Research Article
BibTex RIS Cite

Farklı Bitki Yönetimi Altındaki Toprakların Strüktürel Ölçütlerindeki Değişimler

Year 2017, , 9 - 15, 09.06.2017
https://doi.org/10.17097/ataunizfd.320319

Abstract

Toprak strüktürü, toprağın üretim potansiyelini belirleyen en önemli
fiziksel ortam özelliklerinden biridir. Toprakta strüktürel gelişim birçok iç
ve dış faktörün kontrolü altındadır. Farklı bitki yönetim uygulamaları bitkinin
agronomik özellikleri, kök sistemi ve toprağa organik madde döngüsü
farklılıkları dahilinde toprağın strüktürel durumunu önemli ölçüde
etkilemektedir. Farklı bitki yönetimi altında bulunan toprakların yapısal
özelliklerinde meydana gelen değişimlerin değerlendirmesi amacıyla yürütülen bu
çalışmada; uzun yıllardan (+10 yıl) beri farklı bitki yetiştiriciliği
(ayçiçeği, buğday, fasulye, mısır, patates ve yonca) altında bulunan deneme
alanlarından alınan toprak örneklerinde fiziksel, kimyasal ve mekaniksel
özellikler incelenerek yetiştirilen bitkilerin, toprağın strüktürel
parametreleri üzerindeki etkileri değerlendirilmiştir. Elde edilen bulgular
toprağın strüktürel parametrelerinde, yetiştirilen bitki çeşitliliğine bağlı
olarak önemli farklılıkların meydana geldiğini göstermektedir. Strüktürel
gelişim derecesi ve agregat stabilitesinin yonca ekim alanlarından alınan
toprak örneklerinde en yüksek, patates ve mısır ekim alanlarından alınan toprak
örneklerinde ise en düşük değerlerde olduğu saptanmıştır.

References

  • Abu-Hamdeh, N.H., Abo-Qudais, S.A., Othman, A.M. 2006. Effect of soil aggregate size on infiltration and erosion characteristics. Eur J Soil Sci 57(5) : 609–616.
  • Ahmad, R., Arshad, M., Khalid, A., Zahir, Z.A., 2008. Effectiveness of organic-bio-fertilizer supplemented with chemical fertilizers for improving soil water retention aggregate stability growth and nutrient uptake of maize (Zea mays L.). J. Sustain. Agric., 31 (4): 57–77.
  • ASTM, 1974. "Annual book of ASTM standarts." American Society For Testing And Materials, 19: 90-92 race st. pa. USA.
  • Bhattacharyya, R., Prakash, V., Kundu, S., Srivastva ,A.K., Gupta, H.S., 2009. Soil aggregation and organic matter in a sandy clay loam soil of the Indian Himalayas under different tillage and crop regimes. Agric. Ecosyst. Environ., 132: 126–134.
  • Blake, G.R. and Hartge, K.H., 1986 Methods of soil analysis. Part 1. Physical and mineralogical methods. Agronomy, 2: 366-375.
  • Bronick, C.J. and Lal, R., 2005. Soil structure and management: A review. Geoderma, 124 (1-2): 3-22.
  • Bryan, R.B., 1968. The development, use and efficiency of indices of soil erodibility. Geoderma, 2: 5-25.
  • Burri, K., Graf, F., Boll, A., 2009. Revegetation measures improve soil aggregate stability: a case study of landslide area in Central Switzerland. Forest Snow and Landscape Research, 82(1): 45–60.
  • Cercioglu M., Okur B., Delibacak S., Ongun A.R. 2013. İmpact of Some organic matter sources on physical characteristics of a sandy loam soil. Soil – Water Journal (2013). Vol.2. p. 393.
  • Chenu, C., Cosentino, D., 2011. Microbial regulation of soil structural dynamics. In: Ritz, K., Young, I.M. (Eds.), The Architecture and Biology of Soils. CABI, Oxfordshire, U.K, pp. 37–70.
  • Chirinda, N., Olesen, J.E., Porter, J.R., Schjnning, P., 2010. Soil properties, crop production and greenhouse gas emissions from organic and inorganic fertilizer based arable cropping systems. Agric. Ecosyst. Environ., 139: 584–594.
  • Cokca, E., Tilgen, H.P., 2010. Shear strength-suction relationship of compacted Ankara clay. Appl. Clay Sci. 28(8) : 1–5.
  • Corey, A.T., 1986. Air permeability. Methods of soil analysis. Part 1. Physical and mineralogical methods. 2nd edition. Agronomy, 1121-1137.
  • Dabney, S.M., Delgado, J.A., Reeves, D.V., 2001. Using winter cover crops to improve soil and water quality. Commun. Soil Sci. Plant Anal., 32(7-8): 1221-1250.
  • De Baets, S., Poesen, J., Gyssels, G., and Knapen, A., 2006. Effects of grass roots on the erodibility of topsoil during concentrated flow. Geomorphology, 76: 54–67.
  • De Baets, S., Poesen, J., Knapen, A., Barbera, G.G., Navarro, J.A., 2007. Root characteristics of representative Mediterranean plant species and their erosion-reducing potential during concentrated runoff. Plant and Soil, 294: 169–183.
  • Gee, G.W. and Bauder, J.W., 1986. Particle-size analysis. Methods of soil analysis. Part 1. Physical and mineralogical methods. 2nd edition. Agronomy, 383-411.
  • Ghestem, M., Sidle, R.C., Stokes, A., 2011. The influence of plant root systems on subsurface flow: implications for slope stability. Bioscience, 61(11): 869–879.
  • Gulser, C., 2004. A Comparison of Some Physical and Chemical Soil Quality Indicators Influenced by Different Crop Species. Pakistan. J. Bio. Sci., 7(6): 905-911.
  • Hargreaves, J.C., Adl, M.S., Warman, P.R., (2008). A review of the use of composted municipal solid waste in agriculture. Agric. Ecosyst. Environ., 123: 1–14.
  • Head, K.H., 1984. Manual of soil laboratory testing: Vol: 1. Keller, T. and Dexter, A.R., 2012. Plastic limits of agricultural soils as functions of soil texture and organic matter content. Soil Research 50(1).
  • Kemper, W.D. and Rosenau, R.C., 1986. Aggregate stability and size distribution. Methods of soil analysis. Physical and mineralogical methods. 2nd edition. Agronomy, 425-442.
  • Klute, A. and Dirksen, C., 1986. Hydraulic conductivity and diffusivity: Laboratory methods. Methods of soil analysis. Physical and mineralogical methods. 2nd edition. Agronomy, 687-734.
  • Lal, R., 1988. "Soil erosion research methods." Soil And Water Conservation Society. Liang, Y., Li, D.C., Su, C.L., Pan, X.Z., 2009. Soil erosion assessment in the red soil region of Southeast China using an integrated index. Soil Science, 174: 574–581.
  • Martinez, E., Fuentes, J.P., Silva, P., Valle, S., Acevedo, E., 2008. Soil physical properties and wheat root growth as affected by no-tillage and conventional tillage systems in a Mediterranean environment of Chile. Soil Till. Res., 99: 232–244.
  • McLean, E.O., 1982. "Soil pH and lime requirement. Methods of soil analysis." Part 2. Chemical and Microbiological Properties. 2nd edition. Agronomy, 199-224.
  • Moradi, S., 2013. Impacts of organic carbon on consistency limits in different soil textures. International Journal of Agriculture and Crop Sciences. 5-12, 1381-1388.
  • Moreno-Espíndola, I.P., Rivera-Becerril, F., De Jésus Ferrera Guerrero, M., and De Léon-González, F., 2007. Role of root-hairs and hyphae in adhesion of sand particles, Soil Biol. Biochem., 39: 2520–2526.
  • Nelson, D.W. and Sommers, L.E., 1982. "Total carbon, organic carbon and organic matter. Methods of soil analysis." Part 2. Chemical and microbiological properties. 2nd edition. Agronomy, 539-579.
  • Nelson, R.E., 1982. Carbonate and gypsum. Methods of soil analysis. Part 2. Chemical and Microbiological Properties. 2nd edition. Agronomy, 181-197.
  • Olsen, S.R. and Sommers, L.E., 1982. Phosphorusus. Methods of soil analysis. Part 2. Chemical and microbiological Properties. 2nd edition. Agronomy, 403-427.
  • Onweremadu, E.U., Onyia, V.N., Anikwe, M.A.N., 2007. Carbon and nitrogen distribution in water-stable aggregates under two tillage techniques in Fluvisols of Owerri area, southeastern Nigeria. Soil and Tillage Research, 97: 195–206. Oztaş T., 2015. Soil Management, (Ed : S. Ersahin, T. Oztas, A. Namli, G. Karahan). Soil Structure and Management, 7: 209-225.
  • Papini, R., Valboa, G., Favilli, F., L’Abate, G., 2011. Influence of land use on organic carbon pool and chemical properties of Vertic Cambisols in central and southern Italy. Agric. Ecosyst. Environ., 140: 68–79.
  • Pohl, M., Alig, D., Körner, C., Rixen C., 2009. Higher plant diversity enhances soil stability in disturbed alpine ecosystems. Plant and Soil, 324: 91–102.
  • Rhoades, J.D., 1982a. Cation exchange capacity. Methods of soil analysis. Part 2. Chemical And Microbiological Properties. 2nd edition. Agronomy, 149- 157.
  • Rhoades, J.D., 1982b. Soluble salts. Methods of soil analysis. Part 2. Chemical and microbiological properties. 2nd edition. Agronomy,167-179.
  • Riahi, A., Hdider, C., Sanaa, M., Tarchoun, N., Ben Kheder, M., Guezal, I., 2009. The influence of different organic fertilizers on yield and physico-chemical properties of organically grown tomato. J. Sustain. Agric., 33 (6): 658–673.
  • Ross, G.J., 1978. Relationships of specific surface area and clay content to shring-swell. Potential of soils having different clay mineralojical composition. Canadian Journal of Soil, 58: 159-166.
  • Schafer, W.M. and Singer, M.J., 1976. A new method of measuring shrink-swell potential using soil pastes. Soil Science Society of America Journal, 40:805-806.
  • Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I.A., Kleber, M., Kogel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P., Rasse, D.P., Weiner, S., Trumbore, S.E., 2011. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56.
  • Six, J., Frey, S.D., Thiet, R.K., Batten, K.M., 2006. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Science Society of America Journal, 70: 555–569.
  • Soil Survey Staff. 1992. Keys to Soil Taxonomy, 5th ed. Blacksburg, VA: Pocahontas Press. SPSS, (1999). SPSS for Windows, Release 10.0.5., SPSS Inc., USA.
  • Stokes, A., Sotir, R.B., Chen, W., Ghestem, M., 2010. Soil bio- and eco-engineering in China, past experience and present priorities. Ecological Engineering, 36: 247–257.
  • Thevenot, M., Dignac, M.F., Rumpel, C., 2010. Fate of lignins in soils: a review. Soil Biology and Biochemistry, 42: 1200–1211.
  • Thomas, G.W., 1982. "Exchangeable Cations. Methods of soil analysis. Part 2. Chemical And Microbiological Properties. 2nd edition. Agronomy, 9: 159–165, 1159.
  • Vásquez Méndez, R., Ventura Ramos, E., Oleschko, K., Hernández Sandoval, L., Parrot, J.F., and Nearing, M.A., 2010. Soil erosion and runoff in different vegetation patches from semiarid Central Mexico, Catena, 80: 162–169.
  • von Lützow, M., Kogel-Knabner, I., Ludwig, B., Matzner, E., Flessa H., Ekschmitt, K., Guggenberger, G., Marschner, B., Kalbitz, K., 2008. Stabilization mechanisms of organic matter in four temperate soils: development and application of a conceptual model. Journal of Plant Nutrition and Soil Science, 171: 111–124.
  • Wagner, S., Cattle, S.R., Scholten, T., 2007. Soil-aggregate formation as influenced by clay content and organic-matter amendment. J. Plant Nutr. Soil Sci., 170: 173–180.
  • Yang, W., Li, Z.X., Cai, C.F., Wang, J.G., Hua, Z.G., 2012. Tensile strength and friability of Ultisols in sub-tropical China and effects on aggregate breakdown under simulated rainfall. Soil Sci. 177(6) : 377–384.
  • Yoo, G., Yang, X., Wander, M.M., 2011. Influence of soil aggregation on SOC sequestration: a preliminary model of SOC protection by aggregate dynamics. Ecological Engineering, 37: 487–495.

Changes in Structural Parameters of Soils under Different Cropping Systems

Year 2017, , 9 - 15, 09.06.2017
https://doi.org/10.17097/ataunizfd.320319

Abstract

Soil structure is
one of the most important soil physical characteristics affecting on soil
productivity. Structural development of soil is under the control of many
inside and outside factors. It is expected that soil structural characteristics
change with changes in plant pattern because of differentiations in agronomic
properties, root system and amounts of organic matter incorporated into the
soil. The objective of this study was to evaluate changes in structural
behaviors of soils under different crop management systems. Soil samples
collected from long-term (+10 years) experimental fields under different crop
management systems; sun flower, wheat, bean, corn, potato and alfalfa, were
analyzed for physical, chemical and mechanical properties and structural
characteristics were evaluated. The results indicated that soil structural
characteristics significantly changed depending on plant patterns. Structural
conditions and aggregate stability were the highest in soils under alfalfa
crops, but the worst in soils under potatoes and corn production.

References

  • Abu-Hamdeh, N.H., Abo-Qudais, S.A., Othman, A.M. 2006. Effect of soil aggregate size on infiltration and erosion characteristics. Eur J Soil Sci 57(5) : 609–616.
  • Ahmad, R., Arshad, M., Khalid, A., Zahir, Z.A., 2008. Effectiveness of organic-bio-fertilizer supplemented with chemical fertilizers for improving soil water retention aggregate stability growth and nutrient uptake of maize (Zea mays L.). J. Sustain. Agric., 31 (4): 57–77.
  • ASTM, 1974. "Annual book of ASTM standarts." American Society For Testing And Materials, 19: 90-92 race st. pa. USA.
  • Bhattacharyya, R., Prakash, V., Kundu, S., Srivastva ,A.K., Gupta, H.S., 2009. Soil aggregation and organic matter in a sandy clay loam soil of the Indian Himalayas under different tillage and crop regimes. Agric. Ecosyst. Environ., 132: 126–134.
  • Blake, G.R. and Hartge, K.H., 1986 Methods of soil analysis. Part 1. Physical and mineralogical methods. Agronomy, 2: 366-375.
  • Bronick, C.J. and Lal, R., 2005. Soil structure and management: A review. Geoderma, 124 (1-2): 3-22.
  • Bryan, R.B., 1968. The development, use and efficiency of indices of soil erodibility. Geoderma, 2: 5-25.
  • Burri, K., Graf, F., Boll, A., 2009. Revegetation measures improve soil aggregate stability: a case study of landslide area in Central Switzerland. Forest Snow and Landscape Research, 82(1): 45–60.
  • Cercioglu M., Okur B., Delibacak S., Ongun A.R. 2013. İmpact of Some organic matter sources on physical characteristics of a sandy loam soil. Soil – Water Journal (2013). Vol.2. p. 393.
  • Chenu, C., Cosentino, D., 2011. Microbial regulation of soil structural dynamics. In: Ritz, K., Young, I.M. (Eds.), The Architecture and Biology of Soils. CABI, Oxfordshire, U.K, pp. 37–70.
  • Chirinda, N., Olesen, J.E., Porter, J.R., Schjnning, P., 2010. Soil properties, crop production and greenhouse gas emissions from organic and inorganic fertilizer based arable cropping systems. Agric. Ecosyst. Environ., 139: 584–594.
  • Cokca, E., Tilgen, H.P., 2010. Shear strength-suction relationship of compacted Ankara clay. Appl. Clay Sci. 28(8) : 1–5.
  • Corey, A.T., 1986. Air permeability. Methods of soil analysis. Part 1. Physical and mineralogical methods. 2nd edition. Agronomy, 1121-1137.
  • Dabney, S.M., Delgado, J.A., Reeves, D.V., 2001. Using winter cover crops to improve soil and water quality. Commun. Soil Sci. Plant Anal., 32(7-8): 1221-1250.
  • De Baets, S., Poesen, J., Gyssels, G., and Knapen, A., 2006. Effects of grass roots on the erodibility of topsoil during concentrated flow. Geomorphology, 76: 54–67.
  • De Baets, S., Poesen, J., Knapen, A., Barbera, G.G., Navarro, J.A., 2007. Root characteristics of representative Mediterranean plant species and their erosion-reducing potential during concentrated runoff. Plant and Soil, 294: 169–183.
  • Gee, G.W. and Bauder, J.W., 1986. Particle-size analysis. Methods of soil analysis. Part 1. Physical and mineralogical methods. 2nd edition. Agronomy, 383-411.
  • Ghestem, M., Sidle, R.C., Stokes, A., 2011. The influence of plant root systems on subsurface flow: implications for slope stability. Bioscience, 61(11): 869–879.
  • Gulser, C., 2004. A Comparison of Some Physical and Chemical Soil Quality Indicators Influenced by Different Crop Species. Pakistan. J. Bio. Sci., 7(6): 905-911.
  • Hargreaves, J.C., Adl, M.S., Warman, P.R., (2008). A review of the use of composted municipal solid waste in agriculture. Agric. Ecosyst. Environ., 123: 1–14.
  • Head, K.H., 1984. Manual of soil laboratory testing: Vol: 1. Keller, T. and Dexter, A.R., 2012. Plastic limits of agricultural soils as functions of soil texture and organic matter content. Soil Research 50(1).
  • Kemper, W.D. and Rosenau, R.C., 1986. Aggregate stability and size distribution. Methods of soil analysis. Physical and mineralogical methods. 2nd edition. Agronomy, 425-442.
  • Klute, A. and Dirksen, C., 1986. Hydraulic conductivity and diffusivity: Laboratory methods. Methods of soil analysis. Physical and mineralogical methods. 2nd edition. Agronomy, 687-734.
  • Lal, R., 1988. "Soil erosion research methods." Soil And Water Conservation Society. Liang, Y., Li, D.C., Su, C.L., Pan, X.Z., 2009. Soil erosion assessment in the red soil region of Southeast China using an integrated index. Soil Science, 174: 574–581.
  • Martinez, E., Fuentes, J.P., Silva, P., Valle, S., Acevedo, E., 2008. Soil physical properties and wheat root growth as affected by no-tillage and conventional tillage systems in a Mediterranean environment of Chile. Soil Till. Res., 99: 232–244.
  • McLean, E.O., 1982. "Soil pH and lime requirement. Methods of soil analysis." Part 2. Chemical and Microbiological Properties. 2nd edition. Agronomy, 199-224.
  • Moradi, S., 2013. Impacts of organic carbon on consistency limits in different soil textures. International Journal of Agriculture and Crop Sciences. 5-12, 1381-1388.
  • Moreno-Espíndola, I.P., Rivera-Becerril, F., De Jésus Ferrera Guerrero, M., and De Léon-González, F., 2007. Role of root-hairs and hyphae in adhesion of sand particles, Soil Biol. Biochem., 39: 2520–2526.
  • Nelson, D.W. and Sommers, L.E., 1982. "Total carbon, organic carbon and organic matter. Methods of soil analysis." Part 2. Chemical and microbiological properties. 2nd edition. Agronomy, 539-579.
  • Nelson, R.E., 1982. Carbonate and gypsum. Methods of soil analysis. Part 2. Chemical and Microbiological Properties. 2nd edition. Agronomy, 181-197.
  • Olsen, S.R. and Sommers, L.E., 1982. Phosphorusus. Methods of soil analysis. Part 2. Chemical and microbiological Properties. 2nd edition. Agronomy, 403-427.
  • Onweremadu, E.U., Onyia, V.N., Anikwe, M.A.N., 2007. Carbon and nitrogen distribution in water-stable aggregates under two tillage techniques in Fluvisols of Owerri area, southeastern Nigeria. Soil and Tillage Research, 97: 195–206. Oztaş T., 2015. Soil Management, (Ed : S. Ersahin, T. Oztas, A. Namli, G. Karahan). Soil Structure and Management, 7: 209-225.
  • Papini, R., Valboa, G., Favilli, F., L’Abate, G., 2011. Influence of land use on organic carbon pool and chemical properties of Vertic Cambisols in central and southern Italy. Agric. Ecosyst. Environ., 140: 68–79.
  • Pohl, M., Alig, D., Körner, C., Rixen C., 2009. Higher plant diversity enhances soil stability in disturbed alpine ecosystems. Plant and Soil, 324: 91–102.
  • Rhoades, J.D., 1982a. Cation exchange capacity. Methods of soil analysis. Part 2. Chemical And Microbiological Properties. 2nd edition. Agronomy, 149- 157.
  • Rhoades, J.D., 1982b. Soluble salts. Methods of soil analysis. Part 2. Chemical and microbiological properties. 2nd edition. Agronomy,167-179.
  • Riahi, A., Hdider, C., Sanaa, M., Tarchoun, N., Ben Kheder, M., Guezal, I., 2009. The influence of different organic fertilizers on yield and physico-chemical properties of organically grown tomato. J. Sustain. Agric., 33 (6): 658–673.
  • Ross, G.J., 1978. Relationships of specific surface area and clay content to shring-swell. Potential of soils having different clay mineralojical composition. Canadian Journal of Soil, 58: 159-166.
  • Schafer, W.M. and Singer, M.J., 1976. A new method of measuring shrink-swell potential using soil pastes. Soil Science Society of America Journal, 40:805-806.
  • Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I.A., Kleber, M., Kogel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P., Rasse, D.P., Weiner, S., Trumbore, S.E., 2011. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56.
  • Six, J., Frey, S.D., Thiet, R.K., Batten, K.M., 2006. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Science Society of America Journal, 70: 555–569.
  • Soil Survey Staff. 1992. Keys to Soil Taxonomy, 5th ed. Blacksburg, VA: Pocahontas Press. SPSS, (1999). SPSS for Windows, Release 10.0.5., SPSS Inc., USA.
  • Stokes, A., Sotir, R.B., Chen, W., Ghestem, M., 2010. Soil bio- and eco-engineering in China, past experience and present priorities. Ecological Engineering, 36: 247–257.
  • Thevenot, M., Dignac, M.F., Rumpel, C., 2010. Fate of lignins in soils: a review. Soil Biology and Biochemistry, 42: 1200–1211.
  • Thomas, G.W., 1982. "Exchangeable Cations. Methods of soil analysis. Part 2. Chemical And Microbiological Properties. 2nd edition. Agronomy, 9: 159–165, 1159.
  • Vásquez Méndez, R., Ventura Ramos, E., Oleschko, K., Hernández Sandoval, L., Parrot, J.F., and Nearing, M.A., 2010. Soil erosion and runoff in different vegetation patches from semiarid Central Mexico, Catena, 80: 162–169.
  • von Lützow, M., Kogel-Knabner, I., Ludwig, B., Matzner, E., Flessa H., Ekschmitt, K., Guggenberger, G., Marschner, B., Kalbitz, K., 2008. Stabilization mechanisms of organic matter in four temperate soils: development and application of a conceptual model. Journal of Plant Nutrition and Soil Science, 171: 111–124.
  • Wagner, S., Cattle, S.R., Scholten, T., 2007. Soil-aggregate formation as influenced by clay content and organic-matter amendment. J. Plant Nutr. Soil Sci., 170: 173–180.
  • Yang, W., Li, Z.X., Cai, C.F., Wang, J.G., Hua, Z.G., 2012. Tensile strength and friability of Ultisols in sub-tropical China and effects on aggregate breakdown under simulated rainfall. Soil Sci. 177(6) : 377–384.
  • Yoo, G., Yang, X., Wander, M.M., 2011. Influence of soil aggregation on SOC sequestration: a preliminary model of SOC protection by aggregate dynamics. Ecological Engineering, 37: 487–495.
There are 50 citations in total.

Details

Journal Section Makaleler
Authors

Fazil Hacımuftuoglu This is me

Taskin Oztas This is me

Publication Date June 9, 2017
Published in Issue Year 2017

Cite

APA Hacımuftuoglu, F., & Oztas, T. (2017). Farklı Bitki Yönetimi Altındaki Toprakların Strüktürel Ölçütlerindeki Değişimler. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 48(1), 9-15. https://doi.org/10.17097/ataunizfd.320319
AMA Hacımuftuoglu F, Oztas T. Farklı Bitki Yönetimi Altındaki Toprakların Strüktürel Ölçütlerindeki Değişimler. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. June 2017;48(1):9-15. doi:10.17097/ataunizfd.320319
Chicago Hacımuftuoglu, Fazil, and Taskin Oztas. “Farklı Bitki Yönetimi Altındaki Toprakların Strüktürel Ölçütlerindeki Değişimler”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 48, no. 1 (June 2017): 9-15. https://doi.org/10.17097/ataunizfd.320319.
EndNote Hacımuftuoglu F, Oztas T (June 1, 2017) Farklı Bitki Yönetimi Altındaki Toprakların Strüktürel Ölçütlerindeki Değişimler. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 48 1 9–15.
IEEE F. Hacımuftuoglu and T. Oztas, “Farklı Bitki Yönetimi Altındaki Toprakların Strüktürel Ölçütlerindeki Değişimler”, Atatürk Üniversitesi Ziraat Fakültesi Dergisi, vol. 48, no. 1, pp. 9–15, 2017, doi: 10.17097/ataunizfd.320319.
ISNAD Hacımuftuoglu, Fazil - Oztas, Taskin. “Farklı Bitki Yönetimi Altındaki Toprakların Strüktürel Ölçütlerindeki Değişimler”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 48/1 (June 2017), 9-15. https://doi.org/10.17097/ataunizfd.320319.
JAMA Hacımuftuoglu F, Oztas T. Farklı Bitki Yönetimi Altındaki Toprakların Strüktürel Ölçütlerindeki Değişimler. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 2017;48:9–15.
MLA Hacımuftuoglu, Fazil and Taskin Oztas. “Farklı Bitki Yönetimi Altındaki Toprakların Strüktürel Ölçütlerindeki Değişimler”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, vol. 48, no. 1, 2017, pp. 9-15, doi:10.17097/ataunizfd.320319.
Vancouver Hacımuftuoglu F, Oztas T. Farklı Bitki Yönetimi Altındaki Toprakların Strüktürel Ölçütlerindeki Değişimler. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 2017;48(1):9-15.

Bu dergide yayınlanan makaleler Creative Commons Uluslararası Lisansı (https://creativecommons.org/licenses/by-nc/4.0/) kapsamında yayınlanmaktadır. Bu, orijinal makaleye uygun şekilde atıf yapılması şartıyla, eserin herhangi bir ortam veya formatta kopyalanmasını ve dağıtılmasını sağlar. Ancak, eserler ticari amaçlar için kullanılamaz.

https://creativecommons.org/licenses/by-nc/4.0/