Değerlendirme’’, Maliye Dergisi, Sayı: 160, Ocak-Haziran 2011, ss: 290-306
  • Makridakis, S. Wheelwright, S. C. and Hyndman, R. J. (1998). Forecasting Methods and Applications (Third Edition). New York: John Wiley & Sons Inc.
  • Odyakmaz, Necmi (1997). Groups Correlation Method Based Analysis of foreign trade with the item. Republic of Turkey Prime Ministry Undersecretariat ead/DTDERGİ/nisan97/5.htm. Foreign Trade,
  • http://www.dtm.gov.tr/
  • Oltheten, E., Pinteris, G. ve Sougiannis, T. (2003), “Greece in the European Union: Policy Lessons from Two Decades of Membership”, The Quarterly Review of Economics and Finance, 43, 774-806.
  • Sahoo, G.B., Schladow, S.G. and Reuter, J.E. (2009). Forecasting stream water temperature using regression analysis, artificial neural network, and chaotic non-linear dynamic models. Journal of Hydrology, 378, ss:325–342.
  • Sezgin, F. Özdamar, E. Ö. (2011). XI. Üretim Araştırmaları Sempozyumu, Bildiriler Kitapçığı, 23-24 Haziran 2011, ss: 157-167.
  • SGP (2010), Update of the Hellenic Stability and Growth Programme (Including an Updated Reform Programme), Ministry of Finance, Athens
  • http://www.tradingeconomics.com/greece
There are 18 citations in total.

Details

Primary Language Turkish
Journal Section Makaleler
Authors

Bilal Solak

Nevzat Tetik This is me

Mehmet Karahanlı This is me

Publication Date February 5, 2015
Published in Issue Year 2015 Volume: 29 Issue: 1

Cite

APA Solak, B., Tetik, N., & Karahanlı, M. (2015). Yapay Sinir Ağları Metodu ile Yunanistan Krizini Etkileyen Major Faktörlerin Belirlenmesi. Atatürk Üniversitesi İktisadi Ve İdari Bilimler Dergisi, 29(1). https://doi.org/10.16951/iibd.00016

4aoDA4.pngithenticate-badge-rec-positive.png800px-Open-Access-PLoS.svg.png