Research Article
BibTex RIS Cite

Mekansal Termal Konfor Açısından Atatürk Üniversitesi Yerleşkesi Termal Kamera Görüntülerinin Analizi

Year 2019, , 239 - 247, 22.09.2019
https://doi.org/10.17097/ataunizfd.535209

Abstract

Kentsel nüfusun hızla
arttığı yaşam alanlarında, konut ihtiyacını karşılamak için yapılan çalışmalar
sonucunda başta açık-yeşil alanların azalması olmak nedeniyle, hava kirliliği,
çarpık kentleşme gibi çeşitli çevre sorunları ortaya çıkmakta ve bu durum kentlerin
termal konforunu olumsuz yönde etkilemektedir. Atatürk Üniversitesi Yerleşkesi
içinde yer alan farklı niteliklere sahip mekanlar ile çeşitli renklerdeki doğal
otsu bitki örtüsü ve mevsimlik bitkilerin yüzey sıcaklıkları termal kamera ile kaydedilmiştir.
2018 yılı Temmuz ayında havanın açık olduğu zamanda, bakı, rakım ve mevki
olarak birbirine yakın mekanlarda bulunan ortamlardan alınan kayıtlardan, 6 tanesi
seçilerek, bu alanlardaki 12 farklı niteliğe sahip mekan saat 15:00’ e göre
analiz edilmiştir. Alınan ölçümler ve yapılan değerlendirmeler sonucunda; doğal
otsu bitkilerin ortamın mevcut sıcaklık değerine göre daha serin bir ortam
oluşturduğu, yapısal alanların ise en yüksek sıcaklık değerine sahip olduğu
tespit edilmiştir. Benzer biçimde, çim derzli kaldırımın, andezit taş
kaldırımdan ortalama olarak 12.0
0C daha serin çıktığı belirlenmiştir.
Yapılan analiz ve değerlendirmeler neticesinde, kentsel alan planlamalarında
termal konforun sağlanması açısından doğal otsu bitkilerin
 kullanımının önemli olduğu, planlama açısından
iklim faktörünün kullanımının gerekliliği vurgulanarak önerilerde
bulunulmuştur. 

References

  • KAYNAKLARAguiar A. C., French, K., Chisholm, L. A., 2014. A comparison of the ameliorating effects of native and exotic street trees on surface heat retention at dusk. Urb. Clim.,10:56–62
  • Aubrecht D. M., Helliker, B. R., Goulden, M. L., Roberts, D. A., Still, C. J., & Richardson, A. D., 2016. Continuous, long-term, high-frequency thermal imaging of vegetation: Uncertainties and recommended best practices. Agricultural and Forest Meteorology, 228: 315-326
  • Bulgan E., Yilmaz S., Matzarakis A., Irmak M.A., 2014. Quantification of summer thermal bioclimate of different land uses in an urban city centre. IC2UHI3, October 13-15, pp. 523-534, Venezia, Italy
  • Canan F., Golasi I., Ciancio V., Coppi M., Salata F., 2019. Outdoor thermal comfort conditions during summer in a cold semi-arid climate. A transversal field survey in Central Anatolia (Turkey), Building and Environment, 148 (1):212-224
  • Carlson A., 2010, Contemporary Environmental Aesthetics and the Requirements of Environmentalism. Environmental Values, 19: 289–314
  • Carol E., Braga F., Lio C.D., Kruse E., Tosi L., 2015. Environmental isotopes applied to the evaluation and quantification of evaporation processes in wetlands: A case study in the Ajó Coastal Plain wetland, Argentina. Environ. Earth Sci. 74, 5839–5847
  • Depietri Y., Renaud F.G., Kallis G., 2012. Heat waves and floods in urban areas: a policy-oriented review of ecosystem services. Integrated Research System for Sustainability Science, United Nations University, and Springer 2011, Sustain. Sci., 7:95–107
  • De Ridder K., Lauwaet, D., Maiheu, B. 2015. “UrbClim – a fast urban boundary layer climate model”, Urban Climate, 12, 21-48
  • Ginner S., Vogt J., Tharang A., Dettmann S., Roloff A., 2015. Role of street trees in mitigating effects of heat and drought at highly sealed urban sites. Landscape and Urban Planning, 143:33-42
  • Gou Q.Q., Qu J.J., Han Z.W., 2014. Analysis of the microclimate and CO2 flux characteristics in arid desert wetland ecosystem in summer: A case study in Xihu desert wetland, Dunhuang, China. J. Earth Syst. Sci., 123: 1491–1499
  • Ikin K., Knight E., Lindenmayer D., Fischer J., 2013. The influence of native versus exotic streetscape vegetation on the spatial distribution of birds in suburbs and reserves. Divers. Distrib., 19 (3): 294-306
  • Irmak M.A., Yilmaz H., 2016. Efficiency of seasonal plants in cold climate zones. Biological Diversity and Conservation, 9(2): 157-168
  • Irmak M. A., Yilmaz S., Dursun D., 2017. Effect of different pavements on human thermal comfort conditions. Atmósfera, 30(4): 355-366
  • Irmak A., Yilmaz S., Mutlu E., Yılmaz H., 2018. Assessment of the effects of different tree species on urban microclimate. Environmental Science and Pollution Research, 25: (16): 15802–15822
  • Leuzinger S., Korner C., 2007. Tree species diversity affects canopy leaf temperatures in a mature temperate forest. Agricultural and Forest Meteorology, 146(1-2): 29-37Li, C., Wang, Z., Li, B., Peng, Z.-R., & Fu, Q. (2019). Investigating the relationship between air pollution variation and urban form. Building and Environment,147:559-568 Mutlu B.E., Yilmaz S., Mutlu B.E., 2018. Quantifying The Influence of Building Surface Materials on Thermal Comfort in Cold City. 6th annual international Conference on Architecture and Civil Engineering (ACE 2018), O.P, 4-15 May 2018, Singapore
  • Nordh H., Alalouch, C., Hartig, T., 2011. Assessing restorative components of small urban parks using conjoint methodology. Urban Forestry & Urban Greening 10: 95–103
  • Payton S., Lindsey G., Wilson J., 2008. Valuing the benefits of the urban forest: a spatial hedonic approach. J. Environ. Plan. Manage. (June 2012), 37–41
  • Parsons R., Daniel T.C., 2002. Good looking: in defense of scenic landscape aesthetics. Landscape and Urban Planning, 60(1): 43–56
  • Santamouris M., 2013. Using cool pavements as a mitigation strategy to fight urban heat island-a review of the actual developments, Renew. Sustain. Energy Rev. 26, 224–240
  • Smigaj M., Gaulton R., Barr S.L., Suárez J.C., 2015. Uav-Borne Thermal imaging for Forest Health Monitoring: Detection of Disease-induced Canopy Temperature increase. The international Archives of Photogrammetry, Remote Sensing and Spatial information Sciences 40(3): 349
  • Takebayashi H., Moriyama M., 2009. Study on the urban heat island mitigation effect achieved by converting to grass-covered parking. Solar Energy, 83(8):1211–1223
  • Unger J, 1999. Comparisons of urban and rural bioclimatological conditions in the case of a Central-European city. International Journalof Biometeorology, 43(3): 139-144
  • United Nations, 2018. The world's cities in 2018: data booklet. Department of Economic and SocialAffairs,http://www.un.org/en/events/citiesday/assets/pdf/the_worlds_cities_in_2018_data_booklet.pdf. (accessed February 6, 2019)
  • Yilmaz S., Toy S., Yilmaz H., 2007. Human Thermal Comfort over Three Different Land Surfaces during summer in the City of Erzurum, Turkey, Atmosfera, 20 (3): 289-297
  • Yilmaz H., Yilmaz S., Yavaş M., Mutlu E., Koç A., 2016. Climate-sensitive Pavement Modelling for Pedestrian Ways. 4th international Conference on Countermeasures to Urban Heat island (UHI). Procedia Engineering, 169: 408-415
  • Yilmaz S., Mutlu E., Yilmaz H., 2017. Effects of Plant Usage on Urban Thermal Comfort for Sustainable Cities. 8th Atmospheric Science Symposium, Oral presentation, ATMOS 2017, 1-4 November 2017, Istanbul Technical University, istanbul, p. 712-719 ISBN: 978-975-561-490-8
  • Yilmaz S.,Mutlu E.,Yılmaz H., 2018a. Quantification of thermal comfort based on different street orientation in winter months of urban city Dadaşkent. DOİ: 10.17660/ActaHortic.2018.1215.12, EdsG. Pennisi, L. Cremonini, T. Georgiadis, F. Orsini, G.P. Gianquinto, ISBN : 978-94-62612-12-9 , ISSN: 0567-7572 (print) 2406-6168 (electronic) , Acta Horticulturae, 1215: 67-72
  • Yilmaz S., Mutlu E., Yılmaz H., 2018b. Alternative Scenarios For Ecological Urbanizations Using Envi-Met Model. Environmental Science and Pollution Research, 25 (26): 26307–26321

Atatürk University Campus in terms of Spatial Thermal Comfort Analysis of Thermal Camera Images

Year 2019, , 239 - 247, 22.09.2019
https://doi.org/10.17097/ataunizfd.535209

Abstract

Various
environmental problems such as decreased outdoors/green spaces, air pollution,
distorted urbanization emerge and cause lower thermal comfort in the cities as
a result of the activities carried out to meet the need for housing in the
residential areas where the urban population is rapidly increasing. Thermal
cameras are used to record the surface temperature of spaces with different
characteristics in Atatürk University Campus; the natural herbaceous plants in
various colors and seasonal plants. 6 of records made in July 2018 in clear
weather with similar characteristics in terms of their position to the sun,
altitude, and location are selected and 12 locations with disparate
characteristics in those records are analyzed according to 15:00 o'clock. As a
result of the measurements and evaluations, it was noted that natural
herbaceous plants form a cooler environment compared to the current temperature
of the environment and asphalt has the highest temperature value in conditions.
Also, it was determined that the grass joint pavement is on average 12.0
0C
cooler than the stone pavement with andesite material.
  As a result of the analyses and evaluations,
some suggestions were developed by emphasizing the importance of natural
herbaceous plants in the provision of thermal comfort in urban area planning
and the necessity of the use of climate factor in terms of planning.

References

  • KAYNAKLARAguiar A. C., French, K., Chisholm, L. A., 2014. A comparison of the ameliorating effects of native and exotic street trees on surface heat retention at dusk. Urb. Clim.,10:56–62
  • Aubrecht D. M., Helliker, B. R., Goulden, M. L., Roberts, D. A., Still, C. J., & Richardson, A. D., 2016. Continuous, long-term, high-frequency thermal imaging of vegetation: Uncertainties and recommended best practices. Agricultural and Forest Meteorology, 228: 315-326
  • Bulgan E., Yilmaz S., Matzarakis A., Irmak M.A., 2014. Quantification of summer thermal bioclimate of different land uses in an urban city centre. IC2UHI3, October 13-15, pp. 523-534, Venezia, Italy
  • Canan F., Golasi I., Ciancio V., Coppi M., Salata F., 2019. Outdoor thermal comfort conditions during summer in a cold semi-arid climate. A transversal field survey in Central Anatolia (Turkey), Building and Environment, 148 (1):212-224
  • Carlson A., 2010, Contemporary Environmental Aesthetics and the Requirements of Environmentalism. Environmental Values, 19: 289–314
  • Carol E., Braga F., Lio C.D., Kruse E., Tosi L., 2015. Environmental isotopes applied to the evaluation and quantification of evaporation processes in wetlands: A case study in the Ajó Coastal Plain wetland, Argentina. Environ. Earth Sci. 74, 5839–5847
  • Depietri Y., Renaud F.G., Kallis G., 2012. Heat waves and floods in urban areas: a policy-oriented review of ecosystem services. Integrated Research System for Sustainability Science, United Nations University, and Springer 2011, Sustain. Sci., 7:95–107
  • De Ridder K., Lauwaet, D., Maiheu, B. 2015. “UrbClim – a fast urban boundary layer climate model”, Urban Climate, 12, 21-48
  • Ginner S., Vogt J., Tharang A., Dettmann S., Roloff A., 2015. Role of street trees in mitigating effects of heat and drought at highly sealed urban sites. Landscape and Urban Planning, 143:33-42
  • Gou Q.Q., Qu J.J., Han Z.W., 2014. Analysis of the microclimate and CO2 flux characteristics in arid desert wetland ecosystem in summer: A case study in Xihu desert wetland, Dunhuang, China. J. Earth Syst. Sci., 123: 1491–1499
  • Ikin K., Knight E., Lindenmayer D., Fischer J., 2013. The influence of native versus exotic streetscape vegetation on the spatial distribution of birds in suburbs and reserves. Divers. Distrib., 19 (3): 294-306
  • Irmak M.A., Yilmaz H., 2016. Efficiency of seasonal plants in cold climate zones. Biological Diversity and Conservation, 9(2): 157-168
  • Irmak M. A., Yilmaz S., Dursun D., 2017. Effect of different pavements on human thermal comfort conditions. Atmósfera, 30(4): 355-366
  • Irmak A., Yilmaz S., Mutlu E., Yılmaz H., 2018. Assessment of the effects of different tree species on urban microclimate. Environmental Science and Pollution Research, 25: (16): 15802–15822
  • Leuzinger S., Korner C., 2007. Tree species diversity affects canopy leaf temperatures in a mature temperate forest. Agricultural and Forest Meteorology, 146(1-2): 29-37Li, C., Wang, Z., Li, B., Peng, Z.-R., & Fu, Q. (2019). Investigating the relationship between air pollution variation and urban form. Building and Environment,147:559-568 Mutlu B.E., Yilmaz S., Mutlu B.E., 2018. Quantifying The Influence of Building Surface Materials on Thermal Comfort in Cold City. 6th annual international Conference on Architecture and Civil Engineering (ACE 2018), O.P, 4-15 May 2018, Singapore
  • Nordh H., Alalouch, C., Hartig, T., 2011. Assessing restorative components of small urban parks using conjoint methodology. Urban Forestry & Urban Greening 10: 95–103
  • Payton S., Lindsey G., Wilson J., 2008. Valuing the benefits of the urban forest: a spatial hedonic approach. J. Environ. Plan. Manage. (June 2012), 37–41
  • Parsons R., Daniel T.C., 2002. Good looking: in defense of scenic landscape aesthetics. Landscape and Urban Planning, 60(1): 43–56
  • Santamouris M., 2013. Using cool pavements as a mitigation strategy to fight urban heat island-a review of the actual developments, Renew. Sustain. Energy Rev. 26, 224–240
  • Smigaj M., Gaulton R., Barr S.L., Suárez J.C., 2015. Uav-Borne Thermal imaging for Forest Health Monitoring: Detection of Disease-induced Canopy Temperature increase. The international Archives of Photogrammetry, Remote Sensing and Spatial information Sciences 40(3): 349
  • Takebayashi H., Moriyama M., 2009. Study on the urban heat island mitigation effect achieved by converting to grass-covered parking. Solar Energy, 83(8):1211–1223
  • Unger J, 1999. Comparisons of urban and rural bioclimatological conditions in the case of a Central-European city. International Journalof Biometeorology, 43(3): 139-144
  • United Nations, 2018. The world's cities in 2018: data booklet. Department of Economic and SocialAffairs,http://www.un.org/en/events/citiesday/assets/pdf/the_worlds_cities_in_2018_data_booklet.pdf. (accessed February 6, 2019)
  • Yilmaz S., Toy S., Yilmaz H., 2007. Human Thermal Comfort over Three Different Land Surfaces during summer in the City of Erzurum, Turkey, Atmosfera, 20 (3): 289-297
  • Yilmaz H., Yilmaz S., Yavaş M., Mutlu E., Koç A., 2016. Climate-sensitive Pavement Modelling for Pedestrian Ways. 4th international Conference on Countermeasures to Urban Heat island (UHI). Procedia Engineering, 169: 408-415
  • Yilmaz S., Mutlu E., Yilmaz H., 2017. Effects of Plant Usage on Urban Thermal Comfort for Sustainable Cities. 8th Atmospheric Science Symposium, Oral presentation, ATMOS 2017, 1-4 November 2017, Istanbul Technical University, istanbul, p. 712-719 ISBN: 978-975-561-490-8
  • Yilmaz S.,Mutlu E.,Yılmaz H., 2018a. Quantification of thermal comfort based on different street orientation in winter months of urban city Dadaşkent. DOİ: 10.17660/ActaHortic.2018.1215.12, EdsG. Pennisi, L. Cremonini, T. Georgiadis, F. Orsini, G.P. Gianquinto, ISBN : 978-94-62612-12-9 , ISSN: 0567-7572 (print) 2406-6168 (electronic) , Acta Horticulturae, 1215: 67-72
  • Yilmaz S., Mutlu E., Yılmaz H., 2018b. Alternative Scenarios For Ecological Urbanizations Using Envi-Met Model. Environmental Science and Pollution Research, 25 (26): 26307–26321
There are 28 citations in total.

Details

Primary Language Turkish
Journal Section ARAŞTIRMALAR
Authors

Murat Zengin 0000-0002-8528-7308

Sevgi Yılmaz 0000-0001-7668-5788

Başak Ertem Mutlu This is me 0000-0002-0394-4950

Publication Date September 22, 2019
Published in Issue Year 2019

Cite

APA Zengin, M., Yılmaz, S., & Ertem Mutlu, B. (2019). Mekansal Termal Konfor Açısından Atatürk Üniversitesi Yerleşkesi Termal Kamera Görüntülerinin Analizi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 50(3), 239-247. https://doi.org/10.17097/ataunizfd.535209
AMA Zengin M, Yılmaz S, Ertem Mutlu B. Mekansal Termal Konfor Açısından Atatürk Üniversitesi Yerleşkesi Termal Kamera Görüntülerinin Analizi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. September 2019;50(3):239-247. doi:10.17097/ataunizfd.535209
Chicago Zengin, Murat, Sevgi Yılmaz, and Başak Ertem Mutlu. “Mekansal Termal Konfor Açısından Atatürk Üniversitesi Yerleşkesi Termal Kamera Görüntülerinin Analizi”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 50, no. 3 (September 2019): 239-47. https://doi.org/10.17097/ataunizfd.535209.
EndNote Zengin M, Yılmaz S, Ertem Mutlu B (September 1, 2019) Mekansal Termal Konfor Açısından Atatürk Üniversitesi Yerleşkesi Termal Kamera Görüntülerinin Analizi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 50 3 239–247.
IEEE M. Zengin, S. Yılmaz, and B. Ertem Mutlu, “Mekansal Termal Konfor Açısından Atatürk Üniversitesi Yerleşkesi Termal Kamera Görüntülerinin Analizi”, Atatürk Üniversitesi Ziraat Fakültesi Dergisi, vol. 50, no. 3, pp. 239–247, 2019, doi: 10.17097/ataunizfd.535209.
ISNAD Zengin, Murat et al. “Mekansal Termal Konfor Açısından Atatürk Üniversitesi Yerleşkesi Termal Kamera Görüntülerinin Analizi”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 50/3 (September 2019), 239-247. https://doi.org/10.17097/ataunizfd.535209.
JAMA Zengin M, Yılmaz S, Ertem Mutlu B. Mekansal Termal Konfor Açısından Atatürk Üniversitesi Yerleşkesi Termal Kamera Görüntülerinin Analizi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 2019;50:239–247.
MLA Zengin, Murat et al. “Mekansal Termal Konfor Açısından Atatürk Üniversitesi Yerleşkesi Termal Kamera Görüntülerinin Analizi”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, vol. 50, no. 3, 2019, pp. 239-47, doi:10.17097/ataunizfd.535209.
Vancouver Zengin M, Yılmaz S, Ertem Mutlu B. Mekansal Termal Konfor Açısından Atatürk Üniversitesi Yerleşkesi Termal Kamera Görüntülerinin Analizi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 2019;50(3):239-47.

Bu dergide yayınlanan makaleler Creative Commons Uluslararası Lisansı (https://creativecommons.org/licenses/by-nc/4.0/) kapsamında yayınlanmaktadır. Bu, orijinal makaleye uygun şekilde atıf yapılması şartıyla, eserin herhangi bir ortam veya formatta kopyalanmasını ve dağıtılmasını sağlar. Ancak, eserler ticari amaçlar için kullanılamaz.

https://creativecommons.org/licenses/by-nc/4.0/