BibTex RIS Cite

Stres Koşullarında ACC Deaminaze Üretici Bakteriler Tarafından Bitki Gelişiminin Teşvik Edilmesi

Year 2009, Volume: 40 Issue: 1, 109 - 125, 10.01.2011

Abstract

Aminosiklopropan karboksilat deaminaze (ACCD) enzimi içeren bitki gelişimini teşvik eden bakteriler, özellikle farklı
çevresel stres koşullarını takiben bitki etilen düzeyini azaltarak bitki büyüme ve gelişmesine katkı sağlamaktadır. Toprak
bakterilerinde belirlenen bu enzimin bitki-bakteri birlikteliğinde önemli rol oynadığı ileri sürülmektedir. Bu durumda ACC
deaminaze içeren bakteri bitki etilen düzeyini azaltabilirse, uygulama yapılmış bitkilerde stresin engelleyici etkisine karşı koruma
sağlanabilecektir. Etilen düzeyinin azalması farklı çevresel streslere karşı bitkilerin daha dayanıklı olmasına imkan sağlamaktadır.
Bu derlemede farklı stres çeşitleri, moleküler düzeyde birçok mekanizma ile bitkisel gelişmeyi engelleyen etilen biyosentezi
üzerinde durularak tartışılmıştır. ACC deaminaze içeren bitki gelişmesini teşvik edici bakteri uygulamalarının tarımdaki faydaları
kanıtlanabilen ve sürdürülebilir bitki üretimi için güvenli güçlü bir adım olabilecektir. Mevcut senaryoya göre ACC deaminaze
aktivitesi gösteren bitki gelişimini teşvik edici bakterilerin bitkisel etilenin düzenlenmesinde hayati önem taşımaktadır.

References

  • Abeles, F.B., Morgan, P.W., Saltveit, M.E., 1992. Ethylene in Plant Biology. Academic Press, San Diego.
  • Altındağ, M., Şahin, M., Eşitken, A., Ercişli, S., Güleryüz, M., Dönmez, M.F., Şahin, F., 2006. Biological control of brown rot (Moniliana laxa Ehr.) on apricot (Prunus armeniaca L. cv. Hacihaliloglu) by Pseudomonas application under in vitro and in vivo conditions. Biological Control, 38: 369-372.
  • Anderson, J.V., Davis, D.G., 2004. Abiotic stress alters transcript profiles and activity of glutathione S-transferase, glutathione peroxidase, and glutathione reductase in Euphorbia esula. Physiol. Plant., 120: 421-433.
  • Apse, M. P., Aharon, G.S., Snedden, W.A., Blumwald, E., 1999. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science, 285: 1256–1258.
  • Arshad, M., Frankenberger, Jr.W.T., 2002. Ethylene: Agricultural sources and applications. Dordrecht, The Netherlands: Kluwer Academic/Plenum Publishers New York
  • Arshad, M., Frankenberger, W.T., 1998. Plant growth regulating substances in the rhizosphere: microbial production and functions. Adv. Argon., 62:146–151.
  • Babalola, O.O., Osir, E.O., Sanni, A.I., Odhaimbo, G.D., Bulimo, W.D., 2003. Amplification of 1-aminocyclopropane-1- carboxylic (ACC) deaminase from plant growth promoting rhizobacteria in Striga-infested soils. African J. Biotechnol, 2, 157–160.
  • Barka, E.A., Nowak, J., Clément, C., 2006. Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, phytofirmans Strain PsJN. Appl Environ Microbiol, 72:7246–7252. Burkholderia
  • Bashan, Y., 1994. Symptom expression and ethylene production in leaf blight of cotton caused by Alternaria macrospora and Alternaria alternata alone and combined. Can. J. Bot., 72, 1574–1579.
  • Belimov, A.A., Hontzeas, N., Safronova, V.I., Demchinskaya, S.V., Piluzza, G., Bullitta, S., Glick, B.R., 2005. Cadmium- tolerant plant growth-promoting rhizobacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem, 37: 241–250.
  • Belimov, A.A., Safronova, V.I., Sergeyeva, T.A., Egorova, T.N., Matveyeva, V.A., Tsyganov, V.E., Borisov, A.Y., Tikhonovich, I.A., Kluge, C., Preisfeld, A., Dietz, K.J., Stepanok, V.V., 2001. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can. J. Microbiol, 47: 642–652.
  • Belimov, A.A., Dodd, I.C., Safronova, V.I., Hontzeas, N., Davies, W.J., 2007. Pseudomonas brassicacearum strain Am3 containing 1-aminocyclopropane-1-carboxylate deaminase can show both pathogenic and growth-promoting properties in its interaction with tomato. J Exp Bot., 58: 1485-1495.
  • Belimov, A.A., Safronova, V.I., Mimura, T., 2002. Response of spring rape to inoculation with plant growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase depends on nutrient status of the plant. Can. J. Microbiol, 48:189–199
  • Bensalim, S., Nowak, J., Asiedu, S.K., 1998. A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am J Potato Res, 75: 145–152.
  • Blaha, D., Prigent-Combaret, C., Mirza, M.S., Moënne-Loccoz, Y., 2006. Phylogeny of the 1-aminocyclopropane-1- carboxylic acid deaminase-encoding gene phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol, 56: 455– acdS in
  • Bloemberg, G.V., Lugtenberg, B.J.J., 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Cur Opin Plant Biol, 4:343–350.
  • Blumwald, E., 2000. Sodium transport and salt tolerance in plants. Curr Opin Cell Biol, 12:431–434.
  • Bray, E.A., 1997. Plant responses to water deficit. Trends Plant Sci, 2:48–54.
  • Burd, G.I., Dixon, D.G., Glick, B.R., 1998. A plant growth- promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol, 64: 3663–3668.
  • Burd, G.I., Dixon, D.G.,Glick, B.R., 2000. Plant growth- promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol, 46: 237–245.
  • Cattelana, A.J., Hartela, P.G., Fuhrmann, J.J., 1999. Screening for plant growth–promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J, 63:1670–1680.
  • Chao, Q., Rothenberg, M., Solano, R., Roman, G., Terzaghi, W., Ecker, J.R., 1997. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein and related proteins. Cell, 89:1133–1144.
  • Cheikh, N., Jones, R.J., 1994. Disruption of maize kernel growth and development by heat stress (role of cytokinin/abscisic acid balance). Plant Physiol, 106:45–51.
  • Chen, K.M., Gong, H.J., Chen, G.C., Wang, S.M., Zhang, C.L., 2004. Gradual drought under field conditions influences the glutathione metabolism, redox balance and energy supply in spring wheat. J. Plant Growth Regul, 23: 20-28.
  • Cheng, Z., Park, E., Glick, B.R., 2007. 1-Aminocyclopropane-1- carboxylate (ACC) deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol, 53: 912-918.
  • Compant, S., Duffy, B., Nowak, J., Clément, C., Barka, E.A., 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol, 71:4951–4959.
  • Cuartero, J., Fernandez-Munoz, R., 1999. Tomato and salinity. Sci Hortic 78:83–125.
  • Çakmak, I., Römheld, V., 1997. Boron deficiency-induced impairments of cellular functions in plants. Plant Soil, 193: 71-83.
  • Çakmakçı, R., Kantar, F., Algur, Ö.F., 1999. Sugar beet and barley yield in relation to Bacillus polymxa and Bacillus megaterium var. Phosphaticum inoculation. J. Plant Nutr. Soil Sci, 162: 437-442.
  • Çakmakçı, R., Kantar, F., Şahin, F., 2001. Effect of N2- fixing bacterial inoculations on yield of sugar beet and barley. J. Plant Nutr. Soil Sci, 164 (5), 527-531.
  • Çakmakçı, R., Dönmez, F., Aydın, A., Şahin, F., 2006. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol. Biochem, 38:1482-1487.
  • Çakmakçı, R., Dönmez, M.F., Erdoğan, Ü., 2007a. The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turkish J. Agric. For., 31: 189-199.
  • Çakmakçı, R., Erat, M., Erdoğan, Ü., Dönmez, F., 2007b. The influence of plant growth-promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. J. Plant Nutr. Soil Sci, 170: 288-295.
  • Çakmakçı, R., Erat, M., Dönmez, M.F., 2007c. Bitki gelişimini teşvik edici rizobakteri (PGPR) aşılamalarının bitki gelişimi ve bazı antioksidan enzim aktiviteleri üzerine etkisi. Türkiye VII. Tarla Bitkileri Kongresi, 25-27 Haziran 2007 Erzurum.
  • Çakmakçı, R., Erat, M., Oral, B., Erdoğan, Ü., Şahin, F., 2009. Enzyme activities and growth promotion of spinach by indole-3-acetic acid-producing rhizobacteria. J. Hort. Sci. Biotech. 84 (4), 375-380.
  • de Freitas, J.R. Banerjee M.R., Germida, J.J., 1997. Phosphate solubilizing rhizobacteria enhance the growth and yield but no phosphorus uptake of canola (Brassica napus L.), Biol. Fertl. Soils, 24: 358–364. de Prado, J.L., de Prado, R.A., Shimabukuro, R.H., 1999. The effect of diclofop on membrane potential, ethylene induction, and herbicide phytotoxicity in resistant and susceptible biotypes of grasses. Pestic Biochem Physiol, 63:1–14.
  • Dell’Amico, E., Cavalca, L., Andreoni, V., 2008. Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem, 40:74- 84.
  • Dey, R., Pal, K.K., Bhatt, D.M., Chauhan, S.M., 2004. Growth promotion and yield enhancement of peanut (Aracis hypoggaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res, 159:371–394.
  • Dobbelaere, S., Vanderleyden, J., Okon, Y., 2003. Plant growth- promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci, 22:107–149.
  • Dodd, I.C., Belimov, A.A., Sobeih, W.Y., Safronova, V.I., Grierson, D., Davies, W.J., 2005. Will modifying plant ethylene status improve plant productivity in water-limited environments? 4th International Crop Science Congress.
  • Domenech, J., Reddy, M.S., Kloepper, J.W., Ramos, B., Gutierrez- Mañero, J., 2006. Combined application of the biological product LS213 with Chryseobacterium for growth promotion and biological control of soil-borne diseases in pepper and tomato. Biocontrol, 51:245–258. Pseudomonas or
  • Donate-Correa, J., Leon-Barrios, M., Perez-Galdona, R., 2004. Screening for plant growth-promoting rhizobacteria in Chamaecytisus proliferus (tagasaste), a forage tree-shrub legume endemic to the Canary Islands. Plant Soil, 266:261– 272.
  • Duan, J., Müller, K. M., Charles, T. C., Vesely, S., Glick, B. R., 2006. 1-Aminocyclopropane-1-carboxylate (ACC) deaminase genes in Rhizobia: Isolation, characterization and regulation. Proceedings of the 7th International PGPR Workshop. Amsterdam.
  • Else, M.A., Jackson, M.B., 1998. Transport of 1- aminocyclopropane-1-carboxylic acid (ACC) in the transpiration stream of tomato (Lycopersicon esculentum) in relation to foliar ethylene production and petiole epinasty. Australian J. Plant Physiol, 25: 453–458.
  • Else, M.A., Hall, K.C., Arnold, G.M., Davies, W.J., Jackson, M.B., 1995. Export of abscisic acid, 1-aminocyclopropane-1- carboxylic acid, phosphate, and nitrate from roots to shoots of flooded tomato plants. Plant Physiol, 107:377–384.
  • Ernst, W.H.O., 1998. Effects of heavy metals in plants at the cellular and organismic level. In: Schüürmann G, Markert B (eds) Ecotoxicology. Wiley, New York, s. 587–620.
  • Esitken, A., Karlidag, H., Ercisli, S., Sahin, F., 2002. Effects of foliar application of Bacillus subtilis Osu-142 on the yield, growth and control of shot-hole disease (Coryneum blight) of apricot. Gartenbauwissenschaft, 67:139-142.
  • Fallik, E., Sarig, S., Okon, Y., 1994. Morphology and physiology of plant roots associated with Azospirillum. In: Okon Y (ed) Azospirillum/plant associations. CRC Press, London, s. 77– 86.
  • Farwell, A.J., Vesely, S., Nero, V., Rodriguez, H., Shah, S., Dixon, D.G., Glick, B.R., 2006. The use of transgenic canola (Brassica napus) and plant growth-promoting bacteria to enhance plant biomass at a nickel-contaminated field site. Plant Soil, 288: 309–318.
  • Farwell, A.J., Vesely, S., Nero, V., McCormack, K., Rodriguez, H., Shah, S., Dixon, D.G., Glick, B.R., 2007. Tolerance of transgenic canola (Brassica napus) amended with ACC deaminase-containing plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environ Poll, 147: 540-545.
  • Ferro, A.J., Bestwick, R.K., Brown, L.R., 1995. Inventors; agritope, assignee. 1995/05/16. Genetic control of ethylene biosynthesis in plants using S-adenosylmethionine hydrolase. US Patent # 05416250.
  • Frankenberger, W.T., Arshad, M., 1995. Phytohormones in soil: microbial production and function. Marcel Dekker, New York.
  • Ghosh, S., Penterman, J.N., Little, R.D., Chavez, R., Glick, B.R., 2003. Three newly isolated plant growth-promoting bacilli facilitate the growth of canola seedlings. Plant Physiol Biochem, 41: 277–281.
  • Glick, B.R., 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol, 41: 109–117.
  • Glick, B.R., 2003. Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnol. Adv., 21: 383-393.
  • Glick, B.R., Karaturovíc, D.M., Newell, P.C., 1995. A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can. J. Microbiol, 41: 533–536.
  • Glick, B.R., Patten, C.L., Holguin, G., Penrose, D.M., 1999. Biochemical and genetic mechanisms used by plant growth promoting bacteria. London: Imperial College Press.
  • Glick, B.R., Penrose, D.M., Li, J., 1998. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol, 190:63–68.
  • Glick, B.R., 2005. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett, 251:1–7.
  • Glick, B.R., Cheng, Z., Czarny, J., Duan, J., 2007. Promotion of plant growth by ACC deaminase-producing soil bacteria. European J. Plant Pathol., 119: 329-339.
  • Gong, H.B., Jiao, Y.X., Hu, W.W., Pua, E.C., 2005. Expression of glutathione-S-transferase and its role in plant growth and development in vivo and shoot morphogenesis in vitro. Plant Mol. Biol., 57: 53-66.
  • Gravel,V., Antoun, H., Tweddell; R.J. 2007. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of indole acetic acid (IAA). Soil Biol Biochem, 39: 1968-1977.
  • Greenberg, B.M., Huang, X.D., Gurska, Y., Gerhardt, K.E., Wang, W., Lampi, M.A., Zhang, C., Khalid, A., Isherwood, D., Chang, P., Wang, H., Dixon, D.G., Glick, B.R., 2006. Successful field tests of a multi-process phytoremediation system for decontamination of persistent petroleum and organic contaminants, Proceedings of the 29th Arctic and Marine Oil Spill Program Technical Seminar (Vol. 1, s. 389– 400).
  • Grichko, V. P., Filby, B., Glick, B. R., 2000. Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb and Zn. J. Biotechnol., 81: 45-53.
  • Grichko, V.P., Glick, B.R., 2001a. Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem, 39, 11–17.
  • Grichko, V. P., Glick, B. R., 2001b. Flooding tolerance of transgenic tomato plants expressing the bacterial enzyme ACC deaminase controlled by the 35S, rolD or PRB-1b promoter. Plant Physiol Biochem, 39: 19–25.
  • Guinel, F.C., Geil, R.D., 2002. A model for the development of the rhizobial and arbuscular mycorrhizal symbioses in legumes and its use to understand the roles of ethylene in the establishment of these two symbioses. Canadian J. Bot., 80: 695–720.
  • Higgins, J.D., Newbury, H.J., Barbara1, D.J., Muthumeenakshi, S., Puddephat, I.J., 2006. The production of marker-free genetically engineered broccoli with sense and antisense ACC synthase 1 and ACC oxidases 1 and 2 to extend shelf- life. Mole Breed, 17:7–20.
  • Hong, Y., Glick, B.R., Pasternak, J.J., 1991. Plant-microbial interaction under gnotobiotic conditions: a scanning electron microscope study. Curr Microbiol, 23:111–114.
  • Honma, M., Shimomura, T., 1978. Metabolism of 1- aminocyclopropane-1-carboxylic acid. Agric Biol Chem, 42: 1825–1831.
  • Hontzeas, N., Zoidakis, J., Glick, B.R., Abu-Mar, M.M., 2004. Expression and characterization of 1-aminocyclopropane-1- carboxylate deaminase from the rhizobacterium Pseudomonas putida UW4: a key enzyme in bacterial plant growth promotion. Biochim Biophys Acta, 1703:11–19.
  • Hontzeas, N., Richardson, A.O., Belimov, A.A., Safranova, V.I., Abu-Omar, M.M., Glick, B.R., 2005. Evidence for horizontal gene transfer (HGT) of ACC deaminase genes. App Environ Microbiol, 71: 7556–7558.
  • Huang, X.-D., El-Alawi, Y., Penrose, D.M., Glick, B.R., Greenberg, B.M., 2004a. Responses of plants to creosote during phytoremediation and their significance for remediation processes. Environ. Pollut., 130: 453–463.
  • Huang, X.-D., El-Alawi, Y., Penrose, D.M., Glick, B.R., Greenberg, B.M., 2004b. Multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ. Pollut., 130: 465-476.
  • Huang, X.-D., El-Alawai, Y., Gurska, J., Glick, B.R., Greenberg, B.M., 2005. A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem. J., 81:139–147.
  • Hyodo, H., 1991. Stress/wound ethylene. In A. K. Mattoo, J. C. Shuttle (Eds.), The plant hormone ethylene (s. 65–80). Boca Raton: CRC Press.
  • Indiragandhi, P., Anandham, R., Madhaiyan, M., Sa, T.M. 2008. Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr Microbiol., 56: 327-33.
  • Ingram, J., Bartels, D., 1996. The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol, 47:377–403.
  • Jackson, M.B., 1997. Hormones from roots as signal for the shoots of stressed plants. Trends Plant Sci, 2:22–28.
  • Jacques, M.A., Kinkel, L.L., Morris, C.E., 1995. Population sizes, immigration, and growth of epiphytic bacteria on leaves of different ages and positions of field grown endive (Cochorium endivia var. latifolia). Appl Environ Microbiol, 61:899–906.
  • Jansonius, N. J., 1998. Structure, evolution and action of vitamin B6-dependent enzymes. Cur Opin Struct Biol, 8: 759–769.
  • Ji, P., Campbell, H.L., Kloepper, J.W., Jones, J.B., Suslow, T.V., Wilson, M., 2006. Integrated biological control of bacterial speck and spot of tomato under field conditions using foliar biological control agents and plant growth- promoting rhizobacteria. Biol Control, 36:358–367.
  • Jia,Y.J., Kakuta, Y., Sugawara, M., Igarashi, T., Oki, N., Kisaki, M., Shoji, T., Kanetuna, Y., Horita, T., Matsui, H., Honma, M., 1999. Synthesis and degradation of 1- aminocyclopropane-1-carboxylic acid by citrinum. Biosci Biotechnol Biochem, 63:542–549. Penicillium
  • Joardar, V., Lindeberg, M., Jackson, R.W., Selengut, J., Dodson, R., Brinkac, L.M. et al., 2005. Whole-genome sequence analysis of Pseudomonas syringae pv. phaseolicola 1448A reveals divergence among pathovars in genes involved in virulence and transposition. J Bacteriol, 187:6488–6498.
  • Johnson, P.R., Ecker, J.R., 1998. The ethylene gas signal transduction pathway: a molecular perspective. Annu Rev Genet, 32:227–254.
  • Kende, H., 1993. Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol, 44:283–307.
  • Knoester, M., Linthorst, H.J.M., Bol, J.F., Van Loon, L.C., 1997. Modulation of stress-inducible ethylene biosynthesis by sense and antisense gene expression in tobacco, Plant Sci, 126: 173–183.
  • Kumar, A., Taylor, M.A., Mad Arif, S.A., Davies, H.V., 1996. Potato plants expressing antisense and sense S-adenosylme- thionine decarboxylase (SAMDC) transgenes show altered levels of polyamines and ethylene: antisense plants display abnormal phenotypes. Plant J., 9:47–58.
  • Lasserre, E., Bouquin, T., Hernandez, J.A., Bull, J., Pech, J.C., Balagua, C., 1996. Structure and expression of three genes encoding ACC oxidase homologs from melon (Cucumis melo L). Mol Gen Genet, 251:81–90.
  • Lee, K.H., LaRue, T.A., 1992. Exogenous ethylene inhibits nodulation of Pisum sativum L. cv Sparkle. Plant Physiol, 100:1759–1763.
  • Li, Q., Saleh-Lakha, S., Glick, B.R., 2005. The effect of native and ACC deaminase-containing Azospirillum brasilense Cd1843 on the rooting of carnation cuttings. Can J Microbiol, 51:511–514.
  • Lund, S.T., Stall, R.E., Klee, H.J., 1998. Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell, 10: 371–382.
  • Ma, J.H., Yao, J.L., Cohen, D., Morris, B., 1998. Ethylene inhibitors enhance in vitro root formation from apple shoot cultures. Plant Cell Rep, 17:211–214.
  • Ma, W., Sebestianova, S., Sebestian, J., Burd, G.I., Guinel, F., Glick, B.R., 2003a. Prevalence of 1-aminocyclopropaqne-1- carboxylate in deaminase in Rhizobia spp. Antonie Van Leeuwenhoek, 83: 285–291.
  • Ma, W., Guinel, F.C., Glick, B.R., 2003b. The Rhizobium leguminosarum bv. viciae ACC deaminase protein promotes the nodulation of pea plants. Appl Environ Microbiol, 69:4396–4402.
  • Ma, W., Charles, T.C., Glick, B.R., 2004. Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Appl Environ Microbiol, 70: 5891–5897 .
  • Madhaiyan, M., Poonguzhali, S., Ryu, J., Sa, T., 2006. Regulation of ethylene levels in canola (Brassica campestris) by 1- aminocycloprpane-1-carboxylate deaminase-containing Methylobacterium fjisawaense. Planta, 224: 268–278.
  • Marrs, K.A., 1996. The functions and regulation of glutathione S- transferases in plants. Annu. Rev. Plant Physiol. Plant. Mol. Biol., 47: 127–158.
  • Mattoo, A.K., Suttle, J.C., 1991. The Plant Hormone Ethylene. CRC Press, Boca Raton, FL
  • Mayak, S., Tivosh, T., Glick,B.R., 1999. Effect of wild type and mutant plant growth-promoting rhizobacteria on the rooting of mungbeen cuttings. J. Plant Growth Regul., 18:49–53.
  • Mayak, S., Tirosh, T., Glick, B.R., 2004a. Plant growth-promoting bacteria that confer resistance in tomato to salt stress. Plant Physiol Biochem, 42: 565–572.
  • Mayak, S., Tirosh, T., Glick, B.R., 2004b. Plant growth-promoting bacteria that confer resistance to water stress in tomato and pepper. Plant Sci., 166: 525–530.
  • McCune, J.M., 1975. Definition of invisible injury in plants. In: Treshow M (ed) Interaction of air pollutants and plant diseases (In: Responses of Plants to Air Pollution (ed. Mudd, J.B. and Kozlowski, T.T), s. 122:307–334. Academic Press, New York,
  • Mendelsohn, R., Rosenberg, N.J., 1994. Framework for integrated assessments of global warming impacts. Clim Change, 28:15–44.
  • Minami, R., Uchiyama, K., Murakami, T., Kawai, J., Mikami, K., Yamada, T., Yokoi, D., Ito, H., Matsui, H., Honma, M., 1998. Properties, sequence, and synthesis in Escherichia coli of 1-aminocyclopropane-1-carboxylate deaminase from Hansenula saturnus. J Biochem (Tokyo), 123: 1112–1118.
  • Moeder, W., Barry, C.S., Tauriainen, A.A., Betz C., Tuomainen, J., Utriainen, M., Grierson, D., Sandermann, H., Langebartels, C., Kangasjärvi, J., 2002. Ethylene synthesis regulated by bi-phasic induction of 1-aminocyclopropane-1- carboxylic acid synthase and 1-aminocyclopropane-1- carboxylic acid oxidase genes is required for hydrogen peroxide accumulation and cell death in ozone-exposed tomato. Plant Physiol, 130:1918–1926.
  • Nadeem, S.M., Hussain, I., Naveed, M., Ashgar, H.N., Zahir, Z.A., Arshad, M., 2006a. Performance of plant growth promoting rhizobacteria containing ACC-deaminase activity for improving growth of maize under salt-stressed conditions. Pak J Agri Sci, 43:114–121.
  • Nadeem, S.M., Zahir, Z.A., Naveed, M., Arshad, M., Shahzad, S.M., 2006b. Variation in growth and ion uptake of maize due to inoculation with plant growth promoting rhizobacteria under salt stress. Soil Environ, 25:78–84.
  • Nadeem, S.M., Zahir, Z.A., Naveed, M., Arshad, M., 2007. Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can. J. Microbiol, 53: 1141-1149.
  • Nakajima, N., Itoh, T., Takikawa S., Asai N., Tamaoki M., Aono, M. et al., 2002. Improvement in ozone tolerance of tobacco plants with an antisense DNA for 1-aminocyclopropane-1- carboxylate synthase. Plant Cell Environ, 25: 727–735.
  • Nayani, S., Mayak, S., Glick, B.R. , 1998. The effect of plant growth promoting rhizobacteria on the senescence of flower petals. Ind J Exp Biol, 36:836–839.
  • Nie, L., Shah, S., Burd, G. I., Dixon, D. G., Glick, B. R., 2002. Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem, 40: 355–361.
  • Nukui, N., Ezura, H., Yuhashi, K., Yasuta, T., Minamisawa, K., 2000. Effects of ethylene precursor and inhibitors for ethylene biosynthesis and perception on nodulation in Lotus japonicus and Macroptilium atropurpureum. Plant Cell Physiol, 41: 893–897.
  • Okazaki, S., Nukui, N., Sugawara, M., Minamisawa, K., 2004. Rhizobial strategies to enhance symbiotic interactions: rhizobitoxine and 1-aminocyclopropane-1-carboxylate deaminase. Microbes Environ, 19:99–111.
  • Oldroyd, G.E.D., Engstrom, E.M., Long, S.R., 2001. Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula. Plant Cell, 13:1835–1849.
  • Olson, D.C., Oetiker, J.H., Yang, S.F., 1995. Analysis of LE- ACS3, a 1-aminocyclopropane-1-carboxylic acid synthase gene expressed during flooding in the roots of tomato plants. J Biol Chem, 270:14056–14061.
  • Oral, B., Erat, M., Çakmakçı, R., 2006. Bitki gelişimini teşvik eden rizobakteri aşılamalarının buğday (Triticum aestivum L., Konya) ve ıspanak (Spinacia oleracea L.) yapraklarında bazı antioksidant enzim aktivitesi üzerine etkisi. XX.Ulusal Kimya Kongresi (4-8 Eylül) Kayseri.
  • Oral, B., Dönmez, M.F., Erat, M., Çakmakçı, R., 2007. İndol asetik asit (İAA) üretici bitki gelişimini teşvik eden bakterilerin ıspanakta nitrat redüktaz, katalaz ve peroksidaz aktivitesi üzerine etkisi. 21. Ulusal Kimya Kongresi (23-27 Ağustos) Malatya.
  • Pandey, P., Kang, S.C., Maheshwari, D.K., 2005. Isolation of endophytic plant growth promoting Burkholderia sp. MSSP from root nodules of Mimosa pudica. Curr Sci, 89:170–180.
  • Patten C.L., Glick, B.R., 2002. Role of Pseudomonas putida indole-acetic acid in development of the host plant root system. Appl. Environ. Microbiol., 68 : 3795–3801.
  • Penrose, D. M., Moffatt, B. A., Glick, B. R., 2001. Determination of 1-aminocyclopropane-1-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings. Can J Microbiol, 47: 77–80.
  • Penrose, D.M., Glick, B.R., 2001. Levels of 1-aminocyclopropane- 1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth-promoting bacteria. Can J Microbiol, 47:368–372.
  • Pierik, R., Tholen, D., Poorter, H., Visser, E.J.W., Voesenek, L.A.C.J., 2006. The Janus face of ethylene: Growth inhibition and stimulation. Trends Plant Sci, 11: 176–183.
  • Prasad, M.N.V., Strazalka, K., 2000. Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer Academic Publishers, Boston, s. 153–160.
  • Rasche, F., Marco-Noales, E., Velvis, H., Overbeek, L.S., López, M.M., Elsas, J.D., Sessitsch, A., 2006b. Structural characteristics and plant-beneficial effects of bacteria colonizing the shoots of field grown conventional and genetically modified T4-lysozyme producing potatoes. Plant Soil, 298:123–140.
  • Rasche, F., Velvis, H., Zachow, C., Berg, G., Van Elsas, J.D., Sessitsch, A., 2006a. Impact of transgenic potatoes expressing anti-bacterial agents on bacterial endophytes is comparable with the effects of plant genotype, soil type and pathogen infection. J Appl Ecol, 43:555–566.
  • Reed, M.L.E., Glick, B.R., 2005. Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol, 51: 1061–1069.
  • Reed, M.L.E., Warner, B., Glick, B.R., 2005. Plant growth- promoting bacteria facilitate the growth of the common reed Phragmites australis in the presence of copper or polycyclic aromatic hydrocarbons. Curr. Microbiol., 51 : 425-429.
  • Reid, M.S., Wu, M.J., 1992. Ethylene and flower senescence. Plant Growth Regul 11:37–43.
  • Remans, R., Croonenborghs, A., Gutierrez, R.T., Michiels, J., Vanderleyden, J., 2007. Effects of plant growth-promoting rhizobacteria on nodulation of Phaseolus vulgaris L. are dependent on plant P nutrition. European J. Plant Pathol, 119: 341-351.
  • Robertson, G.P., Paul, E.A., Harwood, R.R., 2000. Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science, 289:1922–1924.
  • Robison, M.M., Shah, S., Tamot, B., Pauls, K.P., Moffatt, B.A., Glick, B.R., 2001b. Reduced symptoms of Verticillium wilt in transgenic tomato expressing a bacterial ACC deaminase. Mol Plant Pathol, 2: 135–145.
  • Robison, M.M., Griffith, M., Pauls, K.P., Glick, B.R., 2001a. Dual role of ethylene in susceptibility of tomato to Verticillium wilt. J Phytopathol, 2:385–388.
  • Rodecap, K.D., Tingey, D.T., Tibbs, J.H., 1981. Cadmium- induced ethylene production in bean plants. Z Pflanzenphysiol, 105:65–74.
  • Ross, G.S., Knighton, M.L., Yee, M.L., 1992. An ethylene-related cDNA from ripening apples. Plant Mol Biol, 19:231–238.
  • Rubinstein, B., 2000. Regulation of cell death in flower petals. Plant Mol Biol, 44:303–318.
  • Safronova, V.I., Stepanok, V.V., Engqvist, G.L., Alekseyev, Y.V., Belimov, A.A. 2006. Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol. Fertil. Soils, 42: 267-272.
  • Saleem, M., Arshad, M.,, Hussain, S., Bhatti, A.S., 2007. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Trends Biotechnol, 25: 356-362.
  • Saleh, S.S., Glick, B.R. 2001. Involvement of gacS and rpoS in enhancement of the plant growth-promoting capabilities of Enterobacter cloacae CAL2 and Pseudomonas putida UW4. Can J Microbiol/Rev Can Microbiol, 47:698–705.
  • Saravanakumar, D., Samiyappan, R., 2007. ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol, 102:1283–1292.
  • Sergeeva, E., Shah, S., Glick, B.R., 2006. Tolerance of transgenic canola expressing a bacterial ACC deaminase gene to high concentrations of salt, World J. Microbiol Biotechnol, 22: 277–282.
  • Sessitsch, A., Coenye, T., Sturz, A.V., Vandamme, P., Barka, E., Wang-Pruski, G., Faure, D., Reiter, B., Glick, B.R., Nowak, J., 2005. Burkholderia phytofirmins sp. Nov., a novel plant- associated bacterium with plant beneficial properties. Int J Syst Evol Microbiol, 55:1187–1192.
  • Shaharoona, B., Arshad, M., Zahir, Z.A., Khalid, A., 2006a. Performance of Pseudomonas spp. containing ACC- deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol Biochem, 38:2971–2975.
  • Shaharoona, B., Arshad, M., Zahir, Z.A., 2006b. Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol, 42:155–159.
  • Shan, X.C., Goodwin, P.H., 2006. Silencing an ACC oxidase gene affects the susceptible host response of Nicotiana benthamiana to infection by Colletotrichum orbiculare. Plant Cell Rep, 25:241–247.
  • Sinn, J.P., Schlagnhaufer, C.D., Arteca, R.N., Pell, E.J., 2004. Ozone-induced ethylene and foliar injury responses are altered in 1-aminocyclopropane-1-carboxylate synthase antisense potato plants, New Phytol, 164: 267–277.
  • Sisler, E. C., Serek, M., 1997. Inhibitors of ethylene responses in plants at the receptor level: Recent developments. Physiol Plant, 100: 577–582.
  • Stearns, J.C., Shah, S., Dixon, D.G., Greenberg, B.M., Glick, B.R., 2005. Tolerance of transgenic canola expressing 1- aminocyclopropane-carboxylic acid deaminase to growth inhibition by nickel. Plant Physiol Biochem, 43: 701–708.
  • Stearns, J., Glick, B.R., 2003. Transgenic plants with altered ethylene biosynthesis or perception. Biotechnology Advances, 21: 193–210.
  • Stiens, M., Schneiker, S., Keller, M., Kuhn, S., Pühler, A., Schlüter, A., 2006. Sequence analysis of the 144-kilobase accessory plasmid psmesm11a, isolated from a dominant Sinorhizobium meliloti strain identified during a long-term field release experiment. Appl Environ Microbiol, 72:3662– 3672.
  • Strzelczyk, E., Kampert, M., Pachlewski, R., 1994. The influence of pH and temperature on ethylene production by mycorrhizal fungi of pine. Mycorrhiza, 4:193–196.
  • Sturz, A. V., Nowak, J., 2000. Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Applied Soil Ecology, 15: 183–190.
  • Şahin, F., Çakmakçı, R., Kantar, F., 2004. Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant Soil, 265: 123-129.
  • Tabor, C.W., Tabor, H., 1985. Polyamines in microorganisms. Microbiol Rev, 49:81–99.
  • Tuomainen, J., Betz, C., Kangasjarvi, J., Ernst, D., Yin, Z.H., Langebartels, C., Sandermann, H. Jr., 1997. Ozone induction of ethylene emission in tomato plants: Regulation by differential transcript accumulation for the biosynthetic enzymes. Plant J, 12:1151–1162.
  • Uchiumi T., Oowada T., Itakura M., Mitsui H., Nukui N., Dawadi P., Kaneko T., Tabata S. et al., 2004. Expression islands clustered on symbiosis island of Mesorhizobium loti genome. J Bacteriol, 186:2439–2448.
  • Vahala, J., Ruonala, R., Keinanen, M., Tuominen, H., Kangasjarvi, J., 2003. Ethylene insensitivity modulates ozone-induced cell death in birch. Plant Physiol, 132:185–195.
  • Van Loon, L.C., Geraats, B.P.J., Linthorst, H.J.M., 2006. Ethylene as a modulator of disease resistance in plants. Trends Plant Sci, 11:184–191.
  • Van Loon, L.C., Glick, B.R., 2004. Increased plant fitness by rhizobacteria. In Sandermann, H., (Ed.), Molecular ecotoxicology of plants (s. 177–205). Berlin: Springer- Verlag
  • Walsh, C., Pascal, R. A., Johnston, M., Raines, R., Dikshit, D., Krantz, A., Honma, M., 1981. Mechanistic studies on the pyridoxal phosphate enzyme 1-aminocyclopropane-1- carboxylate from Pseudomonas sp. Biochemistry, 20: 7509–
  • Wang, C., Knill, E., Glick, B.R., Défago, G., 2000. Effect of transferring 1-aminocyclopropane -1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth promoting and disease-suppressive capacities. Can J Microbiol, 46: 898–907.
  • Wang, C., Ramette, A., Punjasamarnwong, P., Zala, M., Natsch, A., Moënne-Loccoz, Y., Défago, G., 2001. Cosmopolitan distribution of associated pseudomonads of worldwide origin. FEMS Microbiol Ecol, 37:105–116 .
  • Wang, K.L., Li, H., Ecker, J.R., 2002. Ethylene biosynthesis and signaling networks. Plant Cell, 14:131–151.
  • Whipp, J.M., 1990. Carbon utilization. In: Lynch JM (ed) The rhizosphere. Wiley, Chichester, pp 59–97.
  • Woltering, E.J., van Doorn, W.G., 1988. Role of ethylene in senescence of petals—morphological and taxonomical relationships. J Expl Bot, 39:1605–1616.
  • Wu, C.H., Wood, T.K., Mulchandani, A., Chen, W. 2006. Engineering plant-microbe symbiosis for rhizoremediation of heavy metal, Appl. Environ. Microbiol., 72: 1129–1134.
  • Yuhashi, K. I., Ichikawa, N., Ezura, H., Akao, S., Minakawa, Y., Nukui, N., Yasuta, T., Minamisawa, K., 2000. Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness on Macroptilium atropurpureum. App Environ Microbiol., 66: 2658–2663.
  • Yuquan, X., Rong ,S., Zhixing, L., 1999. Quickly screening a strain of Pseudomonas B8 with both ACC deaminase activity and antagonism against http://www.wanfangdata.com.cn/qikan/periodical.articles.
  • Zahir, Z.A., Arshad, M., Frankenberger, W.T. 2004. Plant growth Fusarium oxysporum.
  • promoting rhizobacteria: applications and perspectives in
  • agriculture. Adv Agron, 81:97–168.
Year 2009, Volume: 40 Issue: 1, 109 - 125, 10.01.2011

Abstract

References

  • Abeles, F.B., Morgan, P.W., Saltveit, M.E., 1992. Ethylene in Plant Biology. Academic Press, San Diego.
  • Altındağ, M., Şahin, M., Eşitken, A., Ercişli, S., Güleryüz, M., Dönmez, M.F., Şahin, F., 2006. Biological control of brown rot (Moniliana laxa Ehr.) on apricot (Prunus armeniaca L. cv. Hacihaliloglu) by Pseudomonas application under in vitro and in vivo conditions. Biological Control, 38: 369-372.
  • Anderson, J.V., Davis, D.G., 2004. Abiotic stress alters transcript profiles and activity of glutathione S-transferase, glutathione peroxidase, and glutathione reductase in Euphorbia esula. Physiol. Plant., 120: 421-433.
  • Apse, M. P., Aharon, G.S., Snedden, W.A., Blumwald, E., 1999. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science, 285: 1256–1258.
  • Arshad, M., Frankenberger, Jr.W.T., 2002. Ethylene: Agricultural sources and applications. Dordrecht, The Netherlands: Kluwer Academic/Plenum Publishers New York
  • Arshad, M., Frankenberger, W.T., 1998. Plant growth regulating substances in the rhizosphere: microbial production and functions. Adv. Argon., 62:146–151.
  • Babalola, O.O., Osir, E.O., Sanni, A.I., Odhaimbo, G.D., Bulimo, W.D., 2003. Amplification of 1-aminocyclopropane-1- carboxylic (ACC) deaminase from plant growth promoting rhizobacteria in Striga-infested soils. African J. Biotechnol, 2, 157–160.
  • Barka, E.A., Nowak, J., Clément, C., 2006. Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, phytofirmans Strain PsJN. Appl Environ Microbiol, 72:7246–7252. Burkholderia
  • Bashan, Y., 1994. Symptom expression and ethylene production in leaf blight of cotton caused by Alternaria macrospora and Alternaria alternata alone and combined. Can. J. Bot., 72, 1574–1579.
  • Belimov, A.A., Hontzeas, N., Safronova, V.I., Demchinskaya, S.V., Piluzza, G., Bullitta, S., Glick, B.R., 2005. Cadmium- tolerant plant growth-promoting rhizobacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem, 37: 241–250.
  • Belimov, A.A., Safronova, V.I., Sergeyeva, T.A., Egorova, T.N., Matveyeva, V.A., Tsyganov, V.E., Borisov, A.Y., Tikhonovich, I.A., Kluge, C., Preisfeld, A., Dietz, K.J., Stepanok, V.V., 2001. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can. J. Microbiol, 47: 642–652.
  • Belimov, A.A., Dodd, I.C., Safronova, V.I., Hontzeas, N., Davies, W.J., 2007. Pseudomonas brassicacearum strain Am3 containing 1-aminocyclopropane-1-carboxylate deaminase can show both pathogenic and growth-promoting properties in its interaction with tomato. J Exp Bot., 58: 1485-1495.
  • Belimov, A.A., Safronova, V.I., Mimura, T., 2002. Response of spring rape to inoculation with plant growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase depends on nutrient status of the plant. Can. J. Microbiol, 48:189–199
  • Bensalim, S., Nowak, J., Asiedu, S.K., 1998. A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am J Potato Res, 75: 145–152.
  • Blaha, D., Prigent-Combaret, C., Mirza, M.S., Moënne-Loccoz, Y., 2006. Phylogeny of the 1-aminocyclopropane-1- carboxylic acid deaminase-encoding gene phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol, 56: 455– acdS in
  • Bloemberg, G.V., Lugtenberg, B.J.J., 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Cur Opin Plant Biol, 4:343–350.
  • Blumwald, E., 2000. Sodium transport and salt tolerance in plants. Curr Opin Cell Biol, 12:431–434.
  • Bray, E.A., 1997. Plant responses to water deficit. Trends Plant Sci, 2:48–54.
  • Burd, G.I., Dixon, D.G., Glick, B.R., 1998. A plant growth- promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol, 64: 3663–3668.
  • Burd, G.I., Dixon, D.G.,Glick, B.R., 2000. Plant growth- promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol, 46: 237–245.
  • Cattelana, A.J., Hartela, P.G., Fuhrmann, J.J., 1999. Screening for plant growth–promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J, 63:1670–1680.
  • Chao, Q., Rothenberg, M., Solano, R., Roman, G., Terzaghi, W., Ecker, J.R., 1997. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein and related proteins. Cell, 89:1133–1144.
  • Cheikh, N., Jones, R.J., 1994. Disruption of maize kernel growth and development by heat stress (role of cytokinin/abscisic acid balance). Plant Physiol, 106:45–51.
  • Chen, K.M., Gong, H.J., Chen, G.C., Wang, S.M., Zhang, C.L., 2004. Gradual drought under field conditions influences the glutathione metabolism, redox balance and energy supply in spring wheat. J. Plant Growth Regul, 23: 20-28.
  • Cheng, Z., Park, E., Glick, B.R., 2007. 1-Aminocyclopropane-1- carboxylate (ACC) deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol, 53: 912-918.
  • Compant, S., Duffy, B., Nowak, J., Clément, C., Barka, E.A., 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol, 71:4951–4959.
  • Cuartero, J., Fernandez-Munoz, R., 1999. Tomato and salinity. Sci Hortic 78:83–125.
  • Çakmak, I., Römheld, V., 1997. Boron deficiency-induced impairments of cellular functions in plants. Plant Soil, 193: 71-83.
  • Çakmakçı, R., Kantar, F., Algur, Ö.F., 1999. Sugar beet and barley yield in relation to Bacillus polymxa and Bacillus megaterium var. Phosphaticum inoculation. J. Plant Nutr. Soil Sci, 162: 437-442.
  • Çakmakçı, R., Kantar, F., Şahin, F., 2001. Effect of N2- fixing bacterial inoculations on yield of sugar beet and barley. J. Plant Nutr. Soil Sci, 164 (5), 527-531.
  • Çakmakçı, R., Dönmez, F., Aydın, A., Şahin, F., 2006. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol. Biochem, 38:1482-1487.
  • Çakmakçı, R., Dönmez, M.F., Erdoğan, Ü., 2007a. The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turkish J. Agric. For., 31: 189-199.
  • Çakmakçı, R., Erat, M., Erdoğan, Ü., Dönmez, F., 2007b. The influence of plant growth-promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. J. Plant Nutr. Soil Sci, 170: 288-295.
  • Çakmakçı, R., Erat, M., Dönmez, M.F., 2007c. Bitki gelişimini teşvik edici rizobakteri (PGPR) aşılamalarının bitki gelişimi ve bazı antioksidan enzim aktiviteleri üzerine etkisi. Türkiye VII. Tarla Bitkileri Kongresi, 25-27 Haziran 2007 Erzurum.
  • Çakmakçı, R., Erat, M., Oral, B., Erdoğan, Ü., Şahin, F., 2009. Enzyme activities and growth promotion of spinach by indole-3-acetic acid-producing rhizobacteria. J. Hort. Sci. Biotech. 84 (4), 375-380.
  • de Freitas, J.R. Banerjee M.R., Germida, J.J., 1997. Phosphate solubilizing rhizobacteria enhance the growth and yield but no phosphorus uptake of canola (Brassica napus L.), Biol. Fertl. Soils, 24: 358–364. de Prado, J.L., de Prado, R.A., Shimabukuro, R.H., 1999. The effect of diclofop on membrane potential, ethylene induction, and herbicide phytotoxicity in resistant and susceptible biotypes of grasses. Pestic Biochem Physiol, 63:1–14.
  • Dell’Amico, E., Cavalca, L., Andreoni, V., 2008. Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem, 40:74- 84.
  • Dey, R., Pal, K.K., Bhatt, D.M., Chauhan, S.M., 2004. Growth promotion and yield enhancement of peanut (Aracis hypoggaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res, 159:371–394.
  • Dobbelaere, S., Vanderleyden, J., Okon, Y., 2003. Plant growth- promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci, 22:107–149.
  • Dodd, I.C., Belimov, A.A., Sobeih, W.Y., Safronova, V.I., Grierson, D., Davies, W.J., 2005. Will modifying plant ethylene status improve plant productivity in water-limited environments? 4th International Crop Science Congress.
  • Domenech, J., Reddy, M.S., Kloepper, J.W., Ramos, B., Gutierrez- Mañero, J., 2006. Combined application of the biological product LS213 with Chryseobacterium for growth promotion and biological control of soil-borne diseases in pepper and tomato. Biocontrol, 51:245–258. Pseudomonas or
  • Donate-Correa, J., Leon-Barrios, M., Perez-Galdona, R., 2004. Screening for plant growth-promoting rhizobacteria in Chamaecytisus proliferus (tagasaste), a forage tree-shrub legume endemic to the Canary Islands. Plant Soil, 266:261– 272.
  • Duan, J., Müller, K. M., Charles, T. C., Vesely, S., Glick, B. R., 2006. 1-Aminocyclopropane-1-carboxylate (ACC) deaminase genes in Rhizobia: Isolation, characterization and regulation. Proceedings of the 7th International PGPR Workshop. Amsterdam.
  • Else, M.A., Jackson, M.B., 1998. Transport of 1- aminocyclopropane-1-carboxylic acid (ACC) in the transpiration stream of tomato (Lycopersicon esculentum) in relation to foliar ethylene production and petiole epinasty. Australian J. Plant Physiol, 25: 453–458.
  • Else, M.A., Hall, K.C., Arnold, G.M., Davies, W.J., Jackson, M.B., 1995. Export of abscisic acid, 1-aminocyclopropane-1- carboxylic acid, phosphate, and nitrate from roots to shoots of flooded tomato plants. Plant Physiol, 107:377–384.
  • Ernst, W.H.O., 1998. Effects of heavy metals in plants at the cellular and organismic level. In: Schüürmann G, Markert B (eds) Ecotoxicology. Wiley, New York, s. 587–620.
  • Esitken, A., Karlidag, H., Ercisli, S., Sahin, F., 2002. Effects of foliar application of Bacillus subtilis Osu-142 on the yield, growth and control of shot-hole disease (Coryneum blight) of apricot. Gartenbauwissenschaft, 67:139-142.
  • Fallik, E., Sarig, S., Okon, Y., 1994. Morphology and physiology of plant roots associated with Azospirillum. In: Okon Y (ed) Azospirillum/plant associations. CRC Press, London, s. 77– 86.
  • Farwell, A.J., Vesely, S., Nero, V., Rodriguez, H., Shah, S., Dixon, D.G., Glick, B.R., 2006. The use of transgenic canola (Brassica napus) and plant growth-promoting bacteria to enhance plant biomass at a nickel-contaminated field site. Plant Soil, 288: 309–318.
  • Farwell, A.J., Vesely, S., Nero, V., McCormack, K., Rodriguez, H., Shah, S., Dixon, D.G., Glick, B.R., 2007. Tolerance of transgenic canola (Brassica napus) amended with ACC deaminase-containing plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environ Poll, 147: 540-545.
  • Ferro, A.J., Bestwick, R.K., Brown, L.R., 1995. Inventors; agritope, assignee. 1995/05/16. Genetic control of ethylene biosynthesis in plants using S-adenosylmethionine hydrolase. US Patent # 05416250.
  • Frankenberger, W.T., Arshad, M., 1995. Phytohormones in soil: microbial production and function. Marcel Dekker, New York.
  • Ghosh, S., Penterman, J.N., Little, R.D., Chavez, R., Glick, B.R., 2003. Three newly isolated plant growth-promoting bacilli facilitate the growth of canola seedlings. Plant Physiol Biochem, 41: 277–281.
  • Glick, B.R., 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol, 41: 109–117.
  • Glick, B.R., 2003. Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnol. Adv., 21: 383-393.
  • Glick, B.R., Karaturovíc, D.M., Newell, P.C., 1995. A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can. J. Microbiol, 41: 533–536.
  • Glick, B.R., Patten, C.L., Holguin, G., Penrose, D.M., 1999. Biochemical and genetic mechanisms used by plant growth promoting bacteria. London: Imperial College Press.
  • Glick, B.R., Penrose, D.M., Li, J., 1998. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol, 190:63–68.
  • Glick, B.R., 2005. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett, 251:1–7.
  • Glick, B.R., Cheng, Z., Czarny, J., Duan, J., 2007. Promotion of plant growth by ACC deaminase-producing soil bacteria. European J. Plant Pathol., 119: 329-339.
  • Gong, H.B., Jiao, Y.X., Hu, W.W., Pua, E.C., 2005. Expression of glutathione-S-transferase and its role in plant growth and development in vivo and shoot morphogenesis in vitro. Plant Mol. Biol., 57: 53-66.
  • Gravel,V., Antoun, H., Tweddell; R.J. 2007. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of indole acetic acid (IAA). Soil Biol Biochem, 39: 1968-1977.
  • Greenberg, B.M., Huang, X.D., Gurska, Y., Gerhardt, K.E., Wang, W., Lampi, M.A., Zhang, C., Khalid, A., Isherwood, D., Chang, P., Wang, H., Dixon, D.G., Glick, B.R., 2006. Successful field tests of a multi-process phytoremediation system for decontamination of persistent petroleum and organic contaminants, Proceedings of the 29th Arctic and Marine Oil Spill Program Technical Seminar (Vol. 1, s. 389– 400).
  • Grichko, V. P., Filby, B., Glick, B. R., 2000. Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb and Zn. J. Biotechnol., 81: 45-53.
  • Grichko, V.P., Glick, B.R., 2001a. Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem, 39, 11–17.
  • Grichko, V. P., Glick, B. R., 2001b. Flooding tolerance of transgenic tomato plants expressing the bacterial enzyme ACC deaminase controlled by the 35S, rolD or PRB-1b promoter. Plant Physiol Biochem, 39: 19–25.
  • Guinel, F.C., Geil, R.D., 2002. A model for the development of the rhizobial and arbuscular mycorrhizal symbioses in legumes and its use to understand the roles of ethylene in the establishment of these two symbioses. Canadian J. Bot., 80: 695–720.
  • Higgins, J.D., Newbury, H.J., Barbara1, D.J., Muthumeenakshi, S., Puddephat, I.J., 2006. The production of marker-free genetically engineered broccoli with sense and antisense ACC synthase 1 and ACC oxidases 1 and 2 to extend shelf- life. Mole Breed, 17:7–20.
  • Hong, Y., Glick, B.R., Pasternak, J.J., 1991. Plant-microbial interaction under gnotobiotic conditions: a scanning electron microscope study. Curr Microbiol, 23:111–114.
  • Honma, M., Shimomura, T., 1978. Metabolism of 1- aminocyclopropane-1-carboxylic acid. Agric Biol Chem, 42: 1825–1831.
  • Hontzeas, N., Zoidakis, J., Glick, B.R., Abu-Mar, M.M., 2004. Expression and characterization of 1-aminocyclopropane-1- carboxylate deaminase from the rhizobacterium Pseudomonas putida UW4: a key enzyme in bacterial plant growth promotion. Biochim Biophys Acta, 1703:11–19.
  • Hontzeas, N., Richardson, A.O., Belimov, A.A., Safranova, V.I., Abu-Omar, M.M., Glick, B.R., 2005. Evidence for horizontal gene transfer (HGT) of ACC deaminase genes. App Environ Microbiol, 71: 7556–7558.
  • Huang, X.-D., El-Alawi, Y., Penrose, D.M., Glick, B.R., Greenberg, B.M., 2004a. Responses of plants to creosote during phytoremediation and their significance for remediation processes. Environ. Pollut., 130: 453–463.
  • Huang, X.-D., El-Alawi, Y., Penrose, D.M., Glick, B.R., Greenberg, B.M., 2004b. Multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ. Pollut., 130: 465-476.
  • Huang, X.-D., El-Alawai, Y., Gurska, J., Glick, B.R., Greenberg, B.M., 2005. A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem. J., 81:139–147.
  • Hyodo, H., 1991. Stress/wound ethylene. In A. K. Mattoo, J. C. Shuttle (Eds.), The plant hormone ethylene (s. 65–80). Boca Raton: CRC Press.
  • Indiragandhi, P., Anandham, R., Madhaiyan, M., Sa, T.M. 2008. Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr Microbiol., 56: 327-33.
  • Ingram, J., Bartels, D., 1996. The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol, 47:377–403.
  • Jackson, M.B., 1997. Hormones from roots as signal for the shoots of stressed plants. Trends Plant Sci, 2:22–28.
  • Jacques, M.A., Kinkel, L.L., Morris, C.E., 1995. Population sizes, immigration, and growth of epiphytic bacteria on leaves of different ages and positions of field grown endive (Cochorium endivia var. latifolia). Appl Environ Microbiol, 61:899–906.
  • Jansonius, N. J., 1998. Structure, evolution and action of vitamin B6-dependent enzymes. Cur Opin Struct Biol, 8: 759–769.
  • Ji, P., Campbell, H.L., Kloepper, J.W., Jones, J.B., Suslow, T.V., Wilson, M., 2006. Integrated biological control of bacterial speck and spot of tomato under field conditions using foliar biological control agents and plant growth- promoting rhizobacteria. Biol Control, 36:358–367.
  • Jia,Y.J., Kakuta, Y., Sugawara, M., Igarashi, T., Oki, N., Kisaki, M., Shoji, T., Kanetuna, Y., Horita, T., Matsui, H., Honma, M., 1999. Synthesis and degradation of 1- aminocyclopropane-1-carboxylic acid by citrinum. Biosci Biotechnol Biochem, 63:542–549. Penicillium
  • Joardar, V., Lindeberg, M., Jackson, R.W., Selengut, J., Dodson, R., Brinkac, L.M. et al., 2005. Whole-genome sequence analysis of Pseudomonas syringae pv. phaseolicola 1448A reveals divergence among pathovars in genes involved in virulence and transposition. J Bacteriol, 187:6488–6498.
  • Johnson, P.R., Ecker, J.R., 1998. The ethylene gas signal transduction pathway: a molecular perspective. Annu Rev Genet, 32:227–254.
  • Kende, H., 1993. Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol, 44:283–307.
  • Knoester, M., Linthorst, H.J.M., Bol, J.F., Van Loon, L.C., 1997. Modulation of stress-inducible ethylene biosynthesis by sense and antisense gene expression in tobacco, Plant Sci, 126: 173–183.
  • Kumar, A., Taylor, M.A., Mad Arif, S.A., Davies, H.V., 1996. Potato plants expressing antisense and sense S-adenosylme- thionine decarboxylase (SAMDC) transgenes show altered levels of polyamines and ethylene: antisense plants display abnormal phenotypes. Plant J., 9:47–58.
  • Lasserre, E., Bouquin, T., Hernandez, J.A., Bull, J., Pech, J.C., Balagua, C., 1996. Structure and expression of three genes encoding ACC oxidase homologs from melon (Cucumis melo L). Mol Gen Genet, 251:81–90.
  • Lee, K.H., LaRue, T.A., 1992. Exogenous ethylene inhibits nodulation of Pisum sativum L. cv Sparkle. Plant Physiol, 100:1759–1763.
  • Li, Q., Saleh-Lakha, S., Glick, B.R., 2005. The effect of native and ACC deaminase-containing Azospirillum brasilense Cd1843 on the rooting of carnation cuttings. Can J Microbiol, 51:511–514.
  • Lund, S.T., Stall, R.E., Klee, H.J., 1998. Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell, 10: 371–382.
  • Ma, J.H., Yao, J.L., Cohen, D., Morris, B., 1998. Ethylene inhibitors enhance in vitro root formation from apple shoot cultures. Plant Cell Rep, 17:211–214.
  • Ma, W., Sebestianova, S., Sebestian, J., Burd, G.I., Guinel, F., Glick, B.R., 2003a. Prevalence of 1-aminocyclopropaqne-1- carboxylate in deaminase in Rhizobia spp. Antonie Van Leeuwenhoek, 83: 285–291.
  • Ma, W., Guinel, F.C., Glick, B.R., 2003b. The Rhizobium leguminosarum bv. viciae ACC deaminase protein promotes the nodulation of pea plants. Appl Environ Microbiol, 69:4396–4402.
  • Ma, W., Charles, T.C., Glick, B.R., 2004. Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Appl Environ Microbiol, 70: 5891–5897 .
  • Madhaiyan, M., Poonguzhali, S., Ryu, J., Sa, T., 2006. Regulation of ethylene levels in canola (Brassica campestris) by 1- aminocycloprpane-1-carboxylate deaminase-containing Methylobacterium fjisawaense. Planta, 224: 268–278.
  • Marrs, K.A., 1996. The functions and regulation of glutathione S- transferases in plants. Annu. Rev. Plant Physiol. Plant. Mol. Biol., 47: 127–158.
  • Mattoo, A.K., Suttle, J.C., 1991. The Plant Hormone Ethylene. CRC Press, Boca Raton, FL
  • Mayak, S., Tivosh, T., Glick,B.R., 1999. Effect of wild type and mutant plant growth-promoting rhizobacteria on the rooting of mungbeen cuttings. J. Plant Growth Regul., 18:49–53.
  • Mayak, S., Tirosh, T., Glick, B.R., 2004a. Plant growth-promoting bacteria that confer resistance in tomato to salt stress. Plant Physiol Biochem, 42: 565–572.
  • Mayak, S., Tirosh, T., Glick, B.R., 2004b. Plant growth-promoting bacteria that confer resistance to water stress in tomato and pepper. Plant Sci., 166: 525–530.
  • McCune, J.M., 1975. Definition of invisible injury in plants. In: Treshow M (ed) Interaction of air pollutants and plant diseases (In: Responses of Plants to Air Pollution (ed. Mudd, J.B. and Kozlowski, T.T), s. 122:307–334. Academic Press, New York,
  • Mendelsohn, R., Rosenberg, N.J., 1994. Framework for integrated assessments of global warming impacts. Clim Change, 28:15–44.
  • Minami, R., Uchiyama, K., Murakami, T., Kawai, J., Mikami, K., Yamada, T., Yokoi, D., Ito, H., Matsui, H., Honma, M., 1998. Properties, sequence, and synthesis in Escherichia coli of 1-aminocyclopropane-1-carboxylate deaminase from Hansenula saturnus. J Biochem (Tokyo), 123: 1112–1118.
  • Moeder, W., Barry, C.S., Tauriainen, A.A., Betz C., Tuomainen, J., Utriainen, M., Grierson, D., Sandermann, H., Langebartels, C., Kangasjärvi, J., 2002. Ethylene synthesis regulated by bi-phasic induction of 1-aminocyclopropane-1- carboxylic acid synthase and 1-aminocyclopropane-1- carboxylic acid oxidase genes is required for hydrogen peroxide accumulation and cell death in ozone-exposed tomato. Plant Physiol, 130:1918–1926.
  • Nadeem, S.M., Hussain, I., Naveed, M., Ashgar, H.N., Zahir, Z.A., Arshad, M., 2006a. Performance of plant growth promoting rhizobacteria containing ACC-deaminase activity for improving growth of maize under salt-stressed conditions. Pak J Agri Sci, 43:114–121.
  • Nadeem, S.M., Zahir, Z.A., Naveed, M., Arshad, M., Shahzad, S.M., 2006b. Variation in growth and ion uptake of maize due to inoculation with plant growth promoting rhizobacteria under salt stress. Soil Environ, 25:78–84.
  • Nadeem, S.M., Zahir, Z.A., Naveed, M., Arshad, M., 2007. Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can. J. Microbiol, 53: 1141-1149.
  • Nakajima, N., Itoh, T., Takikawa S., Asai N., Tamaoki M., Aono, M. et al., 2002. Improvement in ozone tolerance of tobacco plants with an antisense DNA for 1-aminocyclopropane-1- carboxylate synthase. Plant Cell Environ, 25: 727–735.
  • Nayani, S., Mayak, S., Glick, B.R. , 1998. The effect of plant growth promoting rhizobacteria on the senescence of flower petals. Ind J Exp Biol, 36:836–839.
  • Nie, L., Shah, S., Burd, G. I., Dixon, D. G., Glick, B. R., 2002. Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem, 40: 355–361.
  • Nukui, N., Ezura, H., Yuhashi, K., Yasuta, T., Minamisawa, K., 2000. Effects of ethylene precursor and inhibitors for ethylene biosynthesis and perception on nodulation in Lotus japonicus and Macroptilium atropurpureum. Plant Cell Physiol, 41: 893–897.
  • Okazaki, S., Nukui, N., Sugawara, M., Minamisawa, K., 2004. Rhizobial strategies to enhance symbiotic interactions: rhizobitoxine and 1-aminocyclopropane-1-carboxylate deaminase. Microbes Environ, 19:99–111.
  • Oldroyd, G.E.D., Engstrom, E.M., Long, S.R., 2001. Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula. Plant Cell, 13:1835–1849.
  • Olson, D.C., Oetiker, J.H., Yang, S.F., 1995. Analysis of LE- ACS3, a 1-aminocyclopropane-1-carboxylic acid synthase gene expressed during flooding in the roots of tomato plants. J Biol Chem, 270:14056–14061.
  • Oral, B., Erat, M., Çakmakçı, R., 2006. Bitki gelişimini teşvik eden rizobakteri aşılamalarının buğday (Triticum aestivum L., Konya) ve ıspanak (Spinacia oleracea L.) yapraklarında bazı antioksidant enzim aktivitesi üzerine etkisi. XX.Ulusal Kimya Kongresi (4-8 Eylül) Kayseri.
  • Oral, B., Dönmez, M.F., Erat, M., Çakmakçı, R., 2007. İndol asetik asit (İAA) üretici bitki gelişimini teşvik eden bakterilerin ıspanakta nitrat redüktaz, katalaz ve peroksidaz aktivitesi üzerine etkisi. 21. Ulusal Kimya Kongresi (23-27 Ağustos) Malatya.
  • Pandey, P., Kang, S.C., Maheshwari, D.K., 2005. Isolation of endophytic plant growth promoting Burkholderia sp. MSSP from root nodules of Mimosa pudica. Curr Sci, 89:170–180.
  • Patten C.L., Glick, B.R., 2002. Role of Pseudomonas putida indole-acetic acid in development of the host plant root system. Appl. Environ. Microbiol., 68 : 3795–3801.
  • Penrose, D. M., Moffatt, B. A., Glick, B. R., 2001. Determination of 1-aminocyclopropane-1-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings. Can J Microbiol, 47: 77–80.
  • Penrose, D.M., Glick, B.R., 2001. Levels of 1-aminocyclopropane- 1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth-promoting bacteria. Can J Microbiol, 47:368–372.
  • Pierik, R., Tholen, D., Poorter, H., Visser, E.J.W., Voesenek, L.A.C.J., 2006. The Janus face of ethylene: Growth inhibition and stimulation. Trends Plant Sci, 11: 176–183.
  • Prasad, M.N.V., Strazalka, K., 2000. Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer Academic Publishers, Boston, s. 153–160.
  • Rasche, F., Marco-Noales, E., Velvis, H., Overbeek, L.S., López, M.M., Elsas, J.D., Sessitsch, A., 2006b. Structural characteristics and plant-beneficial effects of bacteria colonizing the shoots of field grown conventional and genetically modified T4-lysozyme producing potatoes. Plant Soil, 298:123–140.
  • Rasche, F., Velvis, H., Zachow, C., Berg, G., Van Elsas, J.D., Sessitsch, A., 2006a. Impact of transgenic potatoes expressing anti-bacterial agents on bacterial endophytes is comparable with the effects of plant genotype, soil type and pathogen infection. J Appl Ecol, 43:555–566.
  • Reed, M.L.E., Glick, B.R., 2005. Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol, 51: 1061–1069.
  • Reed, M.L.E., Warner, B., Glick, B.R., 2005. Plant growth- promoting bacteria facilitate the growth of the common reed Phragmites australis in the presence of copper or polycyclic aromatic hydrocarbons. Curr. Microbiol., 51 : 425-429.
  • Reid, M.S., Wu, M.J., 1992. Ethylene and flower senescence. Plant Growth Regul 11:37–43.
  • Remans, R., Croonenborghs, A., Gutierrez, R.T., Michiels, J., Vanderleyden, J., 2007. Effects of plant growth-promoting rhizobacteria on nodulation of Phaseolus vulgaris L. are dependent on plant P nutrition. European J. Plant Pathol, 119: 341-351.
  • Robertson, G.P., Paul, E.A., Harwood, R.R., 2000. Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science, 289:1922–1924.
  • Robison, M.M., Shah, S., Tamot, B., Pauls, K.P., Moffatt, B.A., Glick, B.R., 2001b. Reduced symptoms of Verticillium wilt in transgenic tomato expressing a bacterial ACC deaminase. Mol Plant Pathol, 2: 135–145.
  • Robison, M.M., Griffith, M., Pauls, K.P., Glick, B.R., 2001a. Dual role of ethylene in susceptibility of tomato to Verticillium wilt. J Phytopathol, 2:385–388.
  • Rodecap, K.D., Tingey, D.T., Tibbs, J.H., 1981. Cadmium- induced ethylene production in bean plants. Z Pflanzenphysiol, 105:65–74.
  • Ross, G.S., Knighton, M.L., Yee, M.L., 1992. An ethylene-related cDNA from ripening apples. Plant Mol Biol, 19:231–238.
  • Rubinstein, B., 2000. Regulation of cell death in flower petals. Plant Mol Biol, 44:303–318.
  • Safronova, V.I., Stepanok, V.V., Engqvist, G.L., Alekseyev, Y.V., Belimov, A.A. 2006. Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol. Fertil. Soils, 42: 267-272.
  • Saleem, M., Arshad, M.,, Hussain, S., Bhatti, A.S., 2007. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Trends Biotechnol, 25: 356-362.
  • Saleh, S.S., Glick, B.R. 2001. Involvement of gacS and rpoS in enhancement of the plant growth-promoting capabilities of Enterobacter cloacae CAL2 and Pseudomonas putida UW4. Can J Microbiol/Rev Can Microbiol, 47:698–705.
  • Saravanakumar, D., Samiyappan, R., 2007. ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol, 102:1283–1292.
  • Sergeeva, E., Shah, S., Glick, B.R., 2006. Tolerance of transgenic canola expressing a bacterial ACC deaminase gene to high concentrations of salt, World J. Microbiol Biotechnol, 22: 277–282.
  • Sessitsch, A., Coenye, T., Sturz, A.V., Vandamme, P., Barka, E., Wang-Pruski, G., Faure, D., Reiter, B., Glick, B.R., Nowak, J., 2005. Burkholderia phytofirmins sp. Nov., a novel plant- associated bacterium with plant beneficial properties. Int J Syst Evol Microbiol, 55:1187–1192.
  • Shaharoona, B., Arshad, M., Zahir, Z.A., Khalid, A., 2006a. Performance of Pseudomonas spp. containing ACC- deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol Biochem, 38:2971–2975.
  • Shaharoona, B., Arshad, M., Zahir, Z.A., 2006b. Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol, 42:155–159.
  • Shan, X.C., Goodwin, P.H., 2006. Silencing an ACC oxidase gene affects the susceptible host response of Nicotiana benthamiana to infection by Colletotrichum orbiculare. Plant Cell Rep, 25:241–247.
  • Sinn, J.P., Schlagnhaufer, C.D., Arteca, R.N., Pell, E.J., 2004. Ozone-induced ethylene and foliar injury responses are altered in 1-aminocyclopropane-1-carboxylate synthase antisense potato plants, New Phytol, 164: 267–277.
  • Sisler, E. C., Serek, M., 1997. Inhibitors of ethylene responses in plants at the receptor level: Recent developments. Physiol Plant, 100: 577–582.
  • Stearns, J.C., Shah, S., Dixon, D.G., Greenberg, B.M., Glick, B.R., 2005. Tolerance of transgenic canola expressing 1- aminocyclopropane-carboxylic acid deaminase to growth inhibition by nickel. Plant Physiol Biochem, 43: 701–708.
  • Stearns, J., Glick, B.R., 2003. Transgenic plants with altered ethylene biosynthesis or perception. Biotechnology Advances, 21: 193–210.
  • Stiens, M., Schneiker, S., Keller, M., Kuhn, S., Pühler, A., Schlüter, A., 2006. Sequence analysis of the 144-kilobase accessory plasmid psmesm11a, isolated from a dominant Sinorhizobium meliloti strain identified during a long-term field release experiment. Appl Environ Microbiol, 72:3662– 3672.
  • Strzelczyk, E., Kampert, M., Pachlewski, R., 1994. The influence of pH and temperature on ethylene production by mycorrhizal fungi of pine. Mycorrhiza, 4:193–196.
  • Sturz, A. V., Nowak, J., 2000. Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Applied Soil Ecology, 15: 183–190.
  • Şahin, F., Çakmakçı, R., Kantar, F., 2004. Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant Soil, 265: 123-129.
  • Tabor, C.W., Tabor, H., 1985. Polyamines in microorganisms. Microbiol Rev, 49:81–99.
  • Tuomainen, J., Betz, C., Kangasjarvi, J., Ernst, D., Yin, Z.H., Langebartels, C., Sandermann, H. Jr., 1997. Ozone induction of ethylene emission in tomato plants: Regulation by differential transcript accumulation for the biosynthetic enzymes. Plant J, 12:1151–1162.
  • Uchiumi T., Oowada T., Itakura M., Mitsui H., Nukui N., Dawadi P., Kaneko T., Tabata S. et al., 2004. Expression islands clustered on symbiosis island of Mesorhizobium loti genome. J Bacteriol, 186:2439–2448.
  • Vahala, J., Ruonala, R., Keinanen, M., Tuominen, H., Kangasjarvi, J., 2003. Ethylene insensitivity modulates ozone-induced cell death in birch. Plant Physiol, 132:185–195.
  • Van Loon, L.C., Geraats, B.P.J., Linthorst, H.J.M., 2006. Ethylene as a modulator of disease resistance in plants. Trends Plant Sci, 11:184–191.
  • Van Loon, L.C., Glick, B.R., 2004. Increased plant fitness by rhizobacteria. In Sandermann, H., (Ed.), Molecular ecotoxicology of plants (s. 177–205). Berlin: Springer- Verlag
  • Walsh, C., Pascal, R. A., Johnston, M., Raines, R., Dikshit, D., Krantz, A., Honma, M., 1981. Mechanistic studies on the pyridoxal phosphate enzyme 1-aminocyclopropane-1- carboxylate from Pseudomonas sp. Biochemistry, 20: 7509–
  • Wang, C., Knill, E., Glick, B.R., Défago, G., 2000. Effect of transferring 1-aminocyclopropane -1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth promoting and disease-suppressive capacities. Can J Microbiol, 46: 898–907.
  • Wang, C., Ramette, A., Punjasamarnwong, P., Zala, M., Natsch, A., Moënne-Loccoz, Y., Défago, G., 2001. Cosmopolitan distribution of associated pseudomonads of worldwide origin. FEMS Microbiol Ecol, 37:105–116 .
  • Wang, K.L., Li, H., Ecker, J.R., 2002. Ethylene biosynthesis and signaling networks. Plant Cell, 14:131–151.
  • Whipp, J.M., 1990. Carbon utilization. In: Lynch JM (ed) The rhizosphere. Wiley, Chichester, pp 59–97.
  • Woltering, E.J., van Doorn, W.G., 1988. Role of ethylene in senescence of petals—morphological and taxonomical relationships. J Expl Bot, 39:1605–1616.
  • Wu, C.H., Wood, T.K., Mulchandani, A., Chen, W. 2006. Engineering plant-microbe symbiosis for rhizoremediation of heavy metal, Appl. Environ. Microbiol., 72: 1129–1134.
  • Yuhashi, K. I., Ichikawa, N., Ezura, H., Akao, S., Minakawa, Y., Nukui, N., Yasuta, T., Minamisawa, K., 2000. Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness on Macroptilium atropurpureum. App Environ Microbiol., 66: 2658–2663.
  • Yuquan, X., Rong ,S., Zhixing, L., 1999. Quickly screening a strain of Pseudomonas B8 with both ACC deaminase activity and antagonism against http://www.wanfangdata.com.cn/qikan/periodical.articles.
  • Zahir, Z.A., Arshad, M., Frankenberger, W.T. 2004. Plant growth Fusarium oxysporum.
  • promoting rhizobacteria: applications and perspectives in
  • agriculture. Adv Agron, 81:97–168.
There are 171 citations in total.

Details

Primary Language tr;en
Journal Section DERLEMELER
Authors

Ramazan Çakmakçı

Publication Date January 10, 2011
Published in Issue Year 2009 Volume: 40 Issue: 1

Cite

APA Çakmakçı, R. (2011). Stres Koşullarında ACC Deaminaze Üretici Bakteriler Tarafından Bitki Gelişiminin Teşvik Edilmesi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 40(1), 109-125.
AMA Çakmakçı R. Stres Koşullarında ACC Deaminaze Üretici Bakteriler Tarafından Bitki Gelişiminin Teşvik Edilmesi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. January 2011;40(1):109-125.
Chicago Çakmakçı, Ramazan. “Stres Koşullarında ACC Deaminaze Üretici Bakteriler Tarafından Bitki Gelişiminin Teşvik Edilmesi”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 40, no. 1 (January 2011): 109-25.
EndNote Çakmakçı R (January 1, 2011) Stres Koşullarında ACC Deaminaze Üretici Bakteriler Tarafından Bitki Gelişiminin Teşvik Edilmesi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 40 1 109–125.
IEEE R. Çakmakçı, “Stres Koşullarında ACC Deaminaze Üretici Bakteriler Tarafından Bitki Gelişiminin Teşvik Edilmesi”, Atatürk Üniversitesi Ziraat Fakültesi Dergisi, vol. 40, no. 1, pp. 109–125, 2011.
ISNAD Çakmakçı, Ramazan. “Stres Koşullarında ACC Deaminaze Üretici Bakteriler Tarafından Bitki Gelişiminin Teşvik Edilmesi”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 40/1 (January 2011), 109-125.
JAMA Çakmakçı R. Stres Koşullarında ACC Deaminaze Üretici Bakteriler Tarafından Bitki Gelişiminin Teşvik Edilmesi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 2011;40:109–125.
MLA Çakmakçı, Ramazan. “Stres Koşullarında ACC Deaminaze Üretici Bakteriler Tarafından Bitki Gelişiminin Teşvik Edilmesi”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, vol. 40, no. 1, 2011, pp. 109-25.
Vancouver Çakmakçı R. Stres Koşullarında ACC Deaminaze Üretici Bakteriler Tarafından Bitki Gelişiminin Teşvik Edilmesi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 2011;40(1):109-25.

Articles published in this journal are published under the Creative Commons International License (https://creativecommons.org/licenses/by-nc/4.0/). This allows the work to be copied and distributed in any medium or format provided that the original article is appropriately cited. However, the articles work cannot be used for commercial purposes.

https://creativecommons.org/licenses/by-nc/4.0/