Research Article
BibTex RIS Cite

Effects of Differential Bacteria Application on Early Aluminum Stress in Wheat (Triticum aestivum L.)

Year 2019, , 57 - 65, 30.01.2019
https://doi.org/10.17097/ataunizfd.431400

Abstract

Wheat, transport,
cultivation, storage and processing are very easy; winter and summer produce,
and high nutritional value of reasons such as; in the world and in Turkey
constitutes one of the essential nutrients. In this study, the effects of
different bacterial applications on different germination parameters of
aluminum stress were aimed, this study was conducted in 4 replicates according
to the completely randomized factorial design
. As the plant material, the seeds of the wheat (Triticum aestivum L.cv. Kırik) were used. Sterilized wheat
seeds seed coding was done in 11 different bacterial species developed in
liquid medium for 24 hours. The seeds were then germinated on paper in dark photoperiod
formed with aluminum chloride (AlCl
3) for 10 days at 20 ° C. At the
end of this study, the germination rate (GR), germination rate coefficient (CVG),
mean germination time (MGT), germination vigor index (GVI), total embryonic
root length and shoot length parameters were measured. The germination rate,
germination vigor index, germination rate, root length and shoot length
decreased significantly in all bacterial applications with different
concentration of AlCl3, whereas mean germination time was prolonged. When the
responses of different bacterial inoculations against aluminum stress in wheat
were evaluated, inoculation with
Pseudomonas
fluorescens
was found to be better than other applications and it was found
to be effective in reducing the negative effect of aluminum in terms of tested
germination characteristics.

References

  • Abdul-Baki, A.A. and Anderson, J.D., 1970. Viability and leaching of sugars from germinating barley. Crop Science, 10 (1), 31-34.Acreduany P., 1997. Soil conservation. 1,177-196.Amami A., 1996. Methods of plant analysis. 972, 248.Amangel K., Kerkby E., 1993. Principles of plant natrition. 1, 109. AOSA., 1983. Seed vigor testing handbook. Contibution No.32 to the handbook on seed testing.Barazani, O., Fridman, J., 1999. Effect of exogenously applied L-tryptophan on alelochemical activity of plant-growth-promoting rhizobateria (PGPR). J. Chem. Ecpl. 26,343-349.Barzanti, R., Ozino, F., Bazzicalupo, M., Gabbrielli, R., Galardi, F., Gonnelli, C., Mengoni, A., 2007. Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microb. Ecol. 53, 306–316.Bashan, Y., and de-Bashan, L.E., 2004 . Protection of tomato seed - lings against infection by Pseudomonas syringae pv. Tomato by using the plant growth-promoting bacterium Azospirillum brasilense . Appl. Environ. Microbiol. 68 ,2637–2643.Belimov, A., Hontzeas, N., Safronova, V., Demchinskaya, S., Piluzza, G., Bullitta, S., Glick, B., 2005. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol. Biochem. 37, 241–250.Benmalek, Y., Halouane, A., Hacene, H., Fardeau, M.-L., 2016. 2014., Resistance to heavy metals and bioaccumulation of lead and zinc by Chryseobacterium solincola strain 1YBR12T isolated from soil. Int. J. Environ. Engin. 6, 68–77.Costa, J.M., and W.E. Kronstad., 1994. Association of grain protein concentration and selected traits in hard red winter wheat populations in the Pacific Northwest.Crop Sci. 34,1234-1239.Çakmakçi, R., Dönmez, F., Aydin, A., Sahin, F., 2005. Growth promotion of plants byplant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol. Biochem. 38, 1482-1487.Delhaize E, Craig S, Beaton CD, Bennet RJ, Jagadish VC, Randall PJ ., 1995. Aluminum tolerance in wheat (Triticum aestivum L.). I. Uptake and distribution of aluminum in root apices. Plant Physiol. 103,685-693.Dell’Amico, E., Cavalca, L., Andreoni, V., 2005. Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metalresistant, potentially plant growth-promoting bacteria. FEMS Microbiol. Ecol. 52, 153–162.Dezfuli, Pegah Moradi, Farzad Sharif-Zadeh, and Mohsen Janmohammadi. "Influence of priming techniques on seed germination behavior of maize inbred lines (Zea mays L.)." J. Agric. Biol. Sci 3.3 (2008): 22-25.Doncheva, S., Nicolov B. and Ogneva V., 1996. Effect of copper excess on the morphology of the nucleus in maize root meristem cells, Phsiol. Plantarum. 96, 118-122. emergence and vigor. Crop science 2(2):176-177.Foy, CD., Duke, JA & Devine, TE .,1992. Tolerance of soybean germplasm to an acid tatum subsoil. J. Plant Nutr. 15, 527–547.Glick Schiller.N, L. Basch and C. Blanc-Szanton., 1995. "From Immigrant to Transmigrant: Theorizing Transnational Migration" Anthropology Quarterly. 68(1):48-63. Goodwin, S.B. and Sutter, T.R., 2009. Microarray analysis of Arabidopsis genome response to aluminum stress . Biologia Plantarum. 53,85-99. Goyer, R.A., Miller, C.R., Zhu, S.Y and Victery, W., 1991. Non-metallothionein bound cadmium in the pathogenesis of cadmium nephropathy in the rat. Toxicol. Appl. Pharmacol. 101, 232-244.Idris, R., Trifonova, R., Puschenreiter, M., Wenzel, W.W., Sessitsch, A., 2004. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl. Environ. Microbiol. 70, 2667–2677.Jiang, C.-y., Sheng, X.-f., Qian, M., Wang, Q.-y., 2008. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere. 72, 157–164.Kennedy,C.D and Gonsalves F.A.N., 1987. The action of divalent zinc,cadmium,mercury,copper and lead on the transroot potential and efflux of excised.Kochian LV ., 1995 .Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mo1 Biol. 46, 237-260.Kuffner, M., De Maria, S., Puschenreiter, M., Fallmann, K., Wieshammer, G., Gorfer, M., Strauss, J., Rivelli, A., Sessitsch, A., 2010. Culturable bacteria from Zn-and Cdaccumulating Salix caprea with differential effects on plant growth and heavy metal availability. J. Appl. Microbiol. 108, 1471–1484.Lidon, F.C., Ramalho, J., Henriques, F.S.,1993. Copper inhibition of rice photosynthesis. J. Plant Physiol. 142, 12-17. Ma, L., L.R. Ahuja, B.T. Nolan, R.W. Malone, T.J. Trout, and Z. Qi., 2012b. Root zone water quality model (RZWQM2): Model use, calibration and validation. Trans. ASABE 55,1425–1446. doi:10.13031/2013.42252.Magalhaes JV, Liu J, Guimaraes CT,et al.,2007. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum.Nature Genetics .39,1156–1161.Maguire, J.D., 1962. Speed of germination—aid in selection and evaluation for seedling Nussbaum, S., Schmutz, D. and Brunold, C., 1988. Regulation of Assimilatory Sulfate Reduction by Cadmium in Zea mays L. Plant Physiol. 88, 1407-1410. Ouzounidou, G., Eleftheriou E.P and Karataglis S., 1992. Ecophysical and ultra sturctural effects of copper in Thlaspi ochroleucum , Can. J. of Bot. 70,947-957. Öktüren Asri, F., Sönmez, S., 2007. Ağır Metal Toksisitesinin Bitki Metabolizması Üzerine Etkileri. Derim. 23, 36-45.Phalsson A. M. B., 1989. Toxicity of heavy metals (zn, cu, cd, pb) to vascular plants. Water, Air, Soil Pollut. 47, 287-19. Pinton R, Varanini Z, Nannipieri P., 2001. The Rhizosphere as a site of biochemical interactions among soil components, plants, and microorganisms, In: Pinton, R., Varanini, Z., Nannipieri, P. (Eds.), The Rhizosphere. Mercel Dekker, Inc, New York, USA, pp. 1–18.Ramgareeb S, Watt MP, Marsh C & Cooke JA .,1999. Assessmentof Al availability in callus culture media for screening tolerant genotypes of Cynodon dactylon . Plant Cell Tiss. Org. Cult. 56,65–68Ryan, J. P., F. P. Chavez and J. G. B Ellıngham ., 2005 .a.Physical-biological coupling in Monterey Bay, California:Topographic influences on phytoplankton ecology. Mar.Ecol. Prog. Ser.287,23–32, doi:10.3354/meps287023.Somashekaraiah, B.V., Padmaja K. and Prasad A.R.K., 1992. Phytotoxicity of cadmiumions on germinating seedlings of mung bean (Phsalis vulgaris) involvement of lipid peroxides in chlolophyll degradation’ Physiol. Plantarum. 85,85-89. Stresty, TVS., Madhava Rao, KV., 1999. Ultra structuralalterations in response to zinc and nickel stress in therootcell of pigeonpea. Environ. Exp. Bot. 41, 3-13.Tangen K ., 2002. Blooms of Gyrodinium aureolum (Dinophyceae) in north European waters, accompanied by mortality in marine organisms. Sarsia. 63,123 - 133.Tsavkelova, E.A., S. Yu, Klimova, T.A. Cherdyntseva and A.I. Netrusov., 2005. icrobial producers of plant growth stimulators and their practical use: A review. Prikl. Biokhim.Mikrobiol. 42, 117-126.Vassilev.D, Nenov, A. Atanassov, A. Dimov, G. and Getov, L., 2006.Application of bioinformatics infruit plant breeding. Journal of fruit and ornamental plant research.14,145-162.Wilkens B.J. and Loch J.P.G., 1997. Accumulation of cadmium and zinc from diffuse emission on acid sandy soils, as a function of soil composition.Water Air Soil Pollution. 96, 1-16.

Buğdayda (Triticum aestivum L.) Erken Alüminyum Stresine Karşı Bakteri Uygulamalarının Etkileri

Year 2019, , 57 - 65, 30.01.2019
https://doi.org/10.17097/ataunizfd.431400

Abstract

Buğday; taşınması, tarımı, saklanma ve işlenmesinin
oldukça kolay olması; kışlık ve yazlık üretilebilmesi ve besin değerinin yüksek
olması gibi nedenlerle, dünyada ve Türkiye’de temel besin maddelerinden birini
oluşturmaktadır.
Bu çalışmada buğdayda (Triticum aestivum L.
cv Kırık) erken aluminyum stresine karşı bakteri uygulamalarının etkileri
buğday
çimlenme parametreleriyle araştırılmıştır. Araştırma tesadüf parsellerinde 4 farklı alüminyum chloride 
konsantrsyonu (
0, 7,5, 15, 22,5 ve 30 mM) × 11 (farklı bakteri)
faktöriyel deneme desenine göre
4
tekrarlı olarak yürütülmüştür. Sterilize edilen buğday tohumları 24 saat sıvı
besi yerinde geliştirilmiş farklı bakteri türleri içerisinde tohum kodlaması
yapılmıştır. Ardından tohumlara
alüminyum
chloride (AlCl
3
) uygulanarak karanlık fotoperyot ortamında
20°C’de 10 gün süreyle kağıt üzerinde çimlendirilmiştir.
Bu çalışma sonunda çimlenme oranı (ÇO), çimlenme hızı katsayısı (ÇHK), ortalama çimlenme
zamanı (OÇZ), çimlenme gücü indeksi, çim gücü indeksi (ÇGİ), toplam embriyonal kök
uzunluğu ve sürgün uzunluğu parametreleri
ölçülmüştür. AlCl3’in
konsantrasyonu artıkça tüm bakteri uygulamalarında çimlenme oranı, çimlenme
hızı kat sayısı, çimlenme gücü indeksi, kök uzunluğu ve sürgün uzunluğu çok
önemli derecede azalmış buna karşın ortalama çimlenme zamanı uzamıştır. Farklı
bakteri uygulamalarının buğdayda
alüminyum stresine
karşı verdiği tepkiler değerlendirildiğinde,
Pseudomonas fluorescens bakterisi aşılamasının, diğer uygulamalara göre göre
daha iyi sonuç verdiği ve test edilen çimlenme karakterleri bakımdan
alüminyumun olumsuz etkisinin azaltılmasında etkili olduğu belirlenmiştir. 

References

  • Abdul-Baki, A.A. and Anderson, J.D., 1970. Viability and leaching of sugars from germinating barley. Crop Science, 10 (1), 31-34.Acreduany P., 1997. Soil conservation. 1,177-196.Amami A., 1996. Methods of plant analysis. 972, 248.Amangel K., Kerkby E., 1993. Principles of plant natrition. 1, 109. AOSA., 1983. Seed vigor testing handbook. Contibution No.32 to the handbook on seed testing.Barazani, O., Fridman, J., 1999. Effect of exogenously applied L-tryptophan on alelochemical activity of plant-growth-promoting rhizobateria (PGPR). J. Chem. Ecpl. 26,343-349.Barzanti, R., Ozino, F., Bazzicalupo, M., Gabbrielli, R., Galardi, F., Gonnelli, C., Mengoni, A., 2007. Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microb. Ecol. 53, 306–316.Bashan, Y., and de-Bashan, L.E., 2004 . Protection of tomato seed - lings against infection by Pseudomonas syringae pv. Tomato by using the plant growth-promoting bacterium Azospirillum brasilense . Appl. Environ. Microbiol. 68 ,2637–2643.Belimov, A., Hontzeas, N., Safronova, V., Demchinskaya, S., Piluzza, G., Bullitta, S., Glick, B., 2005. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol. Biochem. 37, 241–250.Benmalek, Y., Halouane, A., Hacene, H., Fardeau, M.-L., 2016. 2014., Resistance to heavy metals and bioaccumulation of lead and zinc by Chryseobacterium solincola strain 1YBR12T isolated from soil. Int. J. Environ. Engin. 6, 68–77.Costa, J.M., and W.E. Kronstad., 1994. Association of grain protein concentration and selected traits in hard red winter wheat populations in the Pacific Northwest.Crop Sci. 34,1234-1239.Çakmakçi, R., Dönmez, F., Aydin, A., Sahin, F., 2005. Growth promotion of plants byplant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol. Biochem. 38, 1482-1487.Delhaize E, Craig S, Beaton CD, Bennet RJ, Jagadish VC, Randall PJ ., 1995. Aluminum tolerance in wheat (Triticum aestivum L.). I. Uptake and distribution of aluminum in root apices. Plant Physiol. 103,685-693.Dell’Amico, E., Cavalca, L., Andreoni, V., 2005. Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metalresistant, potentially plant growth-promoting bacteria. FEMS Microbiol. Ecol. 52, 153–162.Dezfuli, Pegah Moradi, Farzad Sharif-Zadeh, and Mohsen Janmohammadi. "Influence of priming techniques on seed germination behavior of maize inbred lines (Zea mays L.)." J. Agric. Biol. Sci 3.3 (2008): 22-25.Doncheva, S., Nicolov B. and Ogneva V., 1996. Effect of copper excess on the morphology of the nucleus in maize root meristem cells, Phsiol. Plantarum. 96, 118-122. emergence and vigor. Crop science 2(2):176-177.Foy, CD., Duke, JA & Devine, TE .,1992. Tolerance of soybean germplasm to an acid tatum subsoil. J. Plant Nutr. 15, 527–547.Glick Schiller.N, L. Basch and C. Blanc-Szanton., 1995. "From Immigrant to Transmigrant: Theorizing Transnational Migration" Anthropology Quarterly. 68(1):48-63. Goodwin, S.B. and Sutter, T.R., 2009. Microarray analysis of Arabidopsis genome response to aluminum stress . Biologia Plantarum. 53,85-99. Goyer, R.A., Miller, C.R., Zhu, S.Y and Victery, W., 1991. Non-metallothionein bound cadmium in the pathogenesis of cadmium nephropathy in the rat. Toxicol. Appl. Pharmacol. 101, 232-244.Idris, R., Trifonova, R., Puschenreiter, M., Wenzel, W.W., Sessitsch, A., 2004. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl. Environ. Microbiol. 70, 2667–2677.Jiang, C.-y., Sheng, X.-f., Qian, M., Wang, Q.-y., 2008. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere. 72, 157–164.Kennedy,C.D and Gonsalves F.A.N., 1987. The action of divalent zinc,cadmium,mercury,copper and lead on the transroot potential and efflux of excised.Kochian LV ., 1995 .Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mo1 Biol. 46, 237-260.Kuffner, M., De Maria, S., Puschenreiter, M., Fallmann, K., Wieshammer, G., Gorfer, M., Strauss, J., Rivelli, A., Sessitsch, A., 2010. Culturable bacteria from Zn-and Cdaccumulating Salix caprea with differential effects on plant growth and heavy metal availability. J. Appl. Microbiol. 108, 1471–1484.Lidon, F.C., Ramalho, J., Henriques, F.S.,1993. Copper inhibition of rice photosynthesis. J. Plant Physiol. 142, 12-17. Ma, L., L.R. Ahuja, B.T. Nolan, R.W. Malone, T.J. Trout, and Z. Qi., 2012b. Root zone water quality model (RZWQM2): Model use, calibration and validation. Trans. ASABE 55,1425–1446. doi:10.13031/2013.42252.Magalhaes JV, Liu J, Guimaraes CT,et al.,2007. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum.Nature Genetics .39,1156–1161.Maguire, J.D., 1962. Speed of germination—aid in selection and evaluation for seedling Nussbaum, S., Schmutz, D. and Brunold, C., 1988. Regulation of Assimilatory Sulfate Reduction by Cadmium in Zea mays L. Plant Physiol. 88, 1407-1410. Ouzounidou, G., Eleftheriou E.P and Karataglis S., 1992. Ecophysical and ultra sturctural effects of copper in Thlaspi ochroleucum , Can. J. of Bot. 70,947-957. Öktüren Asri, F., Sönmez, S., 2007. Ağır Metal Toksisitesinin Bitki Metabolizması Üzerine Etkileri. Derim. 23, 36-45.Phalsson A. M. B., 1989. Toxicity of heavy metals (zn, cu, cd, pb) to vascular plants. Water, Air, Soil Pollut. 47, 287-19. Pinton R, Varanini Z, Nannipieri P., 2001. The Rhizosphere as a site of biochemical interactions among soil components, plants, and microorganisms, In: Pinton, R., Varanini, Z., Nannipieri, P. (Eds.), The Rhizosphere. Mercel Dekker, Inc, New York, USA, pp. 1–18.Ramgareeb S, Watt MP, Marsh C & Cooke JA .,1999. Assessmentof Al availability in callus culture media for screening tolerant genotypes of Cynodon dactylon . Plant Cell Tiss. Org. Cult. 56,65–68Ryan, J. P., F. P. Chavez and J. G. B Ellıngham ., 2005 .a.Physical-biological coupling in Monterey Bay, California:Topographic influences on phytoplankton ecology. Mar.Ecol. Prog. Ser.287,23–32, doi:10.3354/meps287023.Somashekaraiah, B.V., Padmaja K. and Prasad A.R.K., 1992. Phytotoxicity of cadmiumions on germinating seedlings of mung bean (Phsalis vulgaris) involvement of lipid peroxides in chlolophyll degradation’ Physiol. Plantarum. 85,85-89. Stresty, TVS., Madhava Rao, KV., 1999. Ultra structuralalterations in response to zinc and nickel stress in therootcell of pigeonpea. Environ. Exp. Bot. 41, 3-13.Tangen K ., 2002. Blooms of Gyrodinium aureolum (Dinophyceae) in north European waters, accompanied by mortality in marine organisms. Sarsia. 63,123 - 133.Tsavkelova, E.A., S. Yu, Klimova, T.A. Cherdyntseva and A.I. Netrusov., 2005. icrobial producers of plant growth stimulators and their practical use: A review. Prikl. Biokhim.Mikrobiol. 42, 117-126.Vassilev.D, Nenov, A. Atanassov, A. Dimov, G. and Getov, L., 2006.Application of bioinformatics infruit plant breeding. Journal of fruit and ornamental plant research.14,145-162.Wilkens B.J. and Loch J.P.G., 1997. Accumulation of cadmium and zinc from diffuse emission on acid sandy soils, as a function of soil composition.Water Air Soil Pollution. 96, 1-16.
There are 1 citations in total.

Details

Primary Language Turkish
Journal Section ARAŞTIRMALAR
Authors

Farzane Pordel

Arash Hossein Pour

Ramazan Çakmakçı

Publication Date January 30, 2019
Published in Issue Year 2019

Cite

APA Pordel, F., Hossein Pour, A., & Çakmakçı, R. (2019). Buğdayda (Triticum aestivum L.) Erken Alüminyum Stresine Karşı Bakteri Uygulamalarının Etkileri. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 50(1), 57-65. https://doi.org/10.17097/ataunizfd.431400
AMA Pordel F, Hossein Pour A, Çakmakçı R. Buğdayda (Triticum aestivum L.) Erken Alüminyum Stresine Karşı Bakteri Uygulamalarının Etkileri. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. January 2019;50(1):57-65. doi:10.17097/ataunizfd.431400
Chicago Pordel, Farzane, Arash Hossein Pour, and Ramazan Çakmakçı. “Buğdayda (Triticum Aestivum L.) Erken Alüminyum Stresine Karşı Bakteri Uygulamalarının Etkileri”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 50, no. 1 (January 2019): 57-65. https://doi.org/10.17097/ataunizfd.431400.
EndNote Pordel F, Hossein Pour A, Çakmakçı R (January 1, 2019) Buğdayda (Triticum aestivum L.) Erken Alüminyum Stresine Karşı Bakteri Uygulamalarının Etkileri. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 50 1 57–65.
IEEE F. Pordel, A. Hossein Pour, and R. Çakmakçı, “Buğdayda (Triticum aestivum L.) Erken Alüminyum Stresine Karşı Bakteri Uygulamalarının Etkileri”, Atatürk Üniversitesi Ziraat Fakültesi Dergisi, vol. 50, no. 1, pp. 57–65, 2019, doi: 10.17097/ataunizfd.431400.
ISNAD Pordel, Farzane et al. “Buğdayda (Triticum Aestivum L.) Erken Alüminyum Stresine Karşı Bakteri Uygulamalarının Etkileri”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 50/1 (January 2019), 57-65. https://doi.org/10.17097/ataunizfd.431400.
JAMA Pordel F, Hossein Pour A, Çakmakçı R. Buğdayda (Triticum aestivum L.) Erken Alüminyum Stresine Karşı Bakteri Uygulamalarının Etkileri. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 2019;50:57–65.
MLA Pordel, Farzane et al. “Buğdayda (Triticum Aestivum L.) Erken Alüminyum Stresine Karşı Bakteri Uygulamalarının Etkileri”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, vol. 50, no. 1, 2019, pp. 57-65, doi:10.17097/ataunizfd.431400.
Vancouver Pordel F, Hossein Pour A, Çakmakçı R. Buğdayda (Triticum aestivum L.) Erken Alüminyum Stresine Karşı Bakteri Uygulamalarının Etkileri. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 2019;50(1):57-65.

Bu dergide yayınlanan makaleler Creative Commons Uluslararası Lisansı (https://creativecommons.org/licenses/by-nc/4.0/) kapsamında yayınlanmaktadır. Bu, orijinal makaleye uygun şekilde atıf yapılması şartıyla, eserin herhangi bir ortam veya formatta kopyalanmasını ve dağıtılmasını sağlar. Ancak, eserler ticari amaçlar için kullanılamaz.

https://creativecommons.org/licenses/by-nc/4.0/